Posts Tagged PupArm

[Abstract + References] Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use from Patient Perspective

Abstract

This paper presents a user study to evaluate the system’s performance by measuring objective indicators and subjective perception between the two versions of a planar rehabilitation robotic device: (i) PupArm system, called RoboTherapist 2D system for commercial purpose, designed and developed for clinical settings; and (ii) Homerehab system, developed for home use. Homerehab system is a home rehabilitation robotic platform developed inside the EU HOMEREHAB-Echord++ project framework. Nine patients with different neurological disorders participate in the study. Based on the analysis of subjective assessments of usability and the data acquired objectively by the robotic devices, we can conclude that the performance and user experience with both systems are very similar. This finding will be the base of more extensively studies to demonstrate that home-therapy with HomeRehab could be as efficient as therapy in clinical settings assisted by PupArm robot.

This work has been supported by the European Commission through the project HOMEREHAB: “Development of Robotic Technology for Post-Stroke Home Tele-Rehabilitation – Echord++” (Grant agreement: 601116); by the AURORA project (DPI2015-70415-C2-2-R), which is funded by the Spanish Ministry of Economy and Competitiveness and by the European Union through the European Regional Development Fund (ERDF), “A way to build Europe” and by Conselleria d’Educació, Cultura i Esport of Generalitat Valenciana through the grant APOTIP/2017/001.

References

1.
Go, A.S., Mozaffarian, D., Roger, V.L.: Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014)
CrossRefGoogle Scholar
2.
Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)
CrossRefGoogle Scholar
3.
Richards, L., Hanson, C., Wellborn, M., Sethi, A.: Driving motor recovery after stroke. Top. Stroke Rehabil. 15(5), 397–411 (2008)
CrossRefGoogle Scholar
4.
Linder, S.M., Rosenfeldt, A.B., Reiss, A., Buchanan, S., Sahu, K., Bay, C.R., Wolf, S.L., Alberts, J.L.: The home stroke rehabilitation and monitoring system trial: a randomized con-trolled trial. Int. J. Stroke 8(1), 1747–4949 (2013)
CrossRefGoogle Scholar
5.
Diaz, I., Catalan, J.M., Badesa, F.J., Justo, X., Lledo, L.D., Ugartemendia, A., Gil, J.J., Díez, J., Garca-Aracil, N.: Development of a robotic device for post-stroke home tele-rehabilitation. Adv. Mech. Eng
Google Scholar
6.
Badesa, F.J., Llinares, A., Morales, R., Garcia-Aracil, N., Sabater, J.M., Perez-Vidal, C.: Pneumatic planar rehabilitation robot for post-stroke patients. Biomed. Eng. Appl. Basis Commun. 26(2), 1450025 (2014)
CrossRefGoogle Scholar
7.
Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClealland, I.L. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor and Francis, London (1996)
Google Scholar
8.
LLinares, A., Badesa, F.J., Morales, R., Garcia-Aracil, N., Sabater, J., Fernandez, E.: Robotic assessment of the influence of age on upper-limb sensorimotor function. Clin. Interv. Aging 8, 879 (2013).  https://doi.org/10.2147/CIA.S45900
CrossRefGoogle Scholar

via Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use from Patient Perspective | SpringerLink

, , , , , , , ,

Leave a comment

[Abstract + References] Patient Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use – IEEE Conference Publication

Abstract

The paper presents a user study to compare the performance of two rehabilitation robotic systems, called HomeRehab and PupArm. The first one is a novel tele-rehabilitation system for delivering therapy to stroke patients at home and the second one has been designed and developed to provide rehabilitation therapy to patients in clinical settings. Nine patients with different neurological disorders participated in the study. The patients performed 16 movements with each robotic platform and after that they filled a usability survey. Moreover, to evaluate the patient’s performance with each robotic device, 8 movement parameters were computed from each trial and for the two robotic devices. Based on the analysis of subjective assessments of usability and the data acquired objectively by the robotic devices, we can conclude that the performance and user experience with both systems are very similar. This finding will be the base of more extensive studies to demonstrate that home-therapy with HomeRehab could be as efficient as therapy in clinical settings assisted by PupArm robot.

 

1. WHO global report. Preventing Chronic Diseases: A Vital Investment, World Health Organization, 2005.

2. J. Mackay, G. A. Mensah, The Atlas of Heart Disease and Stroke, Geneva, Switzerland:World Health Organization, 2004.

3. D. S. Nichols-Larsen, P. C. Clark, A. Zeringue, A. Greenspan, S. Blanton, “Factors Influencing Stroke Survivors Quality of Life during Subacute Recovery”, Stroke, vol. 36, pp. 14801484, 2005.

4. P. Langhorne, F. Coupar, A. Pollock, “Motor Recovery after Stroke: a Systematic Review”, The Lancet Neurology, vol. 8, no. 8, pp. 741754, 2009.

5. C. R. Carnigan, H. I. Krebs, “Telerehabilitation Robotics: Bright Lights Big Future?”, Journal of Rehabilitation Research and Development, vol. 43, no. 5, pp. 695-710, 2006.

6. K. J. Ottenbacher, P. M. Smith, S. B. Illig, R. T. Linn, G. V. Ostir, C. V. Granger, “Trends in Length of Stay Living Setting Functional Outcome and Mortality following Medical Reha-bilitation”, JAMA, vol. 292, no. 14, pp. 1687-1695, 2004.

7. L. Richards, C. Hanson, M. Wellborn, A. Sethi, “Driving Motor Recovery after Stroke”, Topics in Stroke Rehabilitation, vol. 15, no. 5, pp. 397411, 2008.

8. S. M. Linder, A. B. Rosenfeldt, A. Reiss, S. Buchanan, K. Sahu, C. R. Bay, S. L. Wolf, J. L. Alberts, “The Home Stroke Rehabilitation and Monitoring System Trial: A Randomized Controlled Trial”, International Journal of Stroke, vol. 8, no. 1, pp. 1747-4949, 2013.

9. T. Larsen, T. S. Olsen, J. Sorensen, “Early Home-Supported Discharge of Stroke Patients: A Health Technology Assessment”, International Journal of Technology Assessment in Health Care, vol. 22, no. 3, pp. 313-320, 2006.

10. Ifiaki Díaz, José María Catalan, Francisco Javier Badesa, Xabier Justo, Luis Daniel Lledo, Axier Ugartemendia, Jorge juan Gil, Jorge Díez, Nicolás García-Aracil, Development of a robotic device for post-stroke home tele-rehabilitation. Advances in Mechanical Engineering, vol. 10, no. 1, pp. 1-8, 2018.

11. J. Brooke, P. W. Jordan, B. Thomas, B. A. Weerd-meester, J. L. McClealland, “SUS: A quick and dirty usability scale” in Usability Evaluation in Industry, London:Taylor and Francis, pp. 189194, 1996.

12. R. Likert, G. M. Maranell, “A method of constructing an attitude scale” in Scaling: A Sourcebook for Behavioral Scientists, Chicago, IL:Aldine Publishing, pp. 233243, 1974.

13. H. J. Krebs, N. Hogan, M. L. Aisen, B. T. Volpe, “Robot-aided neurorehabilitation”, IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 1, pp. 75-87, Mar 1998.

14. Franciso J Badesa, Ana Llinares, Ricardo Morales, Nicolas Garcia-Aracil, Jose M Sabater, Carlos Perez-Vidal, “Pneumatic planar rehabilitation robot for post-stroke patients”, Biomedical Engineering: Applications Basis and Communications, vol. 26, no. 2, pp. 1450025, 2014.

15. D. Lledo Luis, A. Diez Jorge, Bertomeu-Motos Arturo, Ezquerro Santiago, J. Badesa Francisco, M. Sabater-Navarro Jose, Garca-Aracil Nicolas, “A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients”, Frontiers in Aging Neuroscience, vol. 8, pp. 205, 2016.

16. A. Llinares, F. J. Badesa, R. Morales, N. Garcia-Aracil, J. Sabater, E. Fernandez, “Robotic assessment of the influence of age on upper-limb sensorimotor function”, Clin. Interv. Aging, vol. 8, pp. 879, 2013.

17. D. S. Dunn, Statistics and data analysis for the behavioral sciences, New York, NY, US:McGraw-Hill, 2001.

18. J. Brooke, P. W. Jordan, B. Thomas, B. A. Weerd-meester, I. L. McClealland, “SUS: A quick and dirty usability scale” in Usability Evaluation in Industry, London:Taylor and Francis, pp. 189194, 1996.

19. AM Coderre, AA Zeid, SP Dukelow et al., “Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching”, Neurorehabil Neural Repair., vol. 24, no. 6, pp. 528541, 2010.

via Patient Evaluation of an Upper-Limb Rehabilitation Robotic Device for Home Use – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: