Posts Tagged physiotherapy

[ARTICLE] Virtual Reality Games as an Adjunct in Improving Upper Limb Function and General Health among Stroke Survivors – Full Text

Abstract

Virtual reality (VR) games has the potential to improve patient outcomes in stroke rehabilitation. However, there is limited information on VR games as an adjunct to standard physiotherapy in improving upper limb function. This study involved 36 participants in both experimental (n = 18) and control (n = 18) groups with a mean age (SD) of 57 (8.20) and 63 (10.54) years, respectively. Outcome measures were the Fugl-Meyer assessment for upper extremities (FMA-UE), Wolf motor function test (WMFT), intrinsic motivation inventory (IMI), Lawton of instrumental activities of daily living (IADL), and stroke impact scale (SIS) assessed at pre-post intervention. The experimental group had 0.5 h of upper limb (UL) VR games with 1.5 h of standard physiotherapy, and the control group received 2 h of standard physiotherapy. The intervention for both groups was performed once a week for eight consecutive weeks. The results showed a significant time–group interaction effect for IMI (p = 0.001), Lawton IADL (p = 0.01) and SIS domain of communication (p = 0.03). A significant time effect was found in FMA-UE (p = 0.001), WMFT (p = 0.001), Lawton IADL (p = 0.01), and SIS domains; strength, ADL and stroke recovery (p < 0.05). These results indicated an improvement in UL motor ability, sensory function, instrumental ADL, and quality of life in both groups after eight weeks of intervention. However, no significant (p > 0.05) group effect on all the outcome measures was demonstrated. Thus, replacing a portion of standard physiotherapy time with VR games was equally effective in improving UL function and general health compared to receiving only standard physiotherapy among stroke survivors.

1. Introduction

Stroke is a leading cause of significant disability among adults globally []. Rehabilitation is of utmost importance with an increase in the number of stroke survivors []. Stroke rehabilitation requires a multidisciplinary approach, is long-term and challenging due to its complexity []. Recent evidence suggests that the extension of a stroke rehabilitation programme may lead to further improvement in function and quality of life among stroke survivors [].

Persistent upper limb (UL) dysfunction after a stroke is one of the most challenging issues in rehabilitation []. Increasing the dose of rehabilitation among stroke survivors may improve outcomes, and one of the strategies includes performing self-administered exercises using VR games technology []. VR is a computer-assisted technology that can provide users with experiences of a simulated “real” environment []. VR technology has been used in rehabilitation in addition to standard physiotherapy, or as a preventive therapy []. VR-based rehabilitation also offers the capacity to individualise treatment needs while providing the standardisation of assessment and training protocols [].

Earlier evidence suggested that VR technology can provide a unique medium whereby rehabilitation can be delivered in a functional and purposeful manner []. Moreover, VR technology-based rehabilitation can be readily graded and documented []. Other than that, stroke survivors can perform VR training at their home and the therapist can monitor from a distance, known as tele-rehabilitation []. Compliance towards treatment and rehabilitation is a vital factor to consider in stroke management []. Hence, VR rehabilitation has the potential to improve patient participation, enable intensive therapy and reduce demand on health care professionals [,,].

In previous studies, VR games were shown to be effective in improving physical function among stroke survivors [], balance and functional mobility in older adults [,], and upper limb reaction time in adults with physical disabilities []. However, balance and mobility issues were examined rather than upper limb function [,]. There is also limited information on VR games as an adjunct to standard physiotherapy. Moreover, previous evidence mainly demonstrates the effects of VR as a standalone intervention among stroke survivors [,]. For example, in a pilot crossover design study involving 14 participants with chronic stroke, VR game-assisted intervention was performed for 45–60 min for a duration of 2.5 weeks []. The results showed improved UL motor performance using the Fugl-Meyer assessment for upper extremities (FMA-UE) as the primary outcome measure. In our present study, we aimed to examine the effectiveness of VR games as an adjunct to standard physiotherapy in improving upper limb (UL) function and general health among stroke survivors.[…]

Continue —->  Virtual Reality Games as an Adjunct in Improving Upper Limb Function and General Health among Stroke Survivors

, , , , , , , ,

Leave a comment

[RESEARCH] Evidence to guide telehealth physiotherapy – PEDro

With many physiotherapists moving to delivery of online services because of the Coronavirus Disease 2019 (COVID-19) pandemic, we thought it would be timely to put together some high-quality clinical research to guide telehealth interventions. Following are a list of systematic reviews published in the last 5 years that evaluate the effects of tele-physiotherapy. The Chartered Society of Physiotherapy have produced a guide for the rapid implementation of telehealth consultations that may also be useful.

Title Method
Telerehabilitation services for stroke (Cochrane review) systematic review
Alternative models of cardiac rehabilitation: a systematic review systematic review
Telehealthcare in COPD: a systematic review and meta-analysis on physical outcomes and dyspnea systematic review
Telehealth interventions versus center-based cardiac rehabilitation of coronary artery disease: a systematic review and meta-analysis systematic review
Telehealth exercise-based cardiac rehabilitation: a systematic review and meta-analysis systematic review
Interventions to achieve ongoing exercise adherence for adults with chronic health conditions who have completed a supervised exercise program: systematic review and meta-analysis systematic review
Real-time telerehabilitation for the treatment of musculoskeletal conditions is effective and comparable to standard practice: a systematic review and meta-analysis systematic review
Telehealth interventions to support self-management of long-term conditions: a systematic metareview of diabetes, heart failure, asthma, chronic obstructive pulmonary disease, and cancer systematic review
Lifestyle interventions based on the diabetes prevention program delivered via eHealth: a systematic review and meta-analysis systematic review
The effectiveness of exercise-based telemedicine on pain, physical activity and quality of life in the treatment of chronic pain: a systematic review systematic review
Exploring effectiveness and effective components of self-management interventions for young people with chronic physical conditions: a systematic review systematic review
Clinical-effectiveness of self-management interventions in chronic obstructive pulmonary disease: an overview of reviews systematic review
The use of mobile applications to support self-management for people with asthma: a systematic review of controlled studies to identify features associated with clinical effectiveness and adherence systematic review
Effectiveness of telephone-based interventions for managing osteoarthritis and spinal pain: a systematic review and meta-analysis systematic review
The efficacy of telehealth delivered educational approaches for patients with chronic diseases: a systematic review systematic review
Cost-effectiveness of cardiac rehabilitation: a systematic review systematic review
eHealth interventions for people with chronic kidney disease (Cochrane review) systematic review

, , , , , ,

Leave a comment

[ARTICLE] Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial – Full Text

Background: As a result of stroke, patients have problems with locomotion and transfers, which lead to frequent falls. Recovery after stroke is a major goal of rehabilitation, but it is difficult to choose which treatment method is most beneficial for stroke survivors. Recently, powered robotic exoskeletons are used in treatment to maximize the neural recovery of patients after stroke, but there are no studies evaluating the changes in balance among patients rehabilitated with an exoskeleton.

Purpose: The aim of this study was to evaluate the effects of Ekso GT exoskeleton-assisted gait training on balance, load distribution, and functional status of patients after ischemic stroke.

Methods: The outcomes are based on 44 patients aged 55–85 years after ischemic stroke who were previously randomly assigned into two groups: experimental (with Ekso GT rehabilitation) and control (with classical rehabilitation). At baseline and after 4 weeks of treatment, the patients were evaluated on balance, load distribution, and functional status using, respectively a stabilometric platform, the Barthel Index, and the Rivermead Mobility Index.

Results: In the experimental group, balance improved regarding the variables describing sway area as ellipse major and minor axes. In the control group, improvement was noted in sway velocity. After the therapy, total load distribution on feet in both groups showed a small and insignificant tendency toward reduction in the amount of uninvolved limb loading. In the control group, significant load transfer from the backfoot to the forefoot was noted. Both forms of rehabilitation caused significant changes in functional status.

Conclusions: Both training with the use of the Ekso GT exoskeleton and classical physiotherapy lead to functional improvement of patients after ischemic stroke. However, in the experimental group, improvement was observed in a larger number of categories, which may suggest potentially greater impact of treatment with the exoskeleton on functional status. Also, both forms of rehabilitation caused significant changes in balance, but we have noted some trends indicating that treatment with exoskeleton may be more beneficial for some patients. The load transfer from the backfoot to the forefoot observed in the control group was an unfavorable phenomenon. We suggest that the Ekso GT exoskeleton may be a promising tool in the rehabilitation of patients after stroke.

Introduction

Stroke is the third leading cause of death worldwide and is the most common cause of disability among adults (12). As a result of stroke, patients have problems with locomotion and transfers, which lead to frequent falls. People with hemiparesis have uneven distribution of body mass between the sides of the body, causing balance and coordination disorders, deep and superficial sensation, increased muscle tone, and fear of falling (23). Patients have problems with lack of normal postural muscle tone, and proper reciprocal innervation as well as normal, automatic movement patterns and balance reactions (4). Some studies have reported that balance alterations significantly limit the physical activity of stroke patients, which may be the reason for deconditioning of patients in the chronic phase and reduction in their gait possibilities as well as other activities of daily living (5). That is why gait rehabilitation and also balance therapy are very important in improving the quality of everyday and social life of those patients (6).

Gait training may improve not only strength, endurance, and coordination of the lower limbs but also the entire body of the patient, influencing general fitness and endurance, balance, normalization of muscle tone, and functional improvement (7). The Barthel Index (BI) and Rivermead Mobility Index (RMI) tests are considered to be proper criteria for assessing a patient’s functional state after stroke and good indicators of the effectiveness of the applied therapy (89).

Recovery after stroke is a major goal of rehabilitation, but it is difficult to choose which treatment method is most beneficial for stroke survivors. Recently, powered robotic exoskeletons are used in treatment to maximize the neural recovery of patients after stroke (1011). However, in a review paper, Louie and Eng (12) have reported that only four different types of powered exoskeletons have been studied among a small number of stroke patients, and the published data were controversial. Moreover, in the available literature, there are no studies evaluating the changes in balance among patients rehabilitated with an exoskeleton. Most authors have reported various aspects of walking, and only a few papers have presented data concerning changes in balance. Additionally, most of the studies used subjective tools such as the Berg Balance Scale (1314). There is a lack of studies in which changes in balance and load distribution due to rehabilitation with the exoskeleton would be examined using an objective tool—stabilometric platform; therefore, this study undertakes this task for the first time.

The aim of this study was to evaluate the effectiveness of rehabilitation with Ekso GT exoskeleton in patients after ischemic stroke and to compare this type of therapy with the classical model of rehabilitation. The novelty of this study was the verification of the robot-assisted gait training effects on balance, load distribution, and functional status of stroke patients.[…]

Continue —-> Frontiers | Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial | Neurology

, , , , , , ,

Leave a comment

[Abstract + References] Unilateral Dorsiflexor Strengthening With Mirror Therapy to Improve Motor Function After Stroke: A Pilot Randomized Study

Abstract

Background: Independently, cross-education, the performance improvement of the untrained limb following unilateral training, and mirror therapy have shown to improve lower limb functioning poststroke. Mirror therapy has shown to augment the cross-education effect in healthy populations. However, this concept has not yet been explored in a clinical setting.

Objectives: This study set out to investigate the feasibility and potential efficacy of applying cross-education combined with mirror therapy compared with cross-education alone for lower limb recovery poststroke.

Methods: Thirty-one chronic stroke participants (age 61.7 ± 13.3) completed either a unilateral strength training (ST; n = 15) or unilateral strength training with mirror-therapy (MST; n = 16) intervention. Both groups isometrically strength trained the less-affected ankle dorsiflexors three times per week for 4 weeks. Only the MST group observed the mirror reflection of the training limb. Patient eligibility, compliance, treatment reliability, and outcome measures were assessed for feasibility. Maximal voluntary contraction (MVC; peak torque, rate of torque development, and average torque), 10-m walk test, timed up and go (TUG), Modified Ashworth Scale (MAS), and the London Handicap Scale (LHS) were assessed at pretraining and posttraining.

Results: Treatment and assessments were well tolerated without adverse effects. No between group differences were identified for improvement in MVC, MAS, TUG, or LHS. Only the combined treatment was associated with functional improvements with the MST group showing an increase in walking velocity.

Conclusion: Cross-education plus mirror therapy may have potential for improving motor function after stroke. This study demonstrates the feasibility of the combination treatment and the need for future studies with larger sample sizes to investigate the effectiveness of the treatment.

REFERENCES

    1. Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology (Bethesda, MD: 1985), 93(4), 1318-1326. https://doi.org/10.1152/japplphysiol.00283.2002
    1. ACSM (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687-708. https://doi.org/10.1249/MSS.0b013e3181915670
    1. AI Therapy Statistics (2017). Sample size calculator. Retrieved from https://www.ai-therapy.com/psychology-statistics/sample-size-calculator
    1. Barzi, Y., & Zehr, E. (2008). Rhythmic arm cycling suppresses hyperactive soleus H-reflex amplitude after stroke. Clinical Neurophysiology, 119(6), 1443-1452. https://doi.org/10.1016/j.clinph.2008.02.016
    1. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., … Jiménez, M. C. (2017). Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation, 135(10), e146-e603. https://doi.org/10.1161/cir.0000000000000485
    1. Biodex Medical Systems Inc. (2006). Biodex system 3 pro application/ operationmanual. Retrieved from http://www.biodex.com/sites/default/files/835000man_06159.pdf
    1. Bird, S. P., Tarpenning, K. M., & Marino, F. E. (2005). Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Medicine, 35(10), 841-851. https://doi.org/10.2165/00007256-200535100-00002
    1. Broderick, P., Horgan, F., Blake, C., Ehrensberger, M., Simpson, D., & Monaghan, K. (2018). Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. Gait & Posture, 63, 208-220. https://doi.org/10.1016/j.gaitpost.2018.05.017
    1. Carroll, L. M., Volpe, D., Morris, M. E., Saunders, J., & Clifford, A. M. (2017). Aquatic exercise therapy for people with Parkinson disease: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 98(4), 631-638. https://doi.org/10.1016/j.apmr.2016.12.006
    1. Carson, R., Riek, S., Mackey, D., Meichenbaum, D., Willms, K., Forner, M., & Byblow, W. (2004). Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. The Journal of Physiology, 560(Pt 3, 929-940. https://doi.org/10.1113/jphysiol.2004.069088
    1. Carvalho, D., Teixeira, S., Lucas, M., Yuan, T. F., Chaves, F., Peressutti, C., & Arias-Carrion, O. (2013). The mirror neuron system in post-stroke rehabilitation. International Archives of Medicine, 6(1), 41. https://doi.org/10.1186/1755-7682-6-41
    1. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155
    1. Collen, F. M., Wade, D. T., & Bradshaw, C. M. (1990). Mobility after stroke: Reliability of measures of impairment and disability. International Disability Studies, 12(1), 6-9. https://doi.org/10.3109/03790799009166594
    1. de Morton, N. A. (2009). The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. The Australian Journal of Physiotherapy, 55(2), 129-133. https://doi.org/10.1016/S0004-9514(09)70043-1
    1. Deconinck, F. J., Smorenburg, A. R., Benham, A., Ledebt, A., Feltham, M. G., & Savelsbergh, G. J. (2015). Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabilitation and Neural Repair, 29(4), 349-361. https://doi.org/10.1177/1545968314546134
    1. Dragert, K., & Zehr, E. P. (2013). High-intensity unilateral dorsiflexor resistance training results in bilateral neuromuscular plasticity after stroke. Experimental Brain Research, 225(1), 93-104. https://doi.org/10.1007/s00221-012-3351-x
    1. Ehrensberger, M., Simpson, D., Broderick, P., & Monaghan, K. (2016). Cross-education of strength has a positive impact on post-stroke rehabilitation: A systematic literature review. Topics in Stroke Rehabilitation, 23(2), 126-135. https://doi.org/10.1080/10749357.2015.1112062
    1. Eng, J. J., Kim, C. M., & Macintyre, D. L. (2002). Reliability of lower extremity strength measures in persons with chronic stroke. Archives of Physical Medicine and Rehabilitation, 83(3), 322-328. https://doi.org/10.1053/apmr.2002.29622
    1. Faber, J., & Fonseca, L. M. (2014). How sample size influences research outcomes. Dental Press Journal of Orthodontics, 19(4), 27-29. https://doi.org/10.1590/2176-9451.19.4.027-029.ebo
    1. Faria, C. D., Teixeira-Salmela, L. F., Neto, M. G., & Rodrigues-de-Paula, F. (2012). Performance-based tests in subjects with stroke: Outcome scores, reliability and measurement errors. Clinical Rehabilitation, 26(5), 460-469. https://doi.org/10.1177/0269215511423849
    1. Farthing, J. P. (2009). Cross-education of strength depends on limb dominance: Implications for theory and application. Exercise and Sport Sciences Reviews, 37(4), 179-187. https://doi.org/10.1097/JES.0b013e3181b7e882
    1. Fimland, M. S., Helgerud, J., Solstad, G. M., Iversen, V. M., Leivseth, G., & Hoff, J. (2009). Neural adaptations underlying cross-education after unilateral strength training. European Journal of Applied Physiology, 107(6), 723-730. https://doi.org/10.1007/s00421-009-1190-7
    1. Flansbjer, U. B., Holmback, A. M., Downham, D., Patten, C., & Lexell, J. (2005). Reliability of gait performance tests in men and women with hemiparesis after stroke. Journal of Rehabilitation Medicine, 37(2), 75-82. https://doi.org/10.1080/16501970410017215
    1. Gracies, J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & Nerve, 31(5), 552-571. https://doi.org/10.1002/mus.20285
    1. Harbo, T., Brincks, J., & Andersen, H. (2012). Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. European Journal of Applied Physiology, 112(1), 267-275. https://doi.org/10.1007/s00421-011-1975-3
    1. Hendy, A. M., & Lamon, S. (2017). The cross-education phenomenon: Brain and beyond. Frontiers in Physiology, 8, 297. https://doi.org/10.3389/fphys.2017.00297
    1. Holmback, A. M., Porter, M. M., Downham, D., & Lexell, J. (1999). Reliability of isokinetic ankle dorsiflexor strength measurements in healthy young men and women. Scandinavian Journal of Rehabilitation Medicine, 31(4), 229-239.
    1. Hortobagyi, T. (2005). Cross education and the human central nervous system. IEEE Engineering in Medicine and Biology Magazine, 24(1), 22-28. https://doi.org/10.1109/MEMB.2005.1384096
    1. Hortobagyi, T., Taylor, J. L., Petersen, N. T., Russell, G., & Gandevia, S. C. (2003). Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. Journal of Neurophysiology, 90(4), 2451-2459. https://doi.org/10.1152/jn.01001.2002
    1. Howatson, G., Zult, T., Farthing, J. P., Zijdewind, I., & Hortobagyi, T. (2013). Mirror training to augment cross-education during resistance training: A hypothesis. Frontiers in Human Neuroscience, 7, 396. https://doi.org/10.3389/fnhum.2013.00396
    1. Lee, M., & Carroll, T. J. (2007). Cross education: Possible mechanisms for the contralateral effects of unilateral resistance training. Sports Medicine, 37(1), 1-14. https://doi.org/10.2165/00007256-200737010-00001
    1. Magnus, C. R., Arnold, C. M., Johnston, G., Dal-Bello Haas, V., Basran, J., Krentz, J. R., & Farthing, J. P. (2013). Cross-education for improving strength and mobility after distal radius fractures: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 94(7), 1247-1255. https://doi.org/10.1016/j.apmr.2013.03.005
    1. Manca, A., Cabboi, M., Dragone, D., Ginatempo, F., Ortu, E., De Natale, E., … Deriu, F. (2017). Resistance training for muscle weakness in multiple sclerosis: Direct versus contralateral approach in individuals with ankle dorsiflexors’ disparity in strength. Archives of Physical Medicine and Rehabilitation, 98(7), 1348-1356. https://doi.org/10.1016/j.apmr.2017.02.019
    1. Manca, A., Dragone, D., Dvir, Z., & Deriu, F. (2017). Cross-education of muscular strength following unilateral resistance training: A meta-analysis. European Journal of Applied Physiology, 117(11), 2335-2354. https://doi.org/10.1007/s00421-017-3720-z
    1. Manca, A., Pisanu, F., Ortu, E., & Deriu, F. (2015). Isokinetic cross-training effect in foot drop following common peroneal nerve injury. Isokinetics and Exercise Science, 23(1), 17-20. https://doi.org/10.3233/IES-140559
    1. McElwaine, P., McCormack, J., & Harbison, J. (2015). National Stroke Audit 2015. Retrieved from http://www.irishheart.ie/media/pub/strokestudy2015/ihfhse_national_stroke_audit__mcelwaine.pdf
    1. Michielsen, M. E., Selles, R. W., van der Geest, J. N., Eckhardt, M., Yavuzer, G., Stam, H. J., … Bussmann, J. B. (2011). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabilitation and Neural Repair, 25(3), 223-233. https://doi.org/10.1177/1545968310385127
    1. Park, E., & Choi, Y. (2014). Rasch analysis of the London Handicap Scale in stroke patients: A cross-sectional study. Journal of Neuroengineering and Rehabilitation, 11, 114. https://doi.org/10.1186/1743-0003-11-114
    1. Patten, C., Lexell, J., & Brown, H. E. (2004). Weakness and strength training in persons with poststroke hemiplegia: Rationale, method, and efficacy. Journal of Rehabilitation Research and Development, 41(3a), 293-312. https://doi.org/10.1682/JRRD.2004.03.0293
    1. Pekna, M., Pekny, M., & Nilsson, M. (2012). Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke, 43(10), 2819-2828. https://doi.org/10.1161/strokeaha.112.654228
    1. Perera, S., Mody, S. H., Woodman, R. C., & Studenski, S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. Journal of the American Geriatrics Society, 54(5), 743-749. https://doi.org/10.1111/j.1532-5415.2006.00701
    1. Rossiter, H. E., Borrelli, M. R., Borchert, R. J., Bradbury, D., & Ward, N. S. (2015). Cortical mechanisms of mirror therapy after stroke. Neurorehabilitation and Neural Repair, 29(5), 444-452. https://doi.org/10.1177/1545968314554622
    1. Shaw, L., Rodgers, H., Price, C., van Wijck, F., Shackley, P., Steen, N., & Graham, L. (2010). BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technology Assessment, 14(26), 1-113. https://doi.org/10.3310/hta14260
    1. Stolberg, H. O., Norman, G., & Trop, I. (2004). Randomized controlled trials. AJR. American Journal of Roentgenology, 183(6), 1539-1544. https://doi.org/10.2214/ajr.183.6.01831539
    1. Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M. A., Laureys, S., & Gosseries, O. (2013). Spasticity after stroke: Physiology, assessment and treatment. Brain Injury, 27(10), 1093-1105. https://doi.org/10.3109/02699052.2013.804202
    1. Thieme, H., Morkisch, N., Mehrholz, J., Pohl, M., Behrens, J., Borgetto, B., & Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews, (7), Cd008449. https://doi.org/10.1002/14651858.CD008449.pub3
    1. Touzalin-Chretien, P., Ehrler, S., & Dufour, A. (2010). Dominance of vision over proprioception on motor programming: Evidence from ERP. Cerebral Cortex, 20(8), 2007-2016. https://doi.org/10.1093/cercor/bhp271
    1. Trompetto, C., Marinelli, L., Mori, L., Pelosin, E., Currà, A., Molfetta, L., & Abbruzzese, G. (2014). Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Research International, 2014, 1-8. https://doi.org/10.1155/2014/354906
    1. Urban, P. P., Wolf, T., Uebele, M., Marx, J. J., Vogt, T., Stoeter, P., … Wissel, J. (2010). Occurence and clinical predictors of spasticity after ischemic stroke. Stroke, 41(9), 2016-2020. https://doi.org/10.1161/strokeaha.110.581991
    1. van Wijck, F. M., Pandyan, A. D., Johnson, G. R., & Barnes, M. P. (2001). Assessing motor deficits in neurological rehabilitation: Patterns of instrument usage. Neurorehabilitation and Neural Repair, 15(1), 23-30. https://doi.org/10.1177/154596830101500104
    1. Vattanasilp, W., Ada, L., & Crosbie, J. (2000). Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 69(1), 34-39. https://doi.org/10.1136/jnnp.69.1.34
    1. World Health Organization (2001). International classification of functioning, disability and health. Retrieved from http://unstats.un.org/unsd/disability/pdfs/ac.81-b4.pdf2001
    1. Wimpenny, P. (2016). Theory-Interpretation of results. Retrieved from http://www.isokinetics.net/index.php/2016-04-05-17-04-58/interpretation/general-interpretation
    1. Wissel, J., Schelosky, L. D., Scott, J., Christe, W., Faiss, J. H., & Mueller, J. (2010). Early development of spasticity following stroke: A prospective, observational trial. Journal of Neurology, 257(7), 1067-1072. https://doi.org/10.1007/s00415-010-5463-1
    1. Wolf, S. L., Catlin, P. A., Gage, K., Gurucharri, K., Robertson, R., & Stephen, K. (1999). Establishing the reliability and validity of measurements of walking time using the emory functional ambulation profile. Physical Therapy, 79(12), 1122-1133.
    1. Zipp, G., & Sullivan, J. (2010). Neurology section StrokEDGE taskforce. Retrieved from http://www.neuropt.org/docs/stroke-sig/strokeedge_taskforce_summary_document.pdf
    1. Zult, T., Goodall, S., Thomas, K., Solnik, S., Hortobagyi, T., & Howatson, G. (2016). Mirror training augments the cross-education of strength and affects inhibitory paths. Medicine and Science in Sports and Exercise, 48, 1001-1013. https://doi.org/10.1249/mss.0000000000000871
    1. Zult, T., Howatson, G., Kadar, E. E., Farthing, J. P., & Hortobagyi, T. (2014). Role of the mirror-neuron system in cross-education. Sports Medicine, 44(2), 159-178. https://doi.org/10.1007/s40279-013-0105-2
    1. Whitehead, A. L., Julious, S. A., Cooper, C. L., & Campbell, M. J. (2016). Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Statistical Methods in Medical Research, 25(3), 1057-1073. https://doi.org/10.1177/0962280215588241

via Unilateral Dorsiflexor Strengthening With Mirror Therapy to Improve Motor Function After Stroke: A Pilot Randomized Study – PubMed

, , , , , , , , ,

Leave a comment

[Abstract] An interactive and innovative application for hand rehabilitation through virtual reality

Physiotherapy has been very monotonous for patients and they tend to lose interest and motivation in exercising. Introducing games with short term goals in the field of rehabilitation is the best alternative, to maintain patients’ motivation. Our research focuses on gamification of hand rehabilitation exercises to engage patients’ wholly in rehab and to maintain their compliance to repeated exercising, for a speedy recovery from hand injuries (wrist, elbow and fingers). This is achieved by integrating leap motion sensor with unity game development engine. Exercises (as gestures) are recognised and validated by leap motion sensor. Game application for exercises is developed using unity. Gamification alternative has been implemented by very few in the globe and it has been taken as a challenge in our research. We could successfully design and build an engine which would be interactive and real-time, providing platform for rehabilitation. We have tested the same with patients and received positive feedbacks. We have enabled the user to know the score through GUI.

 

via An interactive and innovative application for hand rehabilitation through virtual reality: International Journal of Advanced Intelligence Paradigms: Vol 15, No 3

, , , , , , , , , , , , ,

Leave a comment

[NEWS] Physiotherapy could be done at home using virtual reality — ScienceDaily

Date: February 28, 2020, Source: University of Warwick

Summary: Virtual reality could help physiotherapy patients complete their exercises at home successfully thanks to researchers who managed to combine VR technology with 3D motion capture.

FULL STORY

Virtual reality could help physiotherapy patients complete their exercises at home successfully thanks to researchers at WMG, University of Warwick, who managed to combine VR technology with 3D motion capture.

Currently prescribed physiotherapy often requires patients to complete regular exercises at home. Outside of the clinic, patients rarely receive any guidance other than a leaflet of sketches or static photographs to instruct them how to complete their exercises. This leads to poor adherence, with patients becoming anxious about not getting the exercise right, or simply getting bored by the repetitiveness of the movements.

The advent of consumer virtual reality technology combined with 3D motion capture allows real movements to be accurately translated onto an avatar that can be viewed in a virtual environment. Researchers at the Institute of Digital Healthcare, WMG, University of Warwick are investigating whether this technology can be used to provide guidance to physiotherapy patients, by providing a virtual physiotherapist in the home to demonstrate the prescribed exercises.

Their paper, ‘Timing and correction of stepping movements with a virtual reality avatar’ published today the 28th of February, in the Journal PLOS ONE, has focused on whether people are able to accurately follow the movements of a virtual avatar.

Researchers had to investigate whether people were able to accurately coordinate and follow the movements of an avatar in a virtual environment. They asked participants to step in time with an avatar viewed through a VR headset.

Unknown to the participants, the researchers subtly slowed down or speeded up one of the avatar’s steps, such that the participants would have to correct their own stepping movement to stay in time. The effect this correction had on their step timing and synchronisation with the avatar was measured.

Lead author, Omar Khan from WMG, University of Warwick commented:

“If participants were observed to correct their own stepping to stay in time with the avatar, we knew they were able to accurately follow the movements they were observing.

“We found that participants struggled to keep in time if only visual information was present. However, when we added realistic footstep sounds in addition to the visual information, the more realistic multisensory information allowed participants to accurately follow the avatar.”

Dr Mark Elliott, Principal investigator on the project at WMG, University of Warwick added:

“There is huge potential for consumer VR technologies to be used for both providing guidance to physiotherapy exercises, but also to make the exercises more interesting. This study has focused on the crucial question of how well people can follow a virtual guide.”

Prof. Theo Arvanitis, co-author and Director of the Institute of Digital Healthcare, said:

“Our work and digitally-enabled technological solution can underpin transformative health innovations to impact the field of physiotherapy, and have a direct benefit to patients’ rehabilitation. “We now plan to investigate other types of movements working closely in partnership with physiotherapists, to establish the areas of physiotherapy that will benefit most from this technology.”


Story Source:

Materials provided by University of WarwickNote: Content may be edited for style and length.


Journal Reference:

  1. Omar Khan, Imran Ahmed, Joshua Cottingham, Musa Rahhal, Theodoros N. Arvanitis, Mark T. Elliott. Timing and correction of stepping movements with a virtual reality avatarPLOS ONE, 2020; 15 (2): e0229641 DOI: 10.1371/journal.pone.0229641

via Physiotherapy could be done at home using virtual reality — ScienceDaily

, , ,

Leave a comment

[BLOG POST] Mobile Apps – Physiopedia

Introduction

In the clinic, in education or just for professional development mobile Apps can make a big difference to efficiency and effectiveness in physiotherapy practice. This page is intended to list all the mobile applications that might be of use to physiotherapists and physical therapists. Please feel free to add any mobile applications that you find useful and think others may find useful. Alternatively you can email your ideas to us.

Apps.png

Physiotherapy Specific

Apple Android Blackberry Windows Price
Physiopedia Link Link Free
Clinical Prediction Rules: A Physical Therapy Reference Link Link Link US$ 39.99
Physical Therapy Content Master Link Link US$ 29.99
Physical Therapy and Rehabilitation Link US$ 2.99
Physical Therapy Exam Track Link Free
Physical Therapist Question of the Day Link US$ 9.99
Physical Therapy Spanish Guide by Mavro Link Free
FORCE Connect Link US$ 4.99
FORCE Mobile Link Link Free
FORCE Injury Packs Link Free
VideoXs- Home Exercise Program Link $15.99
PhysioCam Link Link Kr 39.00
Motus Doc Link $19.99
Motus Go Link Free
Mobile Exercise Gallery Link $0.99
My Health Lounge Link Free

Assessment

Apple Android Blackberry Windows Price
CORE – Clinical ORthopedic Exam Link US$ 39.99
Epocrates Link Link Link Free
Quick LabRef Link Free
Goniometer Pro Link Free
Toes2Hip Link $9.99
Functional Vitals Link
ViaTherapy Link Link Free
The Falls Risk Calculator Link Free
Gait Velocity Link Link Free

Outcome Measures/Screening Tools

Apple Android Blackberry Windows Price
STarTBack Low Back Pain Screening Questionnaire Link US $2.99
SLP Scoring Plus
EDSS Calculator
DAS28 Calculator
Patient Centered Feedback
VASQ Clinical
Orebro Musculoskeletal Pain Screening Tool Link
Musculoskeletal Flag Screening Tool Link US $1.99
Frailty Tool Link Link
Berg Balance Scale Link Free
Geriatric Link US $3
SPPB Calculator Link Link Link Free
SPPB Test via GeriStrong Link Link US $1.99
Gait Speed Link Link US $0.86
Rehabilitation Measures Database Link

Techniques

Apple Android Blackberry Windows Price
Mobile OMT Lower Extremity Link US$ 29.99
Mobile OMT Upper Extremity Link US$ 29.99
Mobile OMT Spine Link US$ 29.99
PT Video TV Link US$ 2.99
Recognize Feet Link US$ 8.99

Anatomy

Apple Android Blackberry Windows Price
MB Anatomy Link 4.99
Build A Brain Explorer Link 1.99
Anatomy in Motion Link $US 23.99

Journals

Apple Android Blackberry Windows Price
Pediatric Physical Therapy Journal Link Free
Journal of Neurologic Physical Therapy Link Free
Bone & Joint Journals Link Free
Journal of Orthopaedic Trauma Link Free
Acta Orthopaedica Journal Link Free
International Journal of Physiotherapy (IJPHY) Link Link Free

Teaching/Educational

Apple Android Blackberry Windows Price
Physiopedia Link Link Free
In Class–organize class notes, share with classmates Link Free
Goodnotes- pdf reader Link Free
Quick Office HD
Pages
Numbers
Powerpoint remote-remote
Splashtop-remote
Doceri-remot
Mindmeister-mindmapping
aVOR Link Free
PhysioU Link Link
NPTE Study Notes by Best PT Podcast Link

Specialty Areas

Apple Android Blackberry Windows Price
iGeriatrics Link US $2.99
FORCE Packs Link Free
NICE Guidelines Link Link Free
Manual Handling Link UK £0.69

Clinic Management

Apple Android Blackberry Windows Price
clinicjot Link US $28.99

Podcasts

Apple Android Blackberry Windows Price
Senior Rehab Project Link Link Link
MDTea Link
PTonICE Link
PT Pintcast Link
The Voice Of The Patient Link
The Physio Matters Podcast Link
The Knowbodies Podcast Link Link Link
RehabCast Link Link
The Pelvic Health Podcast Link
PT TechTalk Link

Client Apps

Apple Android Blackberry Windows Price
MyFitnessPal Link
Clock Yourself Link Link Link $2.99
Squeezy Link Link Link £2.99
Parkinson’s Warrior Link Link Free
Phydeo Link Link Free
Beats Medical Link
The Otago Exercise Program Link Free

NHS Trusted App List

via Mobile Apps – Physiopedia

, , , , ,

Leave a comment

[ARTICLE] Feedback Design in Targeted Exercise Digital Biofeedback Systems for Home Rehabilitation: A Scoping Review – Full Text PDF

Digital biofeedback systems (DBSs) are used in physical rehabilitation to improve outcomes by engaging and educating patients and have the potential to support patients while doing targeted exercises during home rehabilitation. The components of feedback (mode, content, frequency and timing) can influence motor learning and engagement in various ways. The feedback design used in DBSs for targeted exercise home rehabilitation, as well as the evidence underpinning the feedback and how it is evaluated, is not clearly known. To explore these concepts, we conducted a scoping review where an electronic search of PUBMED, PEDro and ACM digital libraries was conducted from January 2000 to July 2019. The main inclusion criteria included DBSs for targeted exercises, in a home rehabilitation setting, which have been tested on a clinical population. Nineteen papers were reviewed, detailing thirteen different DBSs. Feedback was mainly visual, concurrent and descriptive, frequently providing knowledge of results. Three systems provided clear rationale for the use of feedback. Four studies conducted specific evaluations of the feedback, and seven studies evaluated feedback in a less detailed or indirect manner. Future studies should describe in detail the feedback design in DBSs and consider a robust evaluation of the feedback element of the intervention to determine its efficacy.

Download Full Text PDF

via Feedback Design in Targeted Exercise Digital Biofeedback Systems for Home Rehabilitation: A Scoping Review – Sensors – X-MOL

 

, , , , , , , ,

1 Comment

[Research] Vagal nerve stimulation may improve post-stroke motor recovery

The Vagus Nerve Stimulation (VNS) may promote reorganization of motor networks via engaging a variety of molecular and neuronal mechanisms through ascending neuromodulatory systems. A recently published review from Frontiers in Neuroscience (N.D. Engineer et al. Targeted Vagus nerve stimulation for rehabilitation after stroke, Front Neurosci. 2019, 29;13:280) has laid out how recent experimental and clinical studies are providing increasing evidence for a beneficial effect of vagus nerve stimulation for the motor recovery after stroke of both, ischemic and hemorrhagic origin. Two multi-site, randomized controlled pilot trials have suggested that when paired with neurorehabilitation, VNS stimulation may generate temporally precise neuromodulatory feedback within the synaptic eligibility trace and may hence, drive synaptic plasticity.

  1. A single-blinded, randomized feasibility study evaluating VNS paired with motor rehabilitation was performed by Dawson et al. (2016) in 20 participants > 6 months after ischemic stroke who had moderate to severe upper limb weakness. Subjects were randomized to VNS paired with rehabilitation (n = 9; implanted) or rehabilitation alone (n = 11; not implanted). VNS was triggered by a physiotherapist pushing a button during task-specific movements. The main outcome measures were a change in upper extremity Fugl-Meyer Assessment (FMAUE) score and response rate – FMA-UE change _6 points was considered clinically meaningful. After 6 weeks of in-clinic rehabilitation, participants in the paired VNS group showed a 9.6-point improvement from baseline while the control group improved by 3 points in the per-protocol analysis (between group difference = 6.5 points, CI: 0.4 to 12.6, p = 0.038). The response rates were 66 and 36.4% in VNS and control groups, respectively. No serious adverse device effects were reported.
  2. The second study was a multicenter, fully blinded and randomized study (Kimberley et al., 2018). All participants were implanted with the VNS device, which allowed the control group to crossover to receive paired VNS therapy after completion of blinded follow-up. This permitted a within subject comparison of gains. To evaluate the lasting effects of VNS stimulation combined with home-based physiotherapy was included as part of the study. Seventeen participants who had moderate to severe upper extremity impairment after stroke were enrolled at four sites. Both groups had 1 month of at-home exercises with no VNS followed by 2 months of home-based therapy. During home therapy, participants in both groups activated the VNS device at the start of each 30-min session via a magnetswipe over the implanted pulse generator to deliver either Active or Paired VNS (0.8 mA) or Control VNS (0 mA), respectively. After 2 months of home-based therapy, thepaired VNS group continued the VNS therapy while the Control Group switched over to receive paired VNS. After 6 weeks of in-clinic therapy, the FMA-UE score increased by 7.6 points for the VNS group and 5.3 points for controls. Three months after the end of in-clinic therapy (post-90), the FMA-UE increased by 9.5 in the paired VNS group and 3.8 points in controls. At post-90, response rate (FMA-UE change _6 points) was 88% in the VNS group and 33% in controls (p = 0.03).

Noteworthy in both studies seemed the greater improvement of the upper limb function when physiotherapy was applied simultaneously with vagal nerve stimulation. VNS likely supported the recovery of upper limb functions via activation of multiple neuromodulatory networks that regulate synaptic plasticity. This may include the noradrenergic, cholinergic, and serotonergic systems (Nichols et al., 2011; Hulsey et al., 2017). These neuromodulators, in turn, act synergistically to alter spike-timing dependent plasticity (STDP) properties in active networks. The studies above align well with the time scale of the synaptic eligibility trace. VNS may drive temporally precise neuromodulatory release to reinforce ongoing neural activity related to the therapeutic event. An open question is whether similar improvement can be achieved using non-invasive vagal nerve stimulation. To this moment, the identifying and consistently delivering stimulation within a particular range of parameters appears to be of greater challenge with non-invasive VNS than with the implanted VNS device.

Physiotherapy combined with vagal nerve stimulation seems to be a new and promising approach to enhance the functional recovery after stroke.

Key points:

  • Vagus Nerve Stimulation (VNS) may promote reorganization of motor networks
  • Experimental and clinical studies pointed towards a beneficial effect for the motor recovery after stroke
  • VNS may drive temporally precise neuromodulatory release to reinforce ongoing neural activity

References:

Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke. https://www.ncbi.nlm.nih.gov/pubmed/30983963

 

via Vagal nerve stimulation may improve post-stroke motor recovery

, , , , , , , , , ,

Leave a comment

[ARTICLE] Preliminary Analysis of Perception, Knowledge and Attitude of Home Health Patients Using Tele Rehabilitation in Riyadh, Saudi Arabia – Full Text

ABSTRACT

Telerehabilitation is defined as delivery of rehabilitation services over telecommunication networks and the internet, which comprise of clinical assessment (the patient’s functional abilities in his or her environment) and clinical therapy.This new area  of medical advancement, using state of the art technology is developing at a great speed and is  definitely going to be the next milestone in health care revolution.The objective of this study was to explore the awareness, knowledge and perception of the patients for using telerehabilitation as a medium to provide physiotherapy services as a part of home healthcare services.  A pretest-post test design was used where the home healthcare patients (n = 90) aged between 50 -75 years were asked to express views by given a validated modified TUQ questionnaire followed by an indepth interviewing to develop a key understanding regarding the themes. Interviews were transcribed and a qualitative thematic analysis was conducted. The awareness level regarding the  telerehabilitation changed significantly from 57% to 96% post session(p<0.05). Similarly, the knowledge of the participants regarding  online consultation, followup and online therapy  changed significantly from 50%, 47% and 57% to 96%, 76% and 96% respectively post session of rehabilitation(p<0.05). The perception level regarding the key benefits including  its usage in emergency(83%), convenience of no travel(84%), ease of getting treated at home(97%) and  availability of specialist consultation (84%) were the prime ideas for excellent rating among 95% participants (p<0.05) post session. Findings are helpful to health practitioners in designing their intervention programs across the kingdom. However the actual impact could be only derived from future studies which has to conducted based on different clinical conditions.

Introduction

Telerehabilitation is defined as the provision and delivery of rehabilitation health services at a distance using information and communication technologies and tools (Tan 2005; Russell 2007). Throughout the world, the health care practices is going through major transformation as it is driven through sea change because of the increased use of technology. The kingdom of Saudi Arabia too is witnessing a massive change with significant restructuring of healthcare systems with some major high-end technology driven development solutions. The increased demand is created on account of rapidly increasing saudi population including the growing elderly community, changing disease patterns, global climatic changes and financial inequity (Mahmood 2018).  According to a United nations report the elderly population of Saudi Arabia  those aged 60 and above is projected to increase from 3% in 2010 to 9.5% and 18.4% in 2035 and 2050, respectively (UN Report, 2018).

Similarly, comparing this phenomenon to an average life expectancy of the population in Saudi Arabia, the latest WHO data published in 2018, suggests that Saudi male and female have an average of 73.5 and female 76.5 life years with an average life expectancy of 74.8 years as against an average world life expectancy of 84 years.The increased demand in kingdom also raised because of immense economic pressure with steep fall in global oil prices in 2015-16 affecting the GDP significantly thereby been one of the key stimulus for the government to take timely corrective actions and diversify the economy from heavily oil dependent to develop other verticals for revenue generation (MoH Report, 2018).

Brian child of Crown Prince HH Mohammad Bin Salman, Vision 2030 was adopted in April 2016 and has identified its priorities across all economic sectors and serves as a roadmap for the economic development of the KSA with development of health services been one of the most important key themes. Therefore, as a part of realization of this vision the government strongly supports the partnership of private and public sectors and been seen as a strong indication of the Government’s commitment for making healthcare accessible to its citizens irrespective of the disparities available in the Saudi society (Vision 2030 Report, 2016). Access to healthcare generally relates to people’s ability to use health services when and where they are needed. Determinants of healthcare access are the types and quality of services, including the costs, time, distance (ease of travel) as well as regular interface between service users and healthcare providers. Saudi Arabia is the largest and fastest growing health care market in the region and is estimated to reach $40 billion by 2020 (NTP 2020 Report, 2016).

Moreover, the steep increase in the number of hospitals across all major cities of KSA are run by both government and private organizations which use  corporate business strategies and technology driven specializations, which aim to create demand as well as attract high number patients as the facilities in majority of these hospitals are world class.Among the various strategies listed in the NTP Report 2020, one of the key components of making healthcare accessible across the kingdom is the enhanced use of telemedicine (NTP 2020 Report, 2016). In the last one decade the health services across the kingdom have taken gigantic leap jumps with private healthcare taking lead and using innovations in delivering healthcare. One of such innovations is using Home Healthcare for delivering physiotherapy and other rehabilitation based services for the patients at home (Pulse Report 2018).

Rehabilitation is a very important component in medical care and helps in propelling patient to preinjury level. It is a well known fact that in all long term cases which requires follow-ups such as in surgical cases and other debilitating disorders including Stroke, Cancer, Multiple Sclerosios, rehabilitation is time consuming and financially constraining. To add to this, patients travelling long distances for treatment, it is not only physically challenging but emotionally draining too and especially in case of geriatric patients.Therefore home tele rehabilitation programs, are winding up progressively as an elective method of service delivery. In the western countries, quite a number of research studies has been proved that the Telerehabilitation for the delivery of health services is quite effective, however the scope of using such services in the kingdom is still novice and requires a detailed study, (Hailey et al., 2010, Johansson and Wild 2011, Chang et al 2019     ).

There are scant studies to prove its efficacy in the developing countries as its successful will depends on a number of factors (Clemens et al 2018) . However, among all the variables, the two most important are the technological component and second been its implementation in real terms (Jackson and McClean 2012, Clemens et al 2018). Accordingly, these both are of extreme critical importance from the patient satisfaction point of view. The perceptions of the stakeholders, i.e. the patient and the members of the Rehabilitation team are of utmost importance for its use and wide spread application.The home healthcare services in Saudi Arabia is still in infancy stages with few delivery partners across the kingdom. The usage of telerehabilitation is even more nascent, as the perception of patients in using such a technology for delivering healthcare would be quite critical and important to understand the phenomenon which would be quite useful in framing the guidelines for its applications at a mass level, (Alaboudi et al 2016).

Therefore, this study is an attempt to study the awareness, knowledge and perceptions of  the home healthcare patients in using physiotherapy services delivered via cloud based telerehabilitation. This study, to our knowledge is the first of its kind in the kingdom especially from the perspective of home healthcare patients. It aims to explore the key ideas which might work in favour or against the successful implementation of telerehabilitation used for the home healthcare delivery.

Materials and Methods

The pretest-post test study design was conducted on home healthcare patients so as to obtain an in-depth understanding of the patients’ perception about telerehabilitation services which they will receive as a part of home health services. While a few studies  conducted earlier emphasized about telemedicine to be a key part in delivery of health services, however none of the studies emphasized on perception of patients to implement telerehabilitation as part of home healthcare (Clemens et al 2018, Khalil et al 2018).

Due necessary approval were taken from the ethical clearance committee of the respective organization, which is a reputed home healthcare organization based in Riyadh. In order to recruit participants for the study, sample population were selected from a pool of home healthcare patients who were undergoing treatment under one of the most prominent home healthcare organizations in the kingdom, which incidentally was the only first licensed stand-alone home healthcare services company in Riyadh province.

The study was conducted from Jan 15 to May 30, 2019. In this context, non-probability sampling method was used. Out of 113 home healthcare patients who underwent treatment for different ailments, 90 were randomly selected who also gave their consent to participate in the study out of which 57 were males and 33 were females. Those patients who suffered from orthopedic problems such as Knee pain, low back ache, disc prolapse etc. or underwent orthopedic surgeries such as knee replacement or meniscectomy etc. participated in the study. The study mainly included common geriatric patients for the study who were willing to participate but excluded the pediatric and the critical care, neurological and cardiac patients as they underwent major surgeries such as for stroke or CABG and also were unable to respond directly to answer the questions. The patients who were able respond in English or Arabic were recruited for the study.

Based on literature review and discussion with key stakeholders, a questionnaire and an the interview guide was prepared, modified from Telehealth Usability Questionnaire (TUQ) based on key themes of perceived usefulness, ease of use and learnability,  Interaction quality, Reliability and Satisfaction and future use (Langbecker et al 2017) . The questionnaire was converted to Arabic version adapted from the original English version and pilot tested for the home healthcare patients using both forward and backward translation methods and achieved very acceptable score of confirmatory factor analysis of 0.78 using SPSS. It was also pilot tested   for the members of the rehabilitation team. The questionnaires as given in Appendix 1 were responded by the patients and the members of the rehabilitation team followed by a semi structured individual interview from the patient as well as from the team members involved in providing home health services. The interviews were audio recorded and transcribed verbatim using Text Analysis Markup System (TAMS) Analyzer as suggested by Yin (Yin 2013).

The Tele-rehabilitation Technological solutions were a part of home health services which were delivered by the company. As a part of cloud based HIPAA compliant network, the telemedicine unit consists of a portal to track health metrics and rehabilitation treatment plan and progress by the PT specialists as well as the Case Managers. The system included case briefing, consultation by specialists as well as providing physiotherapy sessions both by Home health therapists or via health workers such as PTAs within the vicinity of home environment at patient’s ease as schematically represented in Fig. no.1.

Figure 1: Set-up for in-home telerehabilitation: (A) Framework system; (B) dashboard Screen (C) Integrated loop with benefits

The participants were given a pre and post session modified TUQ and asked to reflect on their entire rehabilitation experience using the Telerehabilitation platform so as to get relevant information about telemedicine services including key events such as finding out they would receive services at home by videoconference, having the internet and videoconferencing equipment installed at home and receiving services by videoconference including dealing with technical issues. Following the same detailed interview was taken using the TAMS so as to identify key ideas which can affect usage of telerehabilitation. . Statistical tests was conducted  using SPSS for Pre-post differences evaluation. using paired  t-tests to assess factors associated with awareness, knowledge and perception. Significance was set a priori at p < 0.05. […]

Continue —> Preliminary Analysis of Perception, Knowledge and Attitude of Home Health Patients Using Tele Rehabilitation in Riyadh, Saudi Arabia

, , ,

Leave a comment

%d bloggers like this: