Posts Tagged Psychiatry

[WEB SITE] New method based on artificial intelligence may help predict epilepsy outcomes

 

Medical University of South Carolina (MUSC) neurologists have developed a new method based on artificial intelligence that may eventually help both patients and doctors weigh the pros and cons of using brain surgery to treat debilitating seizures caused by epilepsy. This study, which focused on mesial temporal lobe epilepsy (TLE), was published in the September 2018 issue of Epilepsia. Beyond the clinical implications of incorporating this analytical method into clinicians’ decision making processes, this work also highlights how artificial intelligence is driving change in the medical field.

Despite the increase in the number of epilepsy medications available, as many as one-third of patients are refractory, or non-responders, to the medication. Uncontrolled epilepsy has many dangers associated with seizures, including injury from falls, breathing problems, and even sudden death. Debilitating seizures from epilepsy also greatly reduce quality of life, as normal activities are impaired.

Epilepsy surgery is often recommended to patients who do not respond to medications. Many patients are hesitant to undergo brain surgery, in part, due to fear of operative risks and the fact that only about two-thirds of patients are seizure-free one year after surgery. To tackle this critical gap in the treatment of this epilepsy population, Dr. Leonardo Bonilha and his team in the Department of Neurology at MUSC looked to predict which patients are likely to have success in being seizure free after the surgery.

Neurology Department Chief Resident Dr. Gleichgerrcht explains that they tried “to incorporate advanced neuroimaging and computational techniques to anticipate surgical outcomes in treating seizures that occur with loss of consciousness in order to eventually enhance quality of life”. In order to do this, the team turned to a computational technique, called deep learning, due to the massive amount of data analysis required for this project.

The whole-brain connectome, the key component of this study, is a map of all physical connections in a person’s brain. The brain map is created by in-depth analysis of diffusion magnetic resonance imaging (dMRI), which patients receive as standard-of-care in the clinic. The brains of epilepsy patients were imaged by dMRI prior to having surgery.

Deep learning is a statistical computational approach, within the realm of artificial intelligence, where patterns in data are automatically learned. The physical connections in the brain are very individualized and thus it is challenging to find patterns across multiple patients. Fortunately, the deep learning method is able to isolate the patterns in a more statistically reliable method in order to provide a highly accurate prediction.

Currently, the decision to perform brain surgery on a refractory epilepsy patient is made based on a set of clinical variables including visual interpretation of radiologic studies. Unfortunately, the current classification model is 50 to 70 percent accurate in predicting patient outcomes post-surgery. The deep learning method that the MUSC neurologists developed was 79 to 88 percent accurate. This gives the doctors a more reliable tool for deciding whether the benefits of surgery outweigh the risks for the patient.

A further benefit of this new technique is that no extra diagnostic tests are required for the patients, since dMRIs are routinely performed with epilepsy patients at most centers.

This first study was retrospective in nature, meaning that the clinicians looked at past data. The researchers propose that an ideal next step would include a multi-site prospective study. In a prospective study, they would analyze the dMRI scans of patients prior to surgery and follow-up with the patients for at least one year after surgery. The MUSC neurologists also believe that integrating the brain’s functional connectome, which is a map of simultaneously occurring neural activity across different brain regions, could enhance the prediction of outcomes.

Dr. Gleichgerrcht says that the novelty in the development of this study lies in the fact that this “is not a question of human versus machine, as is often the fear when we hear about artificial intelligence. In this case, we are using artificial intelligence as an extra tool to eventually make better informed decisions regarding a surgical intervention that holds the hope for a cure of epilepsy in a large number of patients.”

 

via New method based on artificial intelligence may help predict epilepsy outcomes

, , , , , , , , , , ,

Leave a comment

[WEB SITE] New brain cells are added in elderly adult brains too

According to a new study from the Columbia University however, brain cells are continuously added to our brains even when we reach our 70s. This is a process called neurogenesis. Their work is published in a study that appeared in the latest issue of the journal Cell Stem Cell this week.

Neuron detailed anatomy illustrations. Neuron types, myelin sheath formation, organelles of the neuron body and synapse. Image Credit: Tefi / Shutterstock

Lead author Dr. Maura Boldrini, a research scientist at the department of psychiatry, Columbia University and her colleagues investigated the brains of 28 dead people aged between 14 and 79 years. They were studying the effects of aging on the brain’s neuron production. The team examined the brains that were donated by the families of the deceased at the time of death. The brains were frozen immediately at minus-112 degrees Fahrenheit before they could be examined. This preserved the tissues.

Neurogenesis has been shown to decline with age in lab mice and rats as well as in experimental primates. The team wanted to explore if same rates of decline are seen in human brains as well. So they checked the brains samples for developing neurons. These developmental stages included stem cells, intermediate progenitor cells, immature neuronal cells and finally new mature neurons. They focused on the hippocampus region of the brain that deals with memory and emotional control and behavior.

The results revealed that for all age groups, the hippocampus shows new developing neurons. The researchers concluded that even during old age, the hippocampus continues to make new neurons. The differences that they noted with age include reduction in the development of new blood vessels as people got older. The proteins that help the neurons to make new connections are reduced with age. This was a finding that differentiated ageing brains from younger ones, they explained. Boldrini said the new neurons are there in older brains but they make fewer connections than younger brains. This explains the memory losses and decrease in emotional resiliency in older adults she said.

An earlier study last month came from another set of researchers led by University of California San Francisco researcher Arturo Alvarez-Buylla. The study titled, “Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults,” was published first week of March this year in the journal Nature.

The team found that after adolescence there is little or no neurogenesis in the brain. They examined the brains of 17 deceased individuals and 12 patients with epilepsy part of whose brains had been surgically resected. The debate between the two teams continues. Boldrini explained that Buylla’s team had examined different types of samples that were not preserved as her samples had been.

Further the other team examined three to five sections of the hippocampus and not the whole of it she explained. More studies on this needed to make concrete conclusions regarding neurogenesis in the elderly say experts.

References

via New brain cells are added in elderly adult brains too

, , , , , , , , , , ,

Leave a comment

[WEB PAGE] Excitatory magnetic brain stimulation reduces emotional arousal to fearful faces, study shows

February 6, 2018

A new study in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging looks at the modulation of emotion in the brain

A new study published in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging reports that processing of negative emotion can be strengthened or weakened by tuning the excitability of the right frontal part of the brain.

Using magnetic stimulation outside the brain, a technique called repetitive transcranial magnetic stimulation (rTMS), researchers at University of Münster, Germany, show that, despite the use of inhibitory stimulation currently used to treat depression, excitatory stimulation better reduced a person’s response to fearful images.

The findings provide the first support for an idea that clinicians use to guide treatment in depression, but has never been verified in a lab. “This study confirms that modulating the frontal region of the brain, in the right hemisphere, directly effects the regulation of processing of emotional information in the brain in a ‘top-down’ manner,” said Cameron Carter, M.D., Editor of Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, referring to the function of this region as a control center for the emotion-generating structures of the brain. “These results highlight and expand the scope of the potential therapeutic applications of rTMS,” said Dr. Carter.

In depression, processing of emotion is disrupted in the frontal region of both the left and right brain hemispheres (known as the dorsolateral prefrontal cortices, dlPFC). The disruptions are thought to be at the root of increased negative emotion and diminished positive emotion in the disorder. Reducing excitability of the right dlPFC using inhibitory magnetic stimulation has been shown to have antidepressant effects, even though it’s based on an idea-that this might reduce processing of negative emotion in depression-that has yet to be fully tested in humans.

Co-first authors Swantje Notzon, M.D., and Christian Steinberg, Ph.D, and colleagues divided 41 healthy participants into two groups to compare the effects of a single-session of excitatory or inhibitory magnetic stimulation of the right dlPFC. They performed rTMS while the participants viewed images of fearful faces to evoke negative emotion, or neutral faces for a comparison.

Excitatory and inhibitory rTMS had opposite effects-excitatory reduced visual sensory processing of fearful faces, whereas inhibitory increased visual sensory processing. Similarly, excitatory rTMS reduced participants’ reaction times to respond to fearful faces and reduced feelings of emotional arousal to fearful faces, which were both increased by inhibitory rTMS.

Although the study was limited to healthy participants, senior author Markus Junghöfer, Ph.D., notes that “…these results should encourage more research on the mechanisms of excitatory and inhibitory magnetic stimulation of the right dlPFC in the treatment of depression.”

 

via Excitatory magnetic brain stimulation reduces emotional arousal to fearful faces, study shows

, , , , , , , , ,

Leave a comment

[WEB SITE] UCLA researchers use noninvasive ultrasound technique to jump-start the brain of coma patient

A 25-year-old man recovering from a coma has made remarkable progress following a treatment at UCLA to jump-start his brain using ultrasound. The technique uses sonic stimulation to excite the neurons in the thalamus, an egg-shaped structure that serves as the brain’s central hub for processing information.

“It’s almost as if we were jump-starting the neurons back into function,” said Martin Monti, the study’s lead author and a UCLA associate professor of psychology and neurosurgery. “Until now, the only way to achieve this was a risky surgical procedure known as deep brain stimulation, in which electrodes are implanted directly inside the thalamus,” he said. “Our approach directly targets the thalamus but is noninvasive.”

Monti said the researchers expected the positive result, but he cautioned that the procedure requires further study on additional patients before they determine whether it could be used consistently to help other people recovering from comas.

“It is possible that we were just very lucky and happened to have stimulated the patient just as he was spontaneously recovering,” Monti said.

A report on the treatment is published in the journal Brain Stimulation. This is the first time the approach has been used to treat severe brain injury.

The technique, called low-intensity focused ultrasound pulsation, was pioneered by Alexander Bystritsky, a UCLA professor of psychiatry and biobehavioral sciences in the Semel Institute for Neuroscience and Human Behavior and a co-author of the study. Bystritsky is also a founder of Brainsonix, a Sherman Oaks, California-based company that provided the device the researchers used in the study.

That device, about the size of a coffee cup saucer, creates a small sphere of acoustic energy that can be aimed at different regions of the brain to excite brain tissue. For the new study, researchers placed it by the side of the man’s head and activated it 10 times for 30 seconds each, in a 10-minute period.

Monti said the device is safe because it emits only a small amount of energy — less than a conventional Doppler ultrasound.

Before the procedure began, the man showed only minimal signs of being conscious and of understanding speech — for example, he could perform small, limited movements when asked. By the day after the treatment, his responses had improved measurably. Three days later, the patient had regained full consciousness and full language comprehension, and he could reliably communicate by nodding his head “yes” or shaking his head “no.” He even made a fist-bump gesture to say goodbye to one of his doctors.

“The changes were remarkable,” Monti said.

The technique targets the thalamus because, in people whose mental function is deeply impaired after a coma, thalamus performance is typically diminished. And medications that are commonly prescribed to people who are coming out of a coma target the thalamus only indirectly.

Under the direction of Paul Vespa, a UCLA professor of neurology and neurosurgery at the David Geffen School of Medicine at UCLA, the researchers plan to test the procedure on several more people beginning this fall at the Ronald Reagan UCLA Medical Center. Those tests will be conducted in partnership with the UCLA Brain Injury Research Center and funded in part by the Dana Foundation and the Tiny Blue Dot Foundation.

If the technology helps other people recovering from coma, Monti said, it could eventually be used to build a portable device — perhaps incorporated into a helmet — as a low-cost way to help “wake up” patients, perhaps even those who are in a vegetative or minimally conscious state. Currently, there is almost no effective treatment for such patients, he said.

Source: University of California – Los Angeles

Source: UCLA researchers use noninvasive ultrasound technique to jump-start the brain of coma patient

, , , , , , , , , ,

Leave a comment

%d bloggers like this: