Posts Tagged plasticity

[ARTICLE] Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation – Full Text

Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration.

Introduction

Following an ischemic insult within the motor cortex, one or more body parts contralateral to the infarct result impaired or paretic. The degree of the motor impairment depends on many factors, such as the extent of the infarct, the identity of the damaged region(s) and the effectiveness of the early medical care. Substantial functional recovery can occur in the first weeks after stroke, mainly due to spontaneous mechanisms (Kwakkel et al., 2004; Cramer, 2008; Darling et al., 2011; Ward, 2011; Grefkes and Fink, 2014). About 26% of stroke survivors are able to carry on everyday activities (Activity of Daily Living or ADLs, i.e., eating, drinking, walking, dressing, bathing, cooking, writing) without any help, but another 26% is forced to shelter in a nursing home (Carmichael, 2005). Impairments of upper and lower limbs are particularly disabling as they impact on the degree of independence in ADLs. Overall, a significant percentage of the patients exhibit persistent disability following ischemic attacks. Therefore, it is critical to increase our knowledge of post-stroke neuroplasticity for implementing novel rehabilitative strategies. In this review we summarize data about plastic reorganizations after injury, both in the ipsilesional and contralesional hemisphere. We also describe non-invasive brain stimulation (NIBS) techniques and robotic devices for stimulating functional recovery in humans and rodent stroke models.

Neuroplasticity After Stroke

The term brain plasticity defines all the modifications in the organization of neural components occurring in the central nervous system during the entire life span of an individual (Sale et al., 2009). Such changes are thought to be highly involved in mechanisms of aging, adaptation to environment and learning. Moreover, neuronal plastic phenomena are likely to be at the basis of adaptive modifications in response to anatomical or functional deficit or brain damage (Nudo, 2006). Ischemic damage causes a dramatic alteration of the entire complex neural network within the affected area. It has been amply demonstrated, by many studies, that the cerebral cortex exhibits spontaneous phenomena of brain plasticity in response to damage (Gerloff et al., 2006; Nudo, 2007). The destruction of neural networks indeed stimulates a reorganization of the connections and this rewiring is highly sensitive to the experience following the damage (Stroemer et al., 1993; Li and Carmichael, 2006). Such plastic phenomena involve particularly the perilesional tissue in the injured hemisphere, but also the contralateral hemisphere, subcortical and spinal regions.

Continue —> Frontiers | Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation | Frontiers in Cellular Neuroscience

Figure 3. Example of a novel robotic system that integrates functional grasping, active reaching arm training and bimanual tasks. An example of a novel robotic system that integrates functional grasping, active reaching arm training and bimanual tasks, consisting of: (i) Virtual Reality: software applications composed of rehabilitative and evaluation tasks; (ii) TrackHold: robotic device to support the weight of the user’s limb during tasks execution; (iii) Robotic Hand Exos: active hand exoskeleton to assist grasping tasks; and (iv) Handgrip sensors to support the bilateral grasping training and evaluation (modified from Sgherri et al., 2017).

, , , , , , ,

Leave a comment

[Abstract] Neurosurgery and Music; The effect of Wolfgang Amadeus Mozart

Abstract

Background

The nervous system works like a great orchestra. Specially the music of Mozart with its´ “Mozart´s effect” is appropriate to use in neurosurgery. The paper investigates the relationship between music and neurosurgery, Mozart´s music in neurosurgical practice.

Material and Methods

We used digital catalogues like “pubmed” as well as the libraries of universities. Key words were “Wolfgang Amadeus Mozart”, “neurosurgery and music”.

Results

At the first half of 20 century, neurosurgical approach of some musicians have resulted with fatal outcome such as Maurice Ravel, Josef Hassid,George Gershwin. The cause of this is probably that neurosurgery has not been developed yet in the first half of the 20th century. In last three decades, the neurosurgical operations of musician show that musicians has rich associations between auditory, somatic, and sensorial systems.

Conclusion

It is clear that we have much to learn from studies about music and brain function that derive from our surgical experiences with patients. The neuronal plasticity of musician‘s brain may be different than non-musicians´. Musicians with enhanced motor skills have greater capacity for plasticity because of enriched interhemispheric connections. Listening music, and of Mozart´s effect in neurosurgical practice, intensive care, or rehabilitation was documented in much studies. As authors, we mean something different: Its effectiveness shouldbe studied. We can concluded that, in current neurosurgical practice that Mozart has an effect. More research and clinical studies are needed.

Source: Neurosurgery and Music; The effect of Wolfgang Amadeus Mozart

, , , , , ,

Leave a comment

[BLOG POST] Brain Plasticity: How Adult Born Neurons Get Wired – Neuroscience News

FEBRUARY 3, 2017

Summary: Researchers report adult neurogenesis not only helps increase the number of cells in a neural network, it also promotes plasticity in the existing network. Additionally, they have identified the role the Bax gene plays in synaptic pruning.

Source: University of Alabama at Birmingham.

One goal in neurobiology is to understand how the flow of electrical signals through brain circuits gives rise to perception, action, thought, learning and memories.

Linda Overstreet-Wadiche, Ph.D., and Jacques Wadiche, Ph.D., both associate professors in the University of Alabama at Birmingham Department of Neurobiology, have published their latest contribution in this effort, focused on a part of the brain that helps form memories — the dentate gyrus of the hippocampus.

The dentate gyrus is one of just two areas in the brain where new neurons are continuously formed in adults. When a new granule cell neuron is made in the dentate gyrus, it needs to get ‘wired in,’ by forming synapses, or connections, in order to contribute to circuit function. Dentate granule cells are part of a circuit that receive electrical signals from the entorhinal cortex, a cortical brain region that processes sensory and spatial input from other areas of the brain. By combining this sensory and spatial information, the dentate gyrus can generate a unique memory of an experience.

Overstreet-Wadiche and UAB colleagues posed a basic question: Since the number of neurons in the dentate gyrus increases by neurogenesis while the number of neurons in the cortex remains the same, does the brain create additional synapses from the cortical neurons to the new granule cells, or do some cortical neurons transfer their connections from mature granule cells to the new granule cells?

Their answer, garnered through a series of electrophysiology, dendritic spine density and immunohistochemistry experiments with mice that were genetically altered to produce either more new neurons or kill off newborn neurons, supports the second model — some of the cortical neurons transfer their connections from mature granule cells to the new granule cells.

This opens the door to look at how this redistribution of synapses between the old and new neurons helps the dentate gyrus function. And it opens up tantalizing questions. Does this redistribution disrupt existing memories? How does this redistribution relate to the beneficial effects of exercise, which is a natural way to increase neurogenesis?

“Over the last 10 years there has been evidence supporting a redistribution of synapses between old and new neurons, possibly by a competitive process that the new cells tend to ‘win,’” Overstreet-Wadiche said. “Our findings are important because they directly demonstrate that, in order for new cells to win connections, the old cells lose connections. So, the process of adult neurogenesis not only adds new cells to the network, it promotes plasticity of the existing network.”

Image shows a brain.

The study opens the door to look at how this redistribution of synapses between the old and new neurons helps the dentate gyrus function. NeuroscienceNews.com image is for illustrative purposes only.

“It will be interesting to explore how neurogenesis-induced plasticity contributes to the function of this brain region,” she continued. “Neurogenesis is typically associated with improved acquisition of new information, but some studies have also suggested that neurogenesis promotes ‘forgetting’ of existing memories.”

The researchers also unexpectedly found that the Bax gene, known for its role in apoptosis, appears to also play a role in synaptic pruning in the dentate gyrus.

“There is mounting evidence that the cellular machinery that controls cell death also controls the strength and number of synaptic connections,” Overstreet-Wadiche said. “The appropriate balance of synapses strengthening and weakening, collectively termed synaptic plasticity, is critical for appropriate brain function. Hence, understanding how synaptic pruning occurs may shed light on neurodevelopmental disorders and on neurodegenerative diseases in which a synaptic pruning gone awry may contribute to pathological synapse loss.”

ABOUT THIS NEUROSCIENCE RESEARCH ARTICLE

All of the work was performed in the Department of Neurobiology at UAB. In addition to Overstreet-Wadiche and Wadiche, co-authors of the paper, “Adult born neurons modify excitatory synaptic transmission to existing neurons,” published in eLife, are Elena W. Adlaf, Ryan J. Vaden, Anastasia J. Niver, Allison F. Manuel, Vincent C. Onyilo, Matheus T. Araujo, Cristina V. Dieni, Hai T. Vo and Gwendalyn D. King.

Much of the data came from the doctoral thesis research of Adlaf, a former UAB Neuroscience graduate student who is now a postdoctoral fellow at Duke University.

Funding: Funding for this research came from Civitan International Emerging Scholars awards, and National Institutes of Health awards or grants NS098553, NS064025, NS065920 and NS047466.

Source: Jeff Hansen – University of Alabama at Birmingham
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Full open access research for “Adult-born neurons modify excitatory synaptic transmission to existing neurons” by Elena W Adlaf, Ryan J Vaden, Anastasia J Niver, Allison F Manuel, Vincent C Onyilo, Matheus T Araujo, Cristina V Dieni, Hai T Vo, Gwendalyn D King, Jacques I Wadiche, and Linda Overstreet-Wadiche in eLife. Published online January 30 2017 doi:10.7554/eLife.19886

Birmingham “Brain Plasticity: How Adult Born Neurons Get Wired.” NeuroscienceNews. NeuroscienceNews, 3 February 2017.
<http://neurosciencenews.com/neuroplasticity-neuroscience-6053/&gt;.

Abstract

Did You Know How Loud Balloons Can Be?

Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit.

“Adult-born neurons modify excitatory synaptic transmission to existing neurons” by Elena W Adlaf, Ryan J Vaden, Anastasia J Niver, Allison F Manuel, Vincent C Onyilo, Matheus T Araujo, Cristina V Dieni, Hai T Vo, Gwendalyn D King, Jacques I Wadiche, and Linda Overstreet-Wadiche in eLife. Published online January 30 2017 doi:10.7554/eLife.19886

Source: Brain Plasticity: How Adult Born Neurons Get Wired – Neuroscience News

, , , , , ,

Leave a comment

[Abstract] Neural plasticity during motor learning with motor imagery practice: Review and perspectives

Highlights

• TMS reveals the neural aspects of motor learning with MI.

• Neural plasticity during MI practice may occur at the cortical and spinal level.

• MI training may strengthen synapse efficiency.

• Presynaptic inhibition may decrease after MI training.


Abstract

In the last decade, many studies confirmed the benefits of mental practice with motor imagery. In this review we first aimed to compile data issued from fundamental and clinical investigations and to provide the key-components for the optimization of motor imagery strategy. We focused on transcranial magnetic stimulation studies, supported by brain imaging research, that sustain the current hypothesis of a functional link between cortical reorganization and behavioral improvement. As perspectives, we suggest a model of neural adaptation following mental practice, in which synapse conductivity and inhibitory mechanisms at the spinal level may also play an important role.

Source: Neural plasticity during motor learning with motor imagery practice: Review and perspectives

, , , , ,

Leave a comment

[ARTICLE] Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke – Full Text HTML

Abstract:

Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.

1. Introduction

The arms and the legs are coupled in the human nervous system such that activity in the arms affects activity in the legs and vice versa. In quadrupeds, forelimb–hindlimb coordination is well documented and has been attributed to propriospinal linkages between cervical and lumbosacral spinal central pattern-generating networks [1,2,3,4,5,6]. Bipedal human locomotion is likely built upon elements of quadrupedal coordination [2,5], where it involves coordination of all four limbs. Only indirect evidence for quadrupedal locomotor linkages exists, however.
The modulation of reflex amplitudes can be used to probe for changes in interlimb neural activity [4,7]. Investigations of soleus stretch and H-reflex modulation during rhythmic arm movement provide evidence of neuronal coupling between the arms and the legs [2,3,8,9,10]. Examining cutaneous reflexes during rhythmic movements can also probe for interactions between the limbs. In this context, a widespread interlimb network is revealed by the extensive distribution of reflexes across many muscles in both the arms and the legs regardless of which limb is directly stimulated [4,11,12]. In addition, phase-dependent modulation found in muscles of all four limbs during rhythmic movement is suggestive of coupling between segmental spinal networks [12,13,14,15,16]. Regulation of rhythmic arm and leg movement is supported by somatosensory linkages in the form of interlimb reflexes [12,17,18] and neural coupling between lumbar and cervical spinal cord networks [10,19,20,21,22]. …

Figure 1. Illustration of the testing and training protocols. A multiple baseline within-subject control design was used for this study. An A & L cycle ergometer (Sci-Fit Pro 2) was used for training. The setups for stretch reflex and cutaneous reflex testing are shown. Muscles of interest are shown with a gray oval, and electrical stimulation is shown with a black lightning bolt. For the stretch reflex setup, a brief vibration was delivered to the triceps surae tendon and the reflex was recorded from the soleus (SOL) muscle, separately for each side. For the cutaneous reflex setup, simultaneous electrical stimulation was applied to the superficial radial (SR) and the superficial peroneal (SP) nerves, and reflexes were recorded bilaterally from the soleus (SOL), tibialis anterior (TA), flexor carpi radialis (FCR), and the posterior deltoid (PD) muscles.

, , , , ,

Leave a comment

[WEB SITE] Scientists discover neuron-producing stem cells in the membranes covering the brain

Credit: Heidi Cartwright, Wellcome Images

 

Discovery brings with it possible implications for brain regeneration –

In a cross-domain study directed by professor Peter Carmeliet (VIB – KU Leuven), researchers discovered unexpected cells in the protective membranes that enclose the brain, the so called meninges. These ‘neural progenitors’ (stem cells that differentiate into different kinds of neurons) are produced during embryonic development.

See Also: Stem cells in the brain: Limited self-renewal

These findings show that the neural progenitors found in the meninges produce new neurons after birth, highlighting the importance of meningeal tissue as well as these cells’ potential in the development of new therapies for brain damage or neurodegeneration. A paper highlighting the results is published in the journal Cell Stem Cell.

Scientists’ understanding of brain plasticity, or the ability of the brain to grow, develop, recover from injuries and adapt to changing conditions throughout our lives, has been greatly broadened in recent years. Before the discoveries of the last few decades, neurologists once thought that the brain became ‘static’ after childhood. This dogma has changed, with researchers finding more and more evidence that the brain is capable of healing and regenerating in adulthood, thanks to the presence of stem cells. However, neuronal stem cells were generally believed to only reside within the brain tissue, not in the membranes surrounding it.

The meninges: unappreciated no more

Believed in the past to serve a mainly protective function to dampen mechanical shocks, the meninges have been historically underappreciated by science as having neurological importance in its own right. The data gathered by the team challenges the current idea that neural precursors—or stem cells that give rise to neurons—can only be found inside actual brain tissue.

Learn More: Scientists sniff out unexpected role for stem cells in the brain

Prof. Peter Carmeliet notes: “The neuronal stems cells that we discovered inside the meninges differentiate to full neurons, electrically-active and functionally integrated into the neuronal circuit. To show that the stem cells reside in the meninges, we used the extremely powerful single-cell RNA sequencing technique, a very novel top-notch technique, capable of identifying the [complex gene expression signature] nature of individual cells in a previously unsurpassed manner, a première at VIB.”

Following up on future research avenues

When it comes to future leads for this discovery, the scientists also see possibilities for translation into clinical application, though future work is required.

“An intriguing question is whether these neuronal stem cells in the meninges could lead to better therapies for brain damage or neurodegeneration. However, answering this question would require a better understanding of the molecular mechanisms that regulate the differentiation of these stem cells,” says Carmeliet. “How are these meningeal stem cells activated to become different kinds of neurons? Can we therapeutically ‘hijack’ their regeneration potential to restore dying neurons in, for example, Alzheimer’ Disease, Parkinson’s Disease, amyotrophic lateral sclerosis (ALS), and other neurodegenerative disorders? Also, can we isolate these neurogenic progenitors from the meninges at birth and use them for later transplantation? These findings open up very exciting research opportunities for the future.”

Moving into unchartered territory is high risk, and can offer high gain, but securing funding for such type of research is challenging. However, Carmeliet’s discoveries were made possible to a large extent by funding through “Opening the Future: pioneering without boundaries”, a recently created Mecenas Funding Campaign for funding of high risk brain research but with potential for breakthrough discoveries, started up by the KU Leuven in 2013 and unique in Flanders.

Read Next: A better way to grow motor neurons from stem cells

“Being able to use such non-conventional funding channels is of utmost importance to break new boundaries in research,” says Carmeliet. “This unique Mecenas funding initiative by the KU Leuven is innovative and boundary-breaking by itself. Our entire team is enormously grateful for the opportunities it has created for our investigations”.

Note: Material may have been edited for length and content. For further information, please contact the cited source.

VIB – Flanders Institute for Biotechnology   press release

Publication

Bifari F et al. Neurogenic Radial Glia-like Cells in Meninges Migrate and Differentiate into Functionally Integrated Neurons in the Neonatal Cortex.   Cell Stem Cell, Published Online November 23 2016. doi: 10.1016/j.stem.2016.10.020

Source: Scientists discover neuron-producing stem cells in the membranes covering the brain

, , , , , ,

Leave a comment

[WEB SITE] New hope for recovery of hand movement for stroke patients – Medical News Today

Published: Today

Stroke patients are starting a trial of a new electronic device to recover movement and control of their hand.

Neuroscientists at Newcastle University have developed the device, the size of a mobile phone, which delivers a series of small electrical shocks followed by an audible click to strengthen brain and spinal connections.

The experts believe this could revolutionise treatment for patients, providing a wearable solution to the effects of stroke.

Following successful work in primates and healthy human subjects, the Newcastle University team are now working with colleagues at the prestigious Institute of Neurosciences, Kolkata, India, to start the clinical trial. Involving 150 stroke patients, the aim of the study is to see whether it leads to improved hand and arm control.

Stuart Baker, Professor of Movement Neuroscience at Newcastle University who has led the work said: “We were astonished to find that a small electric shock and the sound of a click had the potential to change the brain’s connections. However, our previous research in primates changed our thinking about how we could activate these pathways, leading to our study in humans.”

Recovering hand control

Publishing in the Journal of Neuroscience, the team report on the development of the miniaturised device and its success in healthy patients at strengthening connections in the reticulospinal tract, one of the signal pathways between the brain and spinal cord.

This is important for patients as when people have a stroke they often lose the major pathway found in all mammals connecting the brain to spinal cord. The team’s previous work in primates showed that after a stroke they can adapt and use a different, more primitive pathway, the reticulospinal tract, to recover.

However, their recovery tends to be imbalanced with more connections made to flexors, the muscles that close the hand, than extensors, those that open the hand. This imbalance is also seen in stroke patients as typically, even after a period of recuperation, they find that they still have weakness of the extensor muscles preventing them opening their fist which leads to the distinctive curled hand.

Partial paralysis of the arms, typically on just one side, is common after stroke, and can affect someone’s ability to wash, dress or feed themselves. Only about 15% of stroke patients spontaneously recover the use of their hand and arm, with many people left facing the rest of their lives with a severe level of disability.

Senior author of the paper, Professor Baker added: “We have developed a miniaturised device which delivers an audible click followed by a weak electric shock to the arm muscle to strengthen the brain’s connections. This means the stroke patients in the trial are wearing an earpiece and a pad on the arm, each linked by wires to the device so that the click and shock can be continually delivered to them.

“We think that if they wear this for 4 hours a day we will be able to see a permanent improvement in their extensor muscle connections which will help them gain control on their hand.”

Improving connections

The techniques to strengthen brain connections using paired stimuli are well documented, but until now this has needed bulky equipment, with a mains electric supply.

The research published today is a proof of concept in human subjects and comes directly out of the team’s work on primates. In the paper they report how they pair a click in a headphone with an electric shock to a muscle to induce the changes in connections either strengthening or weakening reflexes depending on the sequence selected. They demonstrated that wearing the portable electronic device for seven hours strengthened the signal pathway in more than half of the subjects (15 out of 25).

Professor Stuart Baker added: “We would never have thought of using audible clicks unless we had the recordings from primates to show us that this might work. Furthermore, it is our earlier work in primates which shows that the connections we are changing are definitely involved in stroke recovery.”

The work has been funded through a Milstein Award from the Medical Research Council and the Wellcome Trust.

The clinical trial is just starting at the Institute of Neurosciences, Kolkata, India. The country has a higher rate of stroke than Western countries which can affect people at a younger age meaning there is a large number of patients. The Institute has strong collaborative links with Newcastle University enabling a carefully controlled clinical trial with results expected at the end of this year.

Article: Spike Timing-Dependent Plasticity in the Long-Latency Stretch Reflex Following Paired Stimulation from a Wearable Electronic Device, K. M. Riashad Foysal, Felipe de Carvalho and Stuart N. Baker, Journal of Neuroscience, doi: 10.1523/JNEUROSCI.1414-16.2016, published 19 October 2016.

Source: New hope for recovery of hand movement for stroke patients – Medical News Today

, , , , , , , ,

Leave a comment

[WEB SITE] The Rehabilitation Gaming System – NEURO-REHABILITATION | SPECS – Synthetic, Perceptive, Emotive and Cognitive Systems group

The Rehabilitation Gaming System is a novel technology for Neuro-Rehabilitation that assists in the recovery of function after lesions to the brain. RGS is based on concrete neuroscientific principles of brain mechanisms of function in health and disease. RGS was initially developed via the project  http://rgs-project.eu. 

Image: Extension of brain damage after stroke.

Image: A stroke patient trains with RGS under the supervision of her physician/physioterapist at Val d’Hebron Hospital in Barcelona. Stroke can cause brain damage with loss of motor and cognitive functions. The efficacy of RGS in the recovery of these functions has been clinically tested with hundreds of patients. RGS is based on the neurobiological considerations that plasticity of the brain remains throughout life and therefore can be utilized to achieve functional reorganization of the brain areas affected by stroke.

 

 

 

 

 

 

 

 

 

http://www.euronews.com/2016/02/15/takeaway-train-your-brain

http://www.euronews.com/2016/02/15/a-virtual-reality-game-to-help-stroke…

RGS was developed by combining the idea of interactive media use for neurorehabilitation, in particular virtual reality, with the DAC theory of mind and brain. This decision was a key step in the realization of RGS since it made choices on the content of non-arbitrary treatment protocols and every intervention became a well defined interaction with a user from which lessons could be immediately drawn. By now RGS incorporates about 20 specific DAC derived principles that range from the key role of sensori-motor contingencies in organizing cognition and action (see Prochnow, D. et al., Eur. J. of Neurosc. 2013) to the importance of goal-oriented and error-driven intervention. (see Belen Rubio Ballestr et al., J. NeuroEng. Rehab. 2015)

RGS has advanced over the last decade with an extensive experimental agenda realized with dedicated partners in Barcelona 

To support our experimental studies we have installed RGS therapy stations which are in continuous use in associated hospitals (see collaborators below). As a result, RGS has build up an unprecedented empirical track record (see key references sbelow) having been tested with over 500 patients at the acute and chronic stages of stroke, including at home settings. Building on these results, together with our clinical partners, we are now validating the generalization of RGS to other neuropathologies such as Parkinson’s disease, cerebral palsy, traumatic brain injury and spinal cord lesions and the initial analysis looks very encouraging.

Many of the patients in our clinical experiments have asked to be able to continue the RGS therapy.

This demand combined with the clinical results that show that RGS is more effective than any other intervention available today, has lead to the creation of the spin-off company Eodyne.com together with the University Pompeu Fabra and the Catalan Institute of Advanced Studies. Eodyne’s goal is to make RGS available to as many people as possible for a minimum cost.

Schematic representation of the RGS platform: from the laboratory to the patient @clinic and @home

 

The SPECS laboratory lead by prof. Paul Verschure collaborates with Hospital la Esperanza, in particular with Dr Ester Duarte and “TiC Salut Foundation” a catalan agency that is part of the Ministry of Health.

For more visit —> NEURO-REHABILITATION | SPECS – Synthetic, Perceptive, Emotive and Cognitive Systems group

, , , , , , , , , , ,

Leave a comment

[WEB SITE] KIN450-Neurophysiology – Plasticity

Plasticity

Brain Plasticity

Introduction

Brain plasticity, a.k.a Neuroplasticity, refers to the brains’ ability to “remap” and change according to personal experiences. The brain is composed of multiple cortices and lobes (Figure 1) that mature at different times in a human life span, for example, the frontal lobe is the last to mature and does not mature until the early mid twenties and the amygdala is most active and developing during adolescence.

Brain plasticity does not mean that one would find the occipital lobe where the frontal lobe would be normally found during an accident nor does it mean that one lobe would overtake another. This is because once the brain develops, they are generally located where figure 1 illustrates. What brain plasticity refers the strength of the connections between the neuron and the glial cells within the brain.

Glial cells make about 50% of the brains’ neurons and they function as the supporting cell for the other neurons. During learning it has been observed that there is an increase of strength between the connections as well as the formation of new cells (Wikipedia).

It has been thought that once passed a critical period the brain cannot change. This idea is true to some extent and it can be observed in other animals, for example, when certain bird species hatches, the first animal it sees it will follow even if the animal is not a human. This can be said about humans as well. There have been feral children found with no explanations that have seemed to have survived in the wilderness with the aid of other animals. Some kids were taught to behave as humans again but some human behaviors, like language, could not be learned. It is known that learning a language is easier when one is younger but if the critical period for language acquisition is missed, which is in the first couple months of infant development, language cannot be learned.Though the critical periods are crucial in development of the brain, there are high adaptable areas in the brain that can adjust to by external changes of training.

Visit WEB SITE —> KIN450-Neurophysiology – Plasticity

, , , , ,

Leave a comment

[ARTICLE] Stroke research at the crossroads – where are we heading? – Full Text HTML

Summary

Stroke causes 5.7 million deaths annually. This ranks stroke as the second most common cause of death and, additionally, it is a major cause of disability. Because of an ageing population, stroke incidence and costs will greatly increase in the future. This makes stroke an ongoing social and economic burden, in contrast to the only very limited therapeutic options.

In the last decade vast sums were spent on translational research focused on neuroprotective strategies in the acute phase of ischaemic stroke. A plethora of candidate agents were tested in experimental models and preclinical studies, but none was proven effective in clinical trials. This gave rise to discussions about the possible reasons for this failure, ending up mainly with criticism of methodological aspects of the preclinical and clinical studies, or of the relevance of animal studies in drug development. Indeed, the question could rather be whether neuroprotection is the right target for successful stroke treatment. In this context, a paradigm change can currently be observed: the focus of experimental and translational stroke research is shifting from early neuroprotection to delayed mechanisms such as stroke-associated comorbidities, regeneration and plasticity.

In this review we highlight a few recently emerging fields in translational stroke research. One such topic is the crosstalk between immunity and the injured brain as key pathomechanism in stroke. On one hand, innate and adaptive immune cells play an important role in the fate of injured brain tissue after stroke; on the other, peripheral immune alterations are critically involved in post-stroke comorbidities.

Another emerging research area is the analysis of mechanisms involved in regeneration and neuronal plasticity after stroke. Here, we discuss the current understanding of basic mechanisms involved after brain injury, clinical imaging approaches and therapeutic strategies to promote regeneration in stroke patients.

Continue —> SMW – Swiss Medical Weekly – Stroke research at the crossroads – where are we heading?

Figure 1 Multiphasic brain interactions after stroke and opportunities for treatment. Previous neuroprotective strategies targeted pathological mechanisms in a very narrow window of opportunity in the (hyper-) acute phase after stroke (orange). Recently, the focus of translational stroke research has shifted towards understanding pathological processes in the subacute and chronic phase such as neuroinflammation and neuroregeneration (green). These targets have the potential for novel therapeutic approaches which are suitable for a larger population of stroke patients then neuroprotective agents or thrombolysis.

 

, , , , , , ,

Leave a comment

%d bloggers like this: