Posts Tagged QoL

[Abstract] The feasibility and impact of a yoga pilot programme on the quality-of-life of adults with acquired brain injury – CNS


OBJECTIVE: This pilot study measured the feasibility and impact of an 8-week yoga programme on the quality-of-life of adults with acquired brain injury (ABI).

METHODS: Thirty-one adults with ABI were allocated to yoga (n = 16) or control (n = 15) groups. Participants completed the Quality of Life After Brain Injury (QOLIBRI) measure pre- and post-intervention; individuals in the yoga group also rated programme satisfaction. Mann-Whitney/Wilcoxon and the Wilcoxon Signed Rank tests were used to evaluate between- and within-group differences for the total and sub-scale QOLIBRI scores, respectively.

RESULTS: No significant differences emerged between groups on the QOLIBRI pre- or post-intervention. However, there were significant improvements on overall quality-of-life and on Emotions and Feeling sub-scales for the intervention group only. The overall QOLIBRI score improved from 1.93 (SD = 0.27) to 2.15 (SD = 0.34, p = 0.01). The mean Emotions sub-scale increased from 1.69 (SD = 0.40) to 2.01 (SD = 0.52, p = 0.01), and the mean Feeling sub-scale from 2.1 (SD = 0.34) to 2.42 (SD = 0.39, p = 0.01).

CONCLUSION: Adults with ABI experienced improvements in overall quality-of-life following an 8-week yoga programme. Specific improvements in self-perception and negative emotions also emerged. High attendance and satisfaction ratings support the feasibility of this type of intervention for people with brain injury.

Source: Traumatic Brain Injury Resource Guide – Research Reports – The feasibility and impact of a yoga pilot programme on the quality-of-life of adults with acquired brain injury

, , , ,

Leave a comment

[ARTICLE] Visual Impairment Following Stroke – The Impact on Quality of Life: A Systematic Review – Full Text PDF


Background: The visual impairments caused by stroke have the potential to affect the ability of an individual to perform activities of daily living. An individual with visual impairment may also have reduced level of independence. The purpose of this review was to investigate the impact on quality of life from stroke related visual impairment, using subjective patient reported outcome measures.

Methods: A systematic search of the literature was performed. The inclusion criteria required studies to have adult participants (aged 18 years or over) with a diagnosis of a visual impairment directly resulting from a stroke. Studies which included visual impairment as a result of other intracranial aetiology, were included if over half of the participants were stroke survivors. Multiple scholarly online databases and registers of published, unpublished and ongoing trials were searched, in addition articles were hand searched. MESH terms and alternatives in relation to stroke and visual conditions were used. Study selection was performed by two authors independently. Data was extracted by one author and verified by a second. The quality of the evidence was assessed using a quality appraisal tool and reporting guidelines.

Results: This review included 11 studies which involved 5646 participants, the studies used a mixture of generic and vision-specific instruments. The seven instruments used by the included studies were the EQ-5D, LIFE-H, SF-36, NEI VFQ-25, VA LV VFQ-48, SRA-VFP and DLTV.

Conclusion: A reduction in quality of life was reported by all studies in stroke survivors with visual impairment. Some studies used generic instruments, therefore making it difficult to extract the specific impact of the visual impairment as opposed to the other deficits caused by stroke. The majority of studies (8/11) primarily had participants with visual field loss. This skew towards visual field loss and no studies investigating the impact ocular motility prevented a comparison of the effects on quality of life due to different visual impairments caused by stroke. In order to fully understand the impact of visual impairment following stroke on quality of life, further studies need to use an appropriate vision-specific outcome measure and include all types of visual impairment which can result from a stroke.

Full Text PDF

, , , , , ,

Leave a comment

[ARTICLE] Prediction of quality of life after stroke rehabilitation – Full Text



The purpose of this study was to develop a computational method to identify potential predictors for quality of life (QOL) after post stroke rehabilitation.


Five classifiers were trained by five personal factors and nine functional outcome measures by 10-fold cross-validation. The classifier with the highest cross-validated accuracy was considered to be the optimal classifier for QOL prediction.


Particle Swarm-Optimized Support Vector Machine (PSO-SVM) showed highest accuracy in predicting QOL in stroke patients and was adopted as the optimal classifier. Potential predictors were assessed by PSO-SVM with feature selection. The early outcomes of Quality of Movement scale of the Motor Activity Log (MAL_QOM) and the Stroke Impact Scale (SIS) were identified to be the most predictive outcome predictors for QOL.


The approach provides the medical team another possibility to improve the accuracy in predicting QOL in stroke patients. Therapists could determine the therapies for stroke patients more accurately and efficiently to enhance the quality of life after stroke.


Stroke remains a leading cause of death and disability in the developed world [1]. After stroke, the effects of stroke and post stroke rehabilitation are usually assessed by health professional ratings and performance tests [24]. However, real life of stroke survivors is affected in multiple ways and may not be described completely by only health and functional status. It is possible that a treatment succeeds in enhancing physical function recovery however induces psychosocial problems [5,6]. In this case, quality of life (QOL) may actually be degraded after poststroke rehabilitation. The WHO suggests that a comprehensive view of quality of life includes not only physical health, but also psychological health, social relationships, and environmental quality [4]. Therefore, to obtain a comprehensive view of the effects after stroke, life quality should also be considered when assessing a person’s health and functioning.

In recent years, assessment of QOL in stroke has become increasingly common. Many recent rehabilitation therapies have been reported to be effective in restoring upper limb motor function after stroke but showed varied effects in QOL [710]. Different rehabilitation therapies may benefit different subgroups of the stroke population and cause different effects to QOL. Identifying key predictors of QOL may assist therapists to determine an optimal therapy, which can not only improve physical function but also maximize QOL for a specific subgroup of stroke survivors. Decision making of rehabilitation strategies may be more efficient and complete with identifying predominant predictors of QOL.

Only three studies examined predictors of QOL [5,11,12]. In these three studies, the predictive ability of multiple factors was examined, including demographic factors, vascular risk factors, clinical scales and neuropsychological assessment, and lesion characteristics. However, general predictors of outcomes of QOL were hard to determine because of the heterogeneity among these studies. Both physical and psychological factors were reported to be important in predicting QOL after stroke [5,11,12]. Although stroke rehabilitation gains in QOL are important, the question of which patients may benefit most in QOL from specific therapies has not been widely addressed, and statistical approaches to reveal such associations and predictors may not be optimal [13,14]. However, possible predictors related to QOL performance outcome after rehabilitation remained less discussed. More studies are needed to clarify the predictive ability of diverse QOL predictors in stroke patients.

Practical implementation of outcome predictors in clinical use was also constrained by the complexity of the algorithms. Developing prognostic algorithm based on existing and simple algorithms may reduce the complexity in clinical implementation, increase the use of prognostic model, and further improve the efficiency of rehabilitation therapy. Traditionally, studies examined outcome predictors used regression analysis to discriminate the most predictive factors from others [1518]. However, the results of regression analysis can only explained the variance of the outcome in percentage. Computational methods can provide another aspect of outcome prediction. The results of regression statistical method showed that the factors were predictors for the outcome measure model, and the model only explained how percentage of the variance in the outcome measure scores. However, the results of computational classifier methods can provide accuracy and more application related to the predictors.

It has been applied in predicting clinical outcome in cancer patients and showed high accuracy and efficiency [19,20]. Using classifiers could improve the accuracy in predicting QOL. Hopefully, predominant predictors could also be better identified. That’s why we try to utilize a computational classifier method to identify potential predictors for quality of life (QOL) after post stroke rehabilitation.

Continue —> Prediction of quality of life after stroke rehabilitation

, , , ,

Leave a comment

[WEB SITE] Research Reports – Quality of life after traumatic brain injury – CNS

OBJECTIVE: The aim of this study was to assess the quality of life (QoL) of
traumatic brain injury (TBI) patients and to explore its predictive factors.
MATERIAL/PATIENTS AND METHODS: This is a descriptive and analytical
cross-sectional study, including 27 TBI patients followed in the physical
medicine and rehabilitation department (PMR). The collected data were: age,
educational level, marital status, initial Glosgow score and intensive care unit
length of stay. The assessment of the QoL was based on two scales, the first one was specific: Quality of Life after Brain Injury (QOLIBRI), while the second was generic: the SF-36. We had assessed memory disorders by the mini mental state (MMS) and functional capacity by The Functional Independence Measure (FIM). The handicap was assessed by Go Outcome Scale (GOS). Possible correlations between QoL and the different variables were explored.
RESULTS: The mean age of patients was 32.19 years. For QOLIBRI scale, the overall average score was 48.03%, the most affected dimensions were the feelings and social relations. Regarding the SF-36 scale, impaired QoL was found in 74% of these patients, the overall average score was 43.02. A significant correlation was found between QOLIBRI and mental composite score of the SF-36 (P=0.012). Memory disorder was significantly correlated with QoL (P=0.037). There were no statistically significant correlations between QoL and the other variables.
DISCUSSION-CONCLUSION: Memory disorder was the main predictive factor of impaired quality of life of traumatic brain injury patients; however, there was no correlation between handicap and QoL. This alteration of QOL has clinical implications and highlights the necessity of more efforts to optimize the rehabilitation interventions.



, , ,

Leave a comment

[ARTICLE] Effectiveness of botulinum toxin type A on gait and quality of life in adult post-stroke patients with lower limb spasticity: a systematic review protocol – Full Text


Review question/objective: The objective of this review is to examine the current best available evidence on the effectiveness of botulinum toxin type A on gait (velocity and distance) and quality of life (QoL) in adult post-stroke patients with lower limb spasticity.

More specifically, this review aims to determine the effectiveness of botulinum toxin type A on adult post-stroke patients with lower limb spasticity in relation to:

* Gait velocity

* Walking distance

* QoL.


Stroke is a leading cause of mortality and morbidity globally. It is the third most common cause of disability globally among people over 65 years of age.1 Post-stroke spasticity is one of the important impairments following stroke along with cognitive and other sensory motor problems. Prevalence post-stroke spasticity ranges from 4% to 42.6%.2

Spasticity is one of the upper motor neuron symptoms experienced by the stroke survivors and defined as a motor disorder characterized by a velocity-dependent increase in tonic stretch reflex (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex (muscle tone) as one component of the upper motor neuron syndrome.1

Post-stroke spasticity typically affects one-half of the body, usually the upper and the lower limb, giving rise to spastic hemiparesis. Spasticity can significantly impair functions, such as mobility and activities of daily living of stroke survivors. In the lower limb, post-stroke spasticity manifests as adducted hip, stiff knee and most commonly equinovarus foot.3 Equinovarus deformity in the ankle and foot is caused by spastic or overactive gastrocnemius, soleus and/or tibialis posterior muscles. Other foot muscles, such as flexor hallucis longus and flexor digitorum longus can also be involved causing clawing of toes. The other spastic lower limb muscles, such as the quadriceps, can cause stiff knee gait,4 hamstrings knee flexion and the hip adductors (adductor magnus, brevis and longus) adduction of the hip. Spastic lower limb gives rise to the characteristic hemiplegic or circumducting gait.

Lower limb muscles are important for transferring from bed to chair, standing from a sitting position and maintaining standing balance before taking steps to walk. The deformities caused by the spastic lower limb muscles in isolation or with other impairments can potentially impede all aspects of mobility as outlined. Post-stroke spasticity can also result in spasm, pain and contracture (permanent deformity), further compounding mobility. Inability to move and lack of independence give rise to activity limitation and participation restriction, leading to poor quality of life (QoL). In some cases, spasticity associated with weakness and lack of voluntary control can lead to adverse health outcomes such as falls and fractures.5 The burden of post-stroke spasticity is high on the stroke survivor’s active function, QoL and also on the carer. Besides the human cost, there is a significant economic cost associated with post-stroke spasticity.6

Spasticity is managed by multidisciplinary rehabilitation team and by oral antispasticity medications such as baclofen, dantrolene, diazepam and clonidine and by blocking nerves with phenol or alcohol. The evidence on the efficacy of oral medications is marginal and their use is associated with adverse effects.7 Botulinum toxin type A is an important adjunctive treatment along with stretching, strengthening exercise and bracing intervention for spasticity.

Botulinum toxin (BT) is a neurotoxin and works by blocking the acetylcholine at the neuromuscular junction weakens the muscle. This is a reversible action which lasts for two to four months8, and the injection has to be repeated. There are three varieties of botulinum toxin type A – onabotulinum toxin or Botox (by Allergan), abobotulinum toxin or Dysport (Ipsen) and incobotulinum toxin or Xeomin (Merz), the first two of which are used widely. A number of studies have shown that the botulinum toxin is safe and effective in reducing focal spasticity.8,9 It has been argued that the botulinum toxin should be the first-line treatment for post-stroke spasticity.10

Botulinum toxin is expensive and the licensed indication in many countries is often restricted to the post-stroke upper limb spasticity.11 There is a number of studies demonstrating a reduction of upper limb spasticity measured by the Modified Ashworth Scale and associated disability with botulinum toxin.12 The effectiveness of the toxin in improving function is less certain – more so in the lower limbs.8 Studies have revealed strong evidence that the BT in the lower limb reduces spasticity. There have not been many randomized controlled trials (RCTs) in the lower limb showing improvement in lower limb functioning such as gait (velocity and/or distance) and improving the QoL. This may be the reason the toxin is still not approved by the pharmaceutical benefit scheme for use in the lower limb in many countries including Australia. A systematic review and meta-analysis revealed that use of BT was associated with a small but statistically significant increase in gait velocity.3 Since then, some RCTs have been carried out with BT in lower limb. From a stroke survivor’s perspective, the ability to walk remains one of the most important goals. Botulinum toxin is also useful for passive functions such as hygiene, preventing contracture and lessening the carer’s burden and in combination with physiotherapy is found to reduce the economic cost in patients with post-stroke spasticity.6 There is a recent systematic review and meta-analysis using on the efficacy of botulinum toxin type A for improving activity restriction and QoL of patients using the GRADE approach.13 This systematic review included RCTs comprising a heterogeneous group of patients with spasticity in upper or lower limb from different causes and was not specific to post stroke lower limb spasticity. Currently, no systematic review is available synthesizing evidence from RCTs focusing on the efficacy of botulinum toxin in improving gait and walking distance and QoL among post-stroke patients with lower limb spasticity.

Hence, the present systematic review aims to synthesize and evaluate the current best available evidence, drawn from RCTs, on the effectiveness of botulinum toxin type A therapy on gait velocity, walking distance and QoL, specifically in adult post-stroke patients with lower limb spasticity. The studies to be included in this review will not be restrictive of the injection technique or dosage of botulinum toxin A used to enable a comprehensive assessment of the effectiveness of the treatment. Findings from the present review will serve to inform the usefulness of botulinum toxin type A in improving the functional outcomes of patients with post-stroke lower limb spasticity over the course of rehabilitation.

Continue —> Effectiveness of botulinum toxin type A on gait and quality… : JBI Database of Systematic Reviews and Implementation Reports

, , , , , , , ,

Leave a comment

[Researh Report] Growth Hormone Deficiency after Traumatic Brain Injury: improvement in quality of life with GH therapy – WEB SITE

Objective: Prevalence of growth hormone (GH) deficiency (GHD) caused by traumatic brain injury (TBI) is highly variable. Short-term studies show improvement in quality of life (QoL) during GH replacement (GHR), but long-term data are lacking. This study aimed to analyse the clinical characteristics of post traumatic hypopituitarism and the QoL effects of long-term GHR.

Design/Methods: KIMS (Pfizer International Metabolic Database) patients with GHD caused by TBI and by non-functioning pituitary adenoma (NFPA) were compared regarding: clinical characteristics at baseline and 1-year of GHR, and QoL response up to 8-years of GHR (QoL-AGHDA total scores and dimensions) in relation to country-specific norms.

Results: TBI patients compared to NFPA patients: were younger, diagnosed with GHD 2.4 years later after primary disease onset (p<0.0001), had a higher incidence of isolated GHD, higher GH peak, a more favourable metabolic profile and worse QoL, were shorter by 0.9 cm (1.8 cm when corrected for age and gender; p=0.004) and received higher GH dose (mean difference: 0.04 mg/day p=0.006). In TBI patients, 1-year improvement in QoL, was greater than in NFPA (change in QoL-AGHDA score 5.0 vs. 3.5, respectively, p=0.04) and was sustained over 8-years. In TBI patients, socialisation normalised after 1 year of GHR, self-confidence and tenseness after 6 years and no normalisation of tiredness and memory was observed. Conclusion: Compared to NFPA, TBI patients presented biochemically with less severe hypopituitarism and worse QoL scores. GHR achieved clinically relevant, long-term benefit in QoL.

via Traumatic Brain Injury Resource Guide – Research Reports – Growth Hormone Deficiency after Traumatic Brain Injury: improvement in quality of life with GH therapy.

, , , , ,

Leave a comment

[ARTICLE] Abstract – Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke

Stroke can be a source of significant upper extremity dysfunction and affect the quality of life (QoL) in survivors. In this context, novel rehabilitation approaches employing robotic rehabilitation devices combined with brain-machine interfaces can greatly help in expediting functional recovery in these individuals by actively engaging the user during therapy. However, optimal training conditions and parameters for these novel therapeutic systems are still unknown. Here, we present preliminary findings demonstrating successful movement intent detection from scalp electroencephalography (EEG) during robotic rehabilitation using the MAHI Exo-II in an individual with hemiparesis following stroke. These findings have strong clinical implications for the development of closed-loop brain-machine interfaces to robotic rehabilitation systems.

via IEEE Xplore Abstract – Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for str….

, , , , , ,

Leave a comment

%d bloggers like this: