Posts Tagged quality of life

[ARTICLE] Enhancing epilepsy self-management and quality of life for adults with epilepsy with varying social and educational backgrounds using PAUSE to Learn Your Epilepsy – Full Text

Highlights

•PAUSE is a personalized epilepsy self-management (SM) education program.

•PAUSE was implemented in diverse and mostly underserved adults with epilepsy.

•Self-efficacy, frequency of SM behaviors, and QOL significantly improved over time.

•Personal negative impact of epilepsy significantly reduced over time.

•Greater improvement was seen in those with lower scores at baseline.

Abstract

Purpose

People with epilepsy (PWE) come from a wide variety of social backgrounds and educational skillsets, making self-management (SM) education for improving their condition challenging. Here, we evaluated whether a mobile technology-based personalized epilepsy SM education intervention, PAUSE to Learn Your Epilepsy (PAUSE), improves SM measures such as self-efficacy, epilepsy SM behaviors, epilepsy outcome expectations, quality of life (QOL), and personal impact of epilepsy in adults with epilepsy.

Methods

Recruitment for the PAUSE study occurred from October 2015 to March 2019. Ninety-one PWE were educated using an Internet-enabled computer tablet application that downloads custom, patient-specific educational programs from Epilepsy.com. Validated self-reported questionnaires were used for outcome measures. Participants were assessed at baseline (T0), the first follow-up at completion of the PWE-paced 8–12-week SM education intervention (T1), and the second follow-up at least 3 months after the first follow-up (T2). Multiple linear regression was used to assess within-subject significant changes in outcome measures between these time points.

Results

The study population was diverse and included individuals with a wide variety of SM educational needs and abilities. The median time for the first follow-up assessment (T1) was approximately 4 months following the baseline (T0) and 8 months following baseline for the second follow-up assessment (T2). Participants showed significant improvement in all SM behaviors, self-efficacy, outcome expectancy, QOL, and personal impact of epilepsy measures from T0 to T1. Participants who scored lower at baseline tended to show greater improvement at T1. Similarly, results showed that participant improvement was sustained in the majority of SM measures from T1 to T2.

Conclusion

This study demonstrated that a mobile technology-based personalized SM intervention is feasible to implement. The results provide evidence that epilepsy SM behavior and practices, QOL, outcome expectation for epilepsy treatment and management, self-efficacy, and outcome expectation and impact of epilepsy significantly improve following a personalized SM education intervention. This underscores a greater need for a pragmatic trial to test the effectiveness of personalized SM education, such as PAUSE to Learn Your Epilepsy, in broader settings specifically for the unique needs of the hard-to-reach and hard-to-treat population of PWE.

1. Introduction

Epilepsy, characterized by spontaneous recurrent seizures with unpredictable frequency, is a common and complex neurological disorder that affects the health and quality of life (QOL) of people with epilepsy (PWE) [1]. It is the fourth most common chronic neurological disorder after migraines, Alzheimer’s disease, and Parkinson’s disease in terms of 1-year prevalence per 1000 in the general population [2]. In 2015, approximately 1.2% of American adults reported living with epilepsy; 68.5% had seen a neurologist or epilepsy specialist; 93% were taking antiseizure medication (ASM), and, among those taking medication to control seizures, only 42.4% were seizure-free in the past year [3]. Epilepsy, especially with uncontrolled seizures, poses an immense burden to the people who have it, caregivers, and the society due to a number of factors including associated developmental, cognitive, and psychiatric comorbidities; ASM side effects; higher injury and mortality rates; poorer QOL; and increased financial burden. An estimated 3.0% of global disability-adjusted life years (DALYs) were from neurological disorders in 2010, a quarter of which were from epilepsy; epilepsy was the second-most burdensome chronic neurologic disorder worldwide in terms of DALYs [4].

Self-management (SM) education has shown to improve SM skills & behaviors and QOL in many chronic diseases including heart disease, diabetes, asthma, and arthritis [5,6]. Barlow defines self-management as an individual’s ability to manage the symptoms, treatments, physical and psychological consequences, and life style changes inherent in living with a chronic condition [7]. However, successful SM requires sufficient knowledge of the condition, its treatment, and necessary skills to perform SM activities. Like other chronic conditions, day-to-day management of epilepsy shifts from healthcare professionals to PWE. Epilepsy care demands active involvement of PWE in keeping up with the health effects of epilepsy and coping with social (e.g., family/friends, stigma, hobbies), health (e.g., seizure response/tracking, comorbidities such as depression/anxiety, sleep, safety, health literacy), employment (e.g., transportation, disability, absenteeism), and economic (e.g., cost of healthcare and medication) challenges. One can only self-manage their disease if they have the tools to do so, including knowledge, access to information relevant to their specific healthcare needs, and the ability to carry out the SM tasks needed for their condition. Evidence shows that many PWE are not knowledgeable about their disorder or often not educated about the risks of epilepsy, injury, and mortality [1,8]. Education needs also vary between individuals and subgroups of PWE. Women, in particular, may seek information on bone health and the effect of ASM on pregnancy or contraception, while older adults’ priorities may relate to fall safety and interactions of ASM with other medications. Existing evidence also reveals that, while patients with chronic diseases are willing to receive SM education materials, perceived information overload (i.e., too much or complex information) negatively influences their usage willingness [9]. Patients with low health literacy are even more susceptible to information overload [10]. The Institute of Medicine recognized SM education gaps for PWE and recommended (Recommendation 9) in its 2012 report, “Epilepsy Across the Spectrum: Promoting Health and Understanding,” to improve and expand educational opportunities for PWE and their families, as well as to ensure that all PWE and their families have access to accurate, clearly communicated educational materials and information [1].

Several studies have reported contradictory results after examining the efficacy of SM education interventions in improving PWE’s knowledge and understanding of epilepsy and QOL. The Modular Service Package Epilepsy study (MOSES) reported significant improvements in ASM tolerability, epilepsy knowledge, coping with epilepsy, and seizure frequency after 6 months following a 2-day SM education program [11]. Self-management education for people with poorly controlled epilepsy [SMILE (UK)] adapted MOSES for use in the United Kingdom and did not find the 2-day course to be effective in improving QOL or secondary outcome measures (anxiety and depression), after 12 months [12]. Though both MOSES and SMILE were randomized control trials (RCTs), MOSES included all adults with epilepsy whereas SMILE included only adults with chronic epilepsy who had two or more seizures in the prior 12 months. Another RCT compared the effectiveness of a multicomponent SM intervention consisting of five weekly, 2-hour group sessions each followed by a 2-hour group session after three weeks with usual care; they found no difference in measures of self-efficacy, though did find improvements in some epilepsy QOL domains and decreases in measures of ASM side effects [13]. Other studies examining the efficacy of in-person, group-based, online or phone/internet SM interventions, including the Centers for Disease Control and Prevention-supported Managing Epilepsy Well (MEW) network programs, did show improvement in epilepsy SM and QOL [[14][15][16][17][18]].

In addition to existing group-based programs, which require permission to use and specialized training, there is a greater need for patient-centered and patient-specific individualized education interventions for epilepsy SM that are publicly available, cost-effective, and easily disseminated to clinics or in community. The PAUSE to Learn Your Epilepsy (hereafter referred to as “PAUSE”), a MEW network collaboration center, was developed and implemented to address the needs of all PWE, especially those in underserved populations. This program uses publicly available education information from the Epilepsy Foundation (EF) website, epilepsy.com, linked to a mobile technology-based PAUSE application to provide patient-centered personalized epilepsy SM lesson plan to PWE. Detailed information about PAUSE including study design, recruitment, intervention, and assessments has been published previously [19,20]. We reported significantly lower epilepsy SM practices and behaviors among PWE from an underserved population as compared to all PWE. In this paper, we sought to determine whether the PAUSE intervention significantly improves self-efficacy, SM behavior & skills, QOL, personal impact of epilepsy, and epilepsy outcome expectancies over time in adults with epilepsy. We also assessed whether perceived depression symptoms influence longitudinal changes in SM measures following the PAUSE intervention.[…]

Continue

, , , , , , ,

Leave a comment

[Abstract] Comparison of the effects of and usability of active and active-assistive rehabilitation robots for the upper extremity function among patients with stroke: a single-blinded randomized controlled pilot study – Full Text PDF

Abstract

Background: Robotic rehabilitation of stroke survivors with upper extremity dysfunction yields different outcomes depending on the robot type. Considering that excessive dependence on assistive force provided by robots may interfere with the patient’s active learning and participation, we hypothesized that the use of an active-assistive robot does not lead to a more meaningful difference with respect to upper extremity rehabilitation than the use of an active robot. Accordingly, we aimed to evaluate the differences in the clinical and kinematic outcomes between active and active-assistive robotic rehabilitation among stroke survivors.

Methods: In this single-blinded randomized controlled trial, we assigned 20 stroke survivors with upper extremity dysfunction (Medical Research Council scale score, 3 or 4) to the active (ACT) and active-assistive (ACAS) robotic rehabilitation groups in a 1:1 ratio and administered 20 sessions of 30-minute robotic intervention (5 days/week, 4 weeks). The primary (Wolf Motor Function Test [WMFT]-score and -time: measures activity), and secondary (Fugl-Meyer Assessment [FMA] and Stroke Impact Scale [SIS] scores: measure impairment and participation, respectively; kinematic outcomes) outcome measures were determined at baseline, after 2 and 4 weeks of the intervention, and 4 weeks after the end of the intervention. Furthermore, we evaluated the usability of the robotic devices by conducting interviews with the patients, therapists, and physiatrists.

Results: In both the groups, the WMFT-score and -time improved over the course of the intervention. Time had a significant effect on the WMFT-score and -time, FMA-UE, FMA-prox, and SIS-strength; group × time interaction had a significant effect on SIS-function and SIS-social participation (all, p <0.05). The ACT group showed better improvement in participation and smoothness than the ACAS group. In contrast, the ACAS group exhibited better improvement in mean speed.

Conclusions: There were no differences between the two groups regarding the impairment and activity domains. However, the ACT robots were more beneficial than ACAS robots regarding participation and smoothness. Considering the high cost and complexity of ACAS robots, ACT robots may be more suitable for robotic rehabilitation in stroke survivors who can perform voluntary movement.

Source: https://www.researchsquare.com/article/rs-24709/v2?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound


, , , , , , , ,

Leave a comment

[ARTICLE] A combination of multimodal physical exercises in real and virtual environments for individuals after chronic stroke: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Multimodal physical exercises already have well-established benefits for the post-stroke population that influence gait functional capacity, balance, gait, cognition, and quality of life. This type of intervention can be performed in both real and virtual environments. Considering the characteristics of both environments, it is questioned to what extent the combination of interventions in real and virtual environments could result in improvement in post-stroke impairments.

Methods/design

We will conduct a randomized clinical trial with three groups: a real multimodal group (RMG), a virtual multimodal group (VMG), and a combined multimodal group (CMG). It was estimated that we will need a sample of 36 participants (12 per group). RMG individuals will only perform multimodal physical exercises in a real environment two times per week for 60 min per session for 15 weeks. VMG individuals will perform exercises of the same duration over the same time frame but only in a virtual environment. CMG individuals will hold a weekly session in a real environment and another weekly session in virtual environment. The primary outcome measure will be health-related quality of life, evaluated using the Stroke Impact Scale; effects on cognition (Montreal Cognitive Assessment), balance (Berg Balance Scale), mobility (Timed Up & Go), self-selected gait speed (10-meter walk test), and gait functional capacity (6-min walk test) will be investigated as secondary outcome measures. Participants will be evaluated before the beginning of the intervention, immediately after the end of the intervention, and at 1-month follow-up without exercise. If the data meet the assumptions of the parametric analysis, the results will be evaluated by analysis of variance (3 × 3) for the group factor, with repeated measures while taking into account the time factor. The post hoc Tukey test will be used to detect differences (α = 0.05).

Discussion

This study represents the first clinical trial to include three groups considering physical exercise in real and virtual environments, isolated and combined, that counterbalances the intensity and volume of training in all groups. This study also includes a control of progression in all groups along the 15-week intervention. The outcome measures are innovative because, according to International Classification of Functioning, Disability and Health, activity and participation are the targets for effectiveness evaluation.

Background

The diverse impairments observed after a stroke, associated with the reduction of intrinsic motivation and the presence of preexisting or acquired comorbidities, lead to a vicious cycle of decreased activity and increased exercise intolerance. As a consequence, secondary complications, such as reduced cardiorespiratory fitness, muscle atrophy, osteoporosis, and circulation impairment in the lower extremities, may occur and generate greater dependence in the activities of daily living and impact the social interactions of these individuals [1].

Different modalities of physical exercises already have well-established benefits for individuals after chronic stroke, including repercussions for cardiovascular capacity [2], muscle strength [34], balance [56], gait [78], and cognition [9]. In order to maximize the effects of the exercises, there is a tendency to investigate the effects of multimodal protocols. According to Saunders et al. [10], a multimodal protocol refers to interventions based on the combination of physical exercises of different components, such as cardiorespiratory, muscular strength, and flexibility.

Multimodal physical exercises can be performed in both real and virtual reality environments. The interventions performed in real environments are the most commonly used in the clinical context. Characteristics of interventions performed in real environments include a high interactive relationship between the professional and the patient, high ecological validity, the possibility of individual or group applications, not requiring technological resources, and the ability to be applied in the home according to each patient’s needs.

Conversely, virtual reality-based interventions present features such as an environment rich in visual and auditory information with immediate and multisensory feedback [11], real-time simulation of tasks or environments, three-dimensional interactive and immersive experiences, a computerized interface, active and safe patient participation [12], and the ability to provide information with an external focus of attention [1314]. In a systematic review, Laver et al. [15] found that the addition of virtual reality to conventional methods resulted in improved upper limb function. However, they also found insufficient evidence regarding the superiority of virtual reality for promoting walking speed and balance. They were unable to pool results related to cognition, improvement of social participation, and health-related quality of life (HRQoL) because few studies included assessments of cognition and HRQoL to achieve meta-analysis requirements for these outcomes [15]. Therefore, these parameters should be investigated in future studies; in addition, the authors also emphasized the need for training lasting longer than 15 h of intervention and that future studies should set the number of participants screened for eligibility criteria.

Considering the characteristics of both environments, it is questioned to what extent the combination of interventions in the real and virtual environments could result in improvement in post-stroke impairments. There are few studies that have sought to find answers to this question. In the Shin et al. [16] study, the control group performed 1 h of occupational therapy per session, and the experimental group performed 30 min of occupational therapy plus 30 min of virtual reality. The results showed positive effects in both groups, except for the domain related to the limitations due to physical problems measured by the Short Form Health Survey scores, in which experimental group (EG) obtained greater benefits. Rajaratnam et al. [17] found positive results for balance and mobility measurements for the group that performed 40 min of conventional therapy plus 20 min of self-directed virtual reality balance training per session, compared with the control group, which performed 60 min of conventional therapy.

Saposnik and Levin [18] claimed there were few publications regarding the combination of multimodal physical exercises in real and virtual environments. Most of the existing studies did not investigate long-term effects, including follow-up, and added intervention time to the experimental groups, which provided them with an advantage in the total intervention time received. In addition, there is an important diversity in the literature regarding the profile characteristics of individuals with stroke, considering acute, subacute, and chronic patients. Thus, the results found in the previous studies [19,20,21,22,23,24] do not allow consistent conclusions to be made about the effects of the combination of multimodal exercises in real and virtual environments in individuals after chronic stroke.

This study seeks to answer whether the combination of multimodal physical exercises in real and virtual environments could bring additional benefits to the quality of life, cognition, gait, and balance of individuals after chronic stroke. We also intend to clarify the effects of interventions with multimodal physical exercises when performed only in a real environment or only in a virtual environment and to investigate whether the possible effects remain after 1 month without participating in physical exercises.

This study aims to investigate the effects of a protocol of multimodal physical exercises in real and virtual environments for individuals who have survived a stroke.[…]

 

Continue —-> A combination of multimodal physical exercises in real and virtual environments for individuals after chronic stroke: study protocol for a randomized controlled trial | Trials | Full Text

figure2

Virtual reality games selected for the odd-game sessions and individuals’ practice

, , , , , ,

Leave a comment

[ARTICLE] Effects of acquired chronic brain injury on quality of life: A preliminary study in patients with a left or right-sided lesion – Full Text PDF

Highlights

  • Quality of life comprises physical, emotional, cognitive, social, & general health
  • Left hemisphere injured patients are less satisfied with their cognitive function
  • Right hemisphere patients are less satisfied with their physical function
  • Age, education, and lesion size influence perceived quality of life after injury
  • Lesion location may mediate which aspects of quality of life are adversely impacted

Abstract

Objectives

To test the hypothesis that quality of life (QOL) is made up of different components and each of these has different anatomic and demographic contributors.

Design

Questionnaire-based study ;

Setting

Center for Cognitive Neuroscience, University of Pennsylvania

Participants

52 people with chronic brain injury volunteered for the study. After excluding patients with severe communication deficits, bilateral lesions, and incomplete data, 42 patients with focal lesions were included in the final study: 22 patients with left hemisphere injury, LHI (9 females and 13 males; mean age 60.6 years (SD=11.2; Range: 36-83) mean chronicity 11.5 years (SD=4.2)) and 20 patients with right hemisphere injury, RHI (16 females and 4 males; mean age 62.7 years (SD= 12.8; Range: 31-79); mean chronicity 10.1 years (SD=4.3)).

Main Outcome Measures

We administered the RAND36-Item Health Survey (RAND-Version-1.0), Stroke Impact Scale (SIS-Version 3.0), Positive Affect and Negative Affect Scale (PANAS) and Distress Thermometer (DT) to measure QOL in LHI and RHI patients. Exploratory Factor Analysis (EFA) with principal component method reduced these measures to five factors, roughly categorized as— 1. Physical functioning, 2.General health, 3. Emotional health, 4. Social functioning, and 5. Cognitive functioning. Exploratory analyses attempted to relate these factor scores to demographic variables, neuroanatomical data, and neuropsychological measures.

Results

Physical functioning was the biggest contributor to reduced QOL, explaining 32.5%, of the variance. Older age, less education, and larger lesion size predicted poorer physical functioning (p < .001). Age also affected emotional health. (p=.019). Younger patients reported poorer emotional health than older patients. LHI patients reported less satisfaction with their cognitive functioning (p=.009) and RHI patients with their physical functioning (p=.06). Exploratory neuroanatomical analyses hinted at brain areas that may be associated with the perception of disability in each QOL component.

Conclusions

QOL is comprised of five components. Clinical and demographic factors appear to differentially impact these aspects of patients’ perceived quality of life, providing hypotheses for further testing and suggesting potential relationships for therapeutic interventions to consider.

Download full text in PDF

via Effects of acquired chronic brain injury on quality of life: A preliminary study in patients with a left or right-sided lesion – ScienceDirect

, , , , , , ,

Leave a comment

[Abstract] Water-Based Exercise on Functioning and Quality of Life in Poststroke Persons: A Systematic Review and Meta-Analysis

Abstract

OBJECTIVE:

To investigate the effects of water-based exercise on functioning and quality of life in poststroke persons.

DATA SOURCES:

We searched the following electronic database: MEDLINE, PeDro, Scielo, and the Cochrane Central Register of Controlled Trials up to September 2018 Study Selection: Only randomized controlled trials were included. Two review authors screened the titles and abstracts and selected the trials independently.

DATA EXTRACTION:

Two review authors independently extracted data of the included trials, using standard data-extraction model. We analyzed the pooled results using weighted mean differences, and standardized mean difference and 95% confidence intervals (CIs) were calculated.

DATA SYNTHESIS:

Twenty-four studies met the study criteria, but only 15 studies were included on meta-analyses. The studies presented moderate methodological quality, due to the lack of blinding of subjects and therapists and the nonperformance of the intention-to-treat analysis. Water-based exercise compared with land exercise had a positive impact on: muscle strength balance gait speed and mobility aerobic capacity and functional reach. Combined water-based exercise and land exercise was more effective than land exercise for improving balance, gait speed, and functional reach. The meta-analysis showed significant improvement in role limitations due to physical functioning and emotional problems, in vitality general mental health, social functioning, and bodily pain for participants in the water-based exercise and land exercise group versus land exercise group.

CONCLUSIONS:

Water-based exercise may improve muscle strength, balance, mobility, aerobic capacity, functional reach, joint position sense, and quality of life in poststroke persons and could be considered for inclusion in rehabilitation programs.

via Water-Based Exercise on Functioning and Quality of Life in Poststroke Persons: A Systematic Review and Meta-Analysis. – PubMed – NCBI

, , , , , , ,

Leave a comment

[ARTICLE] Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study – Full Text

Abstract

Background

Virtual reality (VR)-based rehabilitation is considered a beneficial therapeutic option for stroke rehabilitation. This pilot study assessed the clinical feasibility of a newly developed VR-based planar motion exercise apparatus (Rapael Smart Board™ [SB]; Neofect Inc., Yong-in, Korea) for the upper extremities as an intervention and assessment tool.

Methods

This single-blinded, randomized, controlled trial included 26 stroke survivors. Patients were randomized to the intervention group (SB group) or control (CON) group. During one session, patients in the SB group completed 30 min of intervention using the SB and an additional 30 min of standard occupational therapy; however, those in the CON group completed the same amount of conventional occupational therapy. The primary outcome was the change in the Fugl–Meyer assessment (FMA) score, and the secondary outcomes were changes in the Wolf motor function test (WMFT) score, active range of motion (AROM) of the proximal upper extremities, modified Barthel index (MBI), and Stroke Impact Scale (SIS) score. A within-group analysis was performed using the Wilcoxon signed-rank test, and a between-group analysis was performed using a repeated measures analysis of covariance. Additionally, correlations between SB assessment data and clinical scale scores were analyzed by repeated measures correlation. Assessments were performed three times (baseline, immediately after intervention, and 1 month after intervention).

Results

All functional outcome measures (FMA, WMFT, and MBI) showed significant improvements (p < 0.05) in the SB and CON groups. AROM showed greater improvements in the SB group, especially regarding shoulder abduction and internal rotation. There was a significant effect of time × group interactions for the SIS overall score (p = 0.038). Some parameters of the SB assessment, such as the explored area ratio, mean reaching distance, and smoothness, were significantly associated with clinical upper limb functional measurements with moderate correlation coefficients.

Conclusions

The SB was available for improving upper limb function and health-related quality of life and useful for assessing upper limb ability in stroke survivors.

Background

Virtual reality (VR)-based rehabilitation is being increasingly used for post-stroke rehabilitation []. A recent systematic review mentioned that VR is an emerging treatment option for upper limb rehabilitation among stroke patients []. The benefits of VR include real-time feedback, easy adaptability, and the provision of safe environments that mimic the real world []. The gaming property of VR allows patients to experience fun, active participation, positive emotions, and engagement []. Therefore, rehabilitation with VR enables more intense and repetitive training, which is important for rehabilitation and the promotion of neural plasticity [].

VR systems commonly used in the entertainment industry, such as Wii and Kinect, could be used for rehabilitation. However, these game-like systems are only applicable to patients with muscle strength above a certain value, thus limiting their use by more affected patients. Therefore, adjunct therapies, such as functional electrical stimulation and robotics, have been combined with these systems []. However, those adjunct therapies are costly and require continuous monitoring by healthcare professionals because of safety concerns []. Therefore, their use is restricted to clinical settings, and they are not actively used for telerehabilitation or home-based rehabilitation. A non-motorized or non-assisted device is required for more active use of VR for rehabilitation.

We developed the Rapael Smart Board™ (SB; Neofect Inc., Yong-in, Korea), which is a VR-based rehabilitation device incorporating planar motion exercise that does not require additional gravity compensation. This two-dimensional planar movement with full gravitational support, which lessens the need for antigravity muscle facilitation, allows for much easier participation than three-dimensional movement under gravity. Additionally, it is known to be safe and easy to learn, and it has been shown to improve motor ability with less aggravation of shoulder pain and spasticity; therefore, it is useful to patients with reduced motor ability []. Planar motion exercises provoke less maladaptive compensatory movements. Additionally, the nearly zero friction of the linear guides enable a wide range of repetitive active range of motion (AROM) exercises. Furthermore, the SB adopted Rapael Clinic software that was originally developed for patients with disabilities and has proven efficacy for stroke rehabilitation []. Therefore, the SB, which has multiple advantages because of its hardware and software, might be beneficial for the functional improvement of the upper extremities. Moreover, the SB could have a role as an assessment tool because VR has been reported to be useful for objective kinematic measurements of the upper extremities [].

The present pilot study aimed to assess the availability of this newly developed VR-based rehabilitation device incorporating planar exercises for the upper extremities as an intervention and assessment tool among stroke patients in the chronic phase of recovery. To assess the availability in terms of clinical effectiveness, we compared the effects of an intervention involving the SB and that involving dose-matched occupational therapy (OT) on upper extremity function and health-related quality of life (HRQoL). We also investigated the correlations between kinematic data from the SB and data from clinical scales regarding upper extremity function.

[…]

Continue —>  Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study | SpringerLink

Fig. 1Hardware of the Smart Board. The board and forearm-supported controller. Three linear guides with an H-shape configuration enable two-dimensional planar motion of the handlebar, which is attached to the horizontal linear guide

, , , , , , , , , ,

Leave a comment

[ARTICLE] Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial – Full Text

Abstract

Background

Mirror therapy for stroke patients was reported to be effective in improving upper-extremity motor function and daily life activity performance. In addition, game-based virtual reality can be realized using a gesture recognition (GR) device, and various tasks can be presented. Therefore, this study investigated changes in upper-extremity motor function, quality of life, and neck discomfort when using a GR device for mirror therapy to observe the upper extremities reflected in the mirror.

Material/Methods

A total of 36 subjects with chronic stroke were randomly divided into 3 groups: GR mirror therapy (n=12), conventional mirror therapy (n=12), and control (n=12) groups. The GR therapy group performed 3D motion input device-based mirror therapy, the conventional mirror therapy group underwent general mirror therapy, and the control group underwent sham therapy. Each group underwent 15 (30 min/d) intervention sessions (3 d/wk for 5 weeks). All subjects were assessed by manual function test, neck discomfort score, and Short-Form 8 in pre- and post-test.

Results

Upper-extremity function, depression, and quality of life in the GR mirror therapy group were significantly better than in the control group. The changes of neck discomfort in the conventional mirror therapy and control groups were significantly greater than in the GR mirror therapy group.

Conclusions

We found that GR device-based mirror therapy is an intervention that improves upper-extremity function, neck discomfort, and quality of life in patients with chronic stroke.

Background

In patients with acute stroke that occurred >6 months previously, 85% have upper-limb disorders, and 55% to 75% have upper-limb disorders []. The upper-limb movement function is decreased due to weakening of upper-limb muscles, which is primarily caused by changes in the central nervous system and secondarily by weakness due to inactivity and reduced activity [,].

Activities of daily living are limited due to body dysfunction, and most stroke patients have limited social interaction; these disorders reduce the quality of life []. In addition, stroke patients may experience depression due to reduced motivation []. Depression results in loss of interest and joy, anxiety, fear, hostility, sadness, and anger, which negatively affect functional recovery and rehabilitation in stroke patients [].

Constraint-induced movement therapy, action observation training, and mirror therapy have been recently studied as therapies for upper-extremity motor function []. These interventions are used to increase the use of paralyzed limbs to overcome disuse syndromes, observe and imitate movement, and change the neural network involved in movement. Providing various tasks in upper-extremity rehabilitation is necessary and virtual reality is used as a method for providing various tasks [,].

Interventions using virtual reality require cognitive factors, such as judgment and memory, as the task progresses. It can use visual and auditory stimuli, and can induce interest and motivation, helping stroke patients to be mentally stable and motivated []. Gesture recognition (GR) is a topic that studies the reading of these movements using algorithms. These GR algorithms mainly focus on the movement of arm, hands, eyes, legs, and other body parts. The main idea is to capture body movements using capture devices and send the acquired data to a computer []. A remarkable example is shown in physical rehabilitation, where the low-cost hardware and algorithms accomplish outstanding results in therapy of patients with mobility issues. A 3D motion input device is required for upper-body rehabilitation in virtual reality. The Leap motion controller, a GR input device, has been recently released, which monitors hand and finger movements and reflects them on the monitor []. In addition, game-based virtual reality can be realized using a GR device, and various tasks can be presented.

Mirror therapy has been used as a therapeutic intervention for phantom pain in amputees. The painful and paralyzed body parts are covered with a mirror. The mirror is placed in the center of the body, and the movement of the paralyzed body is viewed through the mirror. The patient has a visual illusion that the paralyzed side is normally moving []. Mirror therapy for stroke patients was reported to be effective in upper-extremity motor function and daily life activity performance []. However, conventional mirror therapy methods require high concentration and can become tedious, making active participation difficult []. In addition, conventional mirror therapy differs from the actual situation wherein a mirror positioned at the center of the body should be viewed with the head sideways. Because patients are in a suboptimal posture, they may have neck discomfort after mirror therapy. The body has muscle strength disproportion when maintaining poor posture for a long time. This results in inadequate tension on adjacent muscles and joints, resulting in movement restriction, reduced flexibility, pain, and changes in bone and soft tissue [].

This study investigated the effect on upper-extremity motor function, quality of life, and neck discomfort by using GR device mirror therapy in patients with chronic stroke, and evaluated the efficacy of this technique.

[…]

 

Continue —>  Mirror Therapy Using Gesture Recognition for Upper Limb Function, Neck Discomfort, and Quality of Life After Chronic Stroke: A Single-Blind Randomized Controlled Trial

An external file that holds a picture, illustration, etc.Object name is medscimonit-25-3271-g002.jpg

Figure 2
(A) Gesture recognition mirror therapy group, (B) Conventional mirror therapy, (C) Control group.

, , , , , , , , ,

Leave a comment

[Abstract] The Work Disability Functional Assessment Battery (WD-FAB) – Physical Medicine and Rehabilitation Clinics

Abstract

Accuracy in measuring function related to one’s ability to work is central to public confidence in a work disability benefits system. In the United States, national disability programs are challenged to adjudicate millions of work disability claims each year in a timely and accurate manner. The Work Disability Functional Assessment Battery (WD-FAB) was developed to provide work disability agencies and other interested parties a comprehensive and efficient approach to profiling a person’s function related to their ability to work. The WD-FAB is grounded by the International Classification of Functioning, Disability, and Health conceptual framework.

 

via The Work Disability Functional Assessment Battery (WD-FAB) – Physical Medicine and Rehabilitation Clinics

, , , , , , ,

Leave a comment

[ARTICLE] Levetiracetam for epilepsy: an evidence map of efficacy, safety and economic profiles – Full Text

Objective: To evaluate the efficacy, safety and economics of levetiracetam (LEV) for epilepsy.
Materials and methods: PubMed, Scopus, the Cochrane Library, OpenGrey.eu and ClinicalTrials.gov were searched for systematic reviews (SRs), meta-analyses, randomized controlled trials (RCTs), observational studies, case reports and economic studies published from January 2007 to April 2018. We used a bubble plot to graphically display information of included studies and conducted meta-analyses to quantitatively synthesize the evidence.
Results: A total of 14,803 records were obtained. We included 30 SRs/meta-analyses, 34 RCTs, 18 observational studies, 58 case reports and 2 economic studies after the screening process. The included SRs enrolled patients with pediatric epilepsy, epilepsy in pregnancy, focal epilepsy, generalized epilepsy and refractory focal epilepsy. Meta-analysis of the included RCTs indicated that LEV was as effective as carbamazepine (CBZ; treatment for 6 months: 58.9% vs 64.8%, OR=0.76, 95% CI: 0.50–1.16; 12 months: 54.9% vs 55.5%, OR=1.24, 95% CI: 0.79–1.93), oxcarbazepine (57.7% vs 59.8%, OR=1.34, 95% CI: 0.34–5.23), phenobarbital (50.0% vs 50.9%, OR=1.20, 95% CI: 0.51–2.82) and lamotrigine (LTG; 61.5% vs 57.7%, OR=1.22, 95% CI: 0.90–1.66). SRs and observational studies indicated a low malformation rate and intrauterine death rate for pregnant women, as well as low risk of cognitive side effects. But psychiatric and behavioral side effects could not be ruled out. LEV decreased discontinuation due to adverse events compared with CBZ (OR=0.52, 95% CI: 0.41–0.65), while no difference was found when LEV was compared with placebo and LTG. Two cost-effectiveness evaluations for refractory epilepsy with decision-tree model showed US$ 76.18 per seizure-free day gained in Canada and US$ 44 per seizure-free day gained in Korea.


Conclusion: 
LEV is as effective as CBZ, oxcarbazepine, phenobarbital and LTG and has an advantage for pregnant women and in cognitive functions. Limited evidence supports its cost-effectiveness

Background

Epilepsy ranks fourth after tension-type headache, migraine and Alzheimer disease in the world’s neurological disorders burden.1 A systematic review (SR) and meta-analysis of international studies reported that the point prevalence of active epilepsy was 6.38 per 1,000 people, while the lifetime prevalence was 7.60 per 1,000 people. The annual cumulative incidence of epilepsy was 67.77 per 100,000 people, while the incidence rate was 61.44 per 100,000 person-years.2 As a fairly common clinical condition affecting all ages and requiring long-term, sometimes lifelong, treatment, epilepsy incurs high health care costs for the society.1 In 2010, the total annual cost for epilepsy was 13.8 billion and the total cost per patient was €5,221 in Europe.3 Meanwhile, in the USA, epilepsy-related costs ranged from $1,022 to $19,749 per person annually.4 What is more, drug-refractory epilepsy was a major cost driver,5 with main costs from anticonvulsants, hospitalization and early retirement.6

Currently, antiepileptic drugs (AEDs) are the main treatment method for epilepsy patients, and it was reported that approximately two-thirds of epileptic seizures were controlled by AEDs.7 Conventional AEDs such as carbamazepine (CBZ) and sodium valproate (VPA) have been proven to have good therapeutic effects and low treatment cost. However, some adverse events (AEs) related to these drugs, such as Stevens–Johnson syndrome, menstrual disorder and memory deterioration seriously affect the tolerance and compliance of patients. Compared with conventional AEDs, new AEDs have the potential to be safer, but also more expensive.8

Levetiracetam (LEV) is a novel AED that has been approved as an adjunctive therapy for adults with focal epilepsy since 1999 in the US. In 2006, it was licensed as monotherapy for adults and adolescents above 16 years of age with newly diagnosed focal-onset seizures with or without secondary generalization in Europe. Also, it has been indicated as an adjunctive therapy for partial-onset seizures in patients above 4 years of age in China since 2007. Although the precise mechanism of LEV is still unclear, current researches suggest that its pharmacological mechanism is different from those of other AEDs. It may bind to the synaptic vesicle protein 2A (SV2A), which presents on the synaptic vesicles and some neuroendocrine cells. SV2A may participate in the exocytosis of synaptic vesicles and regulate the release of neurotransmitters, especially the release of excitatory amino acids, and thus depress the epilepsy discharge.9,10 Other possible mechanisms of LEV include the following: selective inhibition of voltage-dependent N-type calcium channels in hippocampal pyramidal cells and reduction of the negative allosteric agents’ inhibition, such as zinc ions and B-carbolines, on glycine and γ-aminobutyric acid neurons, which results in indirectly increasing central nervous system inhibition.11

LEV is almost completely absorbed after oral administration and the absorption is unaffected by food. The bioavailability is nearly 100% and the steady-state concentrations are achieved in 2 days if LEV is taken twice daily. Sixty-six percent of LEV is renally excreted unchanged and its major metabolic pathway is enzymatic hydrolysis of the acetamide group, which is independent of liver CYP/CYP450; so, no clinically meaningful drug–drug interactions with other AEDs were found.12 One published SR of LEV suggested LEV has an equal efficacy compared with conventional AEDs and it is well tolerated for long-term therapy without significant effect on the immune system.13 But in recent years, apart from the most frequent AEs of LEV, such as nausea, gastrointestinal symptoms, dizziness, irritability and aggressive behavior, some rare AEs of LEV have been reported, including eosinophilic pneumonia, rhabdomyolysis, thrombocytopenia, elevated kinase and reduced sperm quality.1417

Thus, we conducted a mapping review to evaluate the efficacy, safety and economic profiles of LEV compared with all other AEDs for epilepsy, to provide evidence-based information for the rational use of LEV and research agendas.

[…]

 

Continue —>  [Full text] Levetiracetam for epilepsy: an evidence map of efficacy, safety and ec | NDT

, , , , , , , , , ,

Leave a comment

[Abstract] Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial

Background. Task-oriented therapies have been developed to address significant upper extremity disability that persists after stroke. Yet, the extent of and approach to rehabilitation and recovery remains unsatisfactory to many.

Objective. To compare a skill-directed investigational intervention with usual care treatment for body functions and structures, activities, participation, and quality of life outcomes.

Methods. On average, 46 days poststroke, 361 patients were randomized to 1 of 3 outpatient therapy groups: a patient-centered Accelerated Skill Acquisition Program (ASAP), dose-equivalent usual occupational therapy (DEUCC), or usual therapy (UCC). Outcomes were taken at baseline, posttreatment, 6 months, and 1 year after randomization. Longitudinal mixed effect models compared group differences in poststroke improvement during treatment and follow-up phases.

Results. Across all groups, most improvement occurred during the treatment phase, followed by change more slowly during follow-up. Compared with DEUCC and UCC, ASAP group gains were greater during treatment for Stroke Impact Scale Hand, Strength, Mobility, Physical Function, and Participation scores, self-efficacy, perceived health, reintegration, patient-centeredness, and quality of life outcomes. ASAP participants reported higher Motor Activity Log–28 Quality of Movement than UCC posttreatment and perceived greater study-related improvements in quality of life. By end of study, all groups reached similar levels with only limited group differences.

Conclusions. Customized task-oriented training can be implemented to accelerate gains across a full spectrum of patient-reported outcomes. While group differences for most outcomes disappeared at 1 year, ASAP participants achieved these outcomes on average 8 months earlier (ClinicalTrials.gov: Interdisciplinary Comprehensive Arm Rehabilitation Evaluation [ICARE] Stroke Initiative, at www.ClinicalTrials.gov/ClinicalTrials.gov. Identifier: NCT00871715).

via Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial – Rebecca Lewthwaite, Carolee J. Winstein, Christianne J. Lane, Sarah Blanton, Burl R. Wagenheim, Monica A. Nelsen, Alexander W. Dromerick, Steven L. Wolf, 2018

, , , , , ,

Leave a comment

%d bloggers like this: