Posts Tagged rehabilitation

[Abstract] Association between postural patterns of spastic upper extremity and functional independence after TBI and stroke

Abstract

BACKGROUND:Spastic hypertonia of the upper limb after stroke or traumatic brain injuries (TBI) is a prevalent clinical sign causing abnormal postures and movement patterns due to hyperexcitability of the upper motor neurons and rheological alterations in the affected muscles. These alterations limit the use of the upper limb, restricting its functional activities and affecting the individual’s quality of life and social participation.

OBJECTIVE:To determine the association between spastic patterns of the upper limb, wrist, fingers and thumb, and independence in everyday activities after a stroke or TBI.

METHODS:The design is a cross-sectional descriptive and correlational study. The sample consisted of 206 individuals who complied with the eligibility criteria and signed an informed consent. Clinical evaluation was carried out, including determination of the postural pattern of the upper extremity according to Hefter’s taxonomy and postural pattern classification of the wrist, fingers and thumb. Functional independence was evaluated using the Functional Independence Measure (FIM) and the Barthel Index (BI).

RESULTS:Univariate between-subject ANOVAs were used to examine associations of the four pattern classifications with the two independence measures, FIM and BI. Results indicate that Pattern I of Hefter’s upper limb taxonomy is associated with lesser functional independence according to FIM and BI mean scores.

CONCLUSIONS:The postural pattern of the upper limb after TBI or stroke is related to the patient’s functional independence. Specifically, Pattern I tends to co-occur with low independence.

Source: https://content.iospress.com/articles/neurorehabilitation/nre203042

, , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Move-IT: A Virtual Reality Game for Upper Limb Stroke Rehabilitation Patients – Conference paper

Abstract

Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of Non-immersive Virtual Reality (VR) based rehabilitation systems, however, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the development and evaluation of “Move-IT” game designed for domestic upper limb stroke patients. The game incorporates the use of Oculus Rift Head Mounted Display (HMD) and the Leap Motion hand tracker. A user study of five upper limb stroke patients was performed to evaluate the application. The results showed that the participants were pleased with the system, enjoyed the game and found it was exciting and easy to play. Moreover, all the participants agreed that the game was very motivating to perform rehabilitation exercises.

References

  1. 1.“What is stroke?” Stroke.org, 16 July 2014. http://www.stroke.org/understand-stroke/what-stroke. Accessed 20 May 2020
  2. 2.Burke, J.: Games For Upper-limb Stroke Rehabilitation (Seminar). University of Ulster, Northern Ireland, 29 March 2010Google Scholar
  3. 3.A stroke occurs when the brain is damaged due to lack of blood supply. http://www.brainandnerves.com/uk/blood-vessels-of-the-brain/stroke/. Accessed 20 May 2020
  4. 4.Khujah, A.: Stroke Rehabilitation, 17 February 2012. http://archive.aawsat.com/details.asp?section=15&article=664001&issueno=12134#.WHQSn1N97X5. Accessed 20 May 2020
  5. 5.WHO|The world health report 2002 – Reducing Risks, Promoting Healthy Life, WHO. http://www.who.int/whr/2002/en/. Accessed 20 May 2020
  6. 6.Alhazani, 100 stroke cases accure in SA daily, 13 September 2013. http://www.alarabiya.net/ar/saudi-today/2013/09/17/السعودية-تسجل-100-اصابة-بالسكتة-الدماغية-يوميا.html. Accessed 20 May 2020
  7. 7.Alsinani, F.: 6000 of stroke cases accure in Kingdom of Saudi Arabia yearly, Riyad newspaper, 14 Apr 2005. http://www.alriyadh.com/56594. Accessed 23 May 2020
  8. 8.Gunasekera, W., Bendall, J.: Rehabilitation of neurologically injured patients. In: Moore, A.J., Newell, D.W. (eds.) Neurosurgery. Springer Specialist Surgery Series, pp. 407–421. Springer, London (2005).  https://doi.org/10.1007/1-84628-051-6_23
  9. 9.Burke, J.W., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Serious games for upper limb rehabilitation following stroke. In: Proceedings of the 2009 Conference in Games and Virtual Worlds for Serious Applications, Washington, DC, USA, 2009, pp. 103–110 (2009)Google Scholar
  10. 10.Rego, P.A., Moreira, P., Reis, L.: Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2010)Google Scholar
  11. 11.Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. no. 9, p. CD008349, September 2011Google Scholar
  12. 12.AlMousa, M., Al-Khalifa, H.S., AlSobayel, H.: Requirements elicitation and prototyping of a fully immersive virtual reality gaming system for upper limb stroke rehabilitation in Saudi Arabia. Mobile Information Systems (2017). https://www.hindawi.com/journals/misy/2017/7507940/. Accessed 23 May 2020
  13. 13.Grimm, F., Gharabaghi, A.: Closed-loop neuroprosthesis for reach-to-grasp assistance: combining adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Front. Neurosci. 10, 284 (2016)Google Scholar
  14. 14.Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J. (eds.): Serious Games, Foundations, Concepts and Practice. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40612-1CrossRefGoogle Scholar
  15. 15.Yagv, B.: Overview of virtual reality technologies. In: Presented at the Interactive Multimedia Conference, University of Southampton, United Kingdom (2013)Google Scholar

Source: https://link.springer.com/chapter/10.1007/978-3-030-58796-3_23

, , , , , , ,

Leave a comment

[NEWS] B-Temia gains traction with 510(k) clearance for mobility device

Man wearing Keeogo about to climb stairs
Keeogo provides stability and strength to stroke patients with limited mobility. Credit: B-Temia Inc.

September 14, 2020 By Annette Boyle

B-Temia Inc.’s Keeogo mobility device is on the move in the U.S. now that it has received 510(k) clearance from the U.S. FDA. Unlike currently available exoskeletons that move for patients, the Keeogo (keep on going) Dermoskeleton system amplifies signals from patients who can initiate movement but need additional assistance.

“This U.S. market clearance is the biggest milestone of our global regulatory expansion, as the USA is the largest medical device market. It also gives us great confidence for the other regulatory approvals we are currently completing for additional territories,” said B-Temia’s president and CEO Stéphane Bédard.

The U.S. action specifically covers use of the device for stroke patients in rehabilitation settings. “Stroke is just the entry door,” Bédard told BioWorld. “We want to extend U.S. authorization for other indications in the future. We’ve done very well for stroke patients and want to do the same for those with multiple sclerosis, osteoarthritis of the knee, Parkinson’s disease, and partial spinal cord injuries.”

The company also hopes to gain clearance for patients to use the device on a day-to-day basis, not just during rehab sessions. “Keeogo has as its main purpose providing the person the ability to regain their activity on a daily basis walking, shopping, out in the yard. That’s why we invented it,” Bédard added. “We will reach that level in the U.S., but with the FDA, you have to go step-by-step for each indication.”

Keeogo already has much broader authorization in Europe where it received CE mark authorization in December 2019. In the 28 European countries covered by the CE mark, Quebec-based B-Temia can market the system to provide additional strength and stability to users with musculoskeletal weakness or lower limb instability both at home and in clinics. The system has been approved by Health Canada since 2015 for a range of indications as well.

The technology

Keeogo is a lightweight motorized walking assistive device that boosts leg power. Its dermoskeleton technology employs artificial intelligence (AI) to help individuals with impaired mobility walk, run, sit, and climb. Underpinned by a model of human biomechanics and the basics elements of gait, the AI uses additional mathematical equations to intervene properly in the movement.

The AI, housed on a belt worn at the waist, interprets information transmitted by sensors strapped to the leg to understand the user’s intent and then provides the compensation needed so they can achieve their goal. It is unique in that it does not replace an individual’s motion, only augments it. “If you don’t walk, it won’t move,” said Bédard. “It will add its response to your own characteristic speed and cadence and is fully customizable to the specifics of a disease and person. We’re only able to achieve this level of sophistication with AI.”

By augmenting the user’s motions, Keeogo works to help them regain or retain their autonomy and mobility. “When you go in the lab with Keeogo, you extend your range of motion, augment stride length, and increase the biomechanical ability to walk,” explained Bédard. “When you repeat recursive exercises, you build your capacity. You extend what you’ve done in the past– the body has a memory of that – and Keeogo synchronizes the motions, extends the gait, so that day after day you regain capacity.” In Parkinson’s and other degenerative diseases, the system helps patients hold onto their independence and not fall into a pattern of doing less and less as the disease progresses and movement becomes more challenging.

Notably, the system is not tied to an idealized motion. “We’re not trying to perfect the individual’s gait, just to improve it. We want to keep the individual’s natural gait. They will improve themselves as they use the system,” Bédard said.

Aside from its clinical applications, B-Temia also continues to develop its military version of Keeogo, the Onyx exoskeleton, for the U.S. Army. It has worked with Lockheed Martin since 2017 to support soldiers tasked with carrying loads of more than 100 pounds. Under that weight, people naturally change their gait. In addition, the weight puts such pressure on the joints that it often leads to both acute and chronic musculoskeletal injuries.

Future plans

“The approval also confers additional credibility for the corporation that will open a lot of doors in terms of investors, financing, and partnerships,” Bédard said.

He plans to spend the next several weeks determining how to execute properly on commercialization in the U.S. and elsewhere so that the device can be easily acquired by individuals who could benefit. “Our next challenge is to establish a good strategy. There are many options on the table and we want to make sure we choose the right structure, partners and channels.

Source: https://www.bioworld.com/articles/497746-b-temia-gains-traction-with-510k-clearance-for-mobility-device

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Virtual reality-based treatment for regaining upper extremity function induces cortex grey matter changes in persons with acquired brain injury – Full Text

Abstract

Background

Individuals with acquired brain injuries (ABI) are in need of neurorehabilitation and neurorepair. Virtual anatomical interactivity (VAI) presents a digital game-like format in which ABI survivors with upper limb paresis use an unaffected limb to control a standard input device and a commonplace computer mouse to control virtual limb movements and tasks in a virtual world.

Methods

In a prospective cohort study, 35 ambulatory survivors of ABI (25/71% stroke, 10/29% traumatic brain injury) were enrolled. The subjects were divided into three groups: group A received VAI therapy only, group B received VAI and physical/occupational therapy (P/OT), and group C received P/OT only. Motor skills were evaluated by muscle strength (hand key pinch strength, grasp, and three-jaw chuck pinch) and active range of motion (AROM) of the shoulder, elbow, and wrist. Changes were analyzed by ANOVA, ANCOVA, and one-tailed Pearson correlation analysis. MRI data was acquired for group A, and volumetric changes in grey matter were analyzed using voxel-based morphometry (VBM) and correlated with quantified motor skills.

Results

AROM of the shoulder, elbow, and wrist improved in all three groups. VBM revealed grey matter increases in five brain areas: the tail of the hippocampus, the left caudate, the rostral cingulate zone, the depth of the central sulcus, and the visual cortex. A positive correlation between the grey matter volumes in three cortical regions (motor and premotor and supplementary motor areas) and motor test results (power and AROM) was detected.

Conclusions

Our findings suggest that the VAI rehabilitation program significantly improved motor function and skills in the affected upper extremities of subjects with acquired brain injuries. Significant increases in grey matter volume in the motor and premotor regions of affected hemisphere and correlations of motor skills and volume in nonaffected brain regions were present, suggesting marked changes in structural brain plasticity.

Background

Neurological disorders, including acquired brain injuries (ABIs) are important causes of disability and death worldwide [12]. Although age-standardized mortality rates for ischemic and hemorrhagic strokes have decreased in the past two decades, the absolute number of stroke survivors is increasing, with most of the burden in low- and middle-income countries [3]. Another major issue is that trends toward increasing stroke incidence at younger ages has been observed [4]. Moreover, this type of ABI is the leading cause of long-term disability in the United States, with an estimated incidence of 795,000 strokes yearly [2].

In more than 80% of stroke survivors, impairments are seen in at least one of the upper limbs. Six months after a stroke, 38% of patients recover some dexterity in the paretic arm, though only 12% recover substantial function even in spite of having received physical/occupational therapy (P/OT) [5]. Only a few survivors are able to regain some useful function of the upper limb. Failing to achieve useful function has highly negative impacts on the performance of daily living activities [67]. Regaining control and improving upper limb motor function after ABIs are therefore crucial goals of motor system rehabilitation. In left-sided limb impairment, neglect syndrome can contribute to a worsened clinical state, making the alleviation of symptoms even more difficult to achieve. Mirror therapy has been reported as a promising approach to improve neglect symptoms [89].

MRI has been used to track changes in brain connectivity related to rehabilitation [10], and several studies of healthy individuals playing off-the-shelf video games have demonstrated changes in the human brain resulting from interactions in a virtual world (VW) [1112]. Furthermore, playing video games results in brain changes associated with regaining improved, purposeful physical movements [1314]. The socio-cultural relevance of virtual reality (VR) and VW applications lies, more generally, in the fact that these technologies offer interactive environments to users. These interactive environments are actually present in the users’ experiences while less so in the world they share as biological creatures [15]. The way in which we engage with VWs allows for rehabilitation exercises and activities that feel similar to their actual physical world counterparts [11]. In the past two decades, researchers have demonstrated the potential for the interactive experiences of VWs to provide engaging, motivating, less physically demanding, and effective environments for ABI rehabilitation [916,17,18].

One of the suitable rehabilitation methods seems to be exercises and tasks in VW called virtual anatomical interactivity (VAI) [19]. This method provides sensory stimulation / afferent feedback and allows the independent control of an anatomically realistic virtual upper extremity capable of simulating human movements with a true range of motion. ABI survivors are able to relearn purposeful physical movements and regain movement in their disabled upper extremities [19]. Contrary to conventional therapy, which exercises impaired upper limbs to improve limb movement, the general VAI hypothesis is that brain exercises alone (or combined with traditional therapy) may positively influence neuroplastic functions. In the VW, subjects can move their virtual impaired limbs using their healthy hands, meaning simulated physical movements are survivor-authored. Virtual visuomotor feedback may help regain functional connectivity between the brain and the impaired limb, therefore also regaining voluntary control of the limb.

The aim of the study was to test if the shoulder, elbow, and wrist movement; hand pinch strength; and grip strength of the paretic side improved through the use of VAI exclusively or combined with P/OT for upper extremities and how these approaches improved functional outcomes measured by the Action Reach Arm Test [20]. The relationship between changes in abilities to control upper extremities and volumetric changes in cortex grey matter measured by VBM and using MRI was also explored.[…]

Continue —-> https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00754-7

figure1
Examples of VAI games: multi-finger actions to pick up a spoon and drop it into a cup, tapping actions using the index and middle fingers on a remote control, removing a light bulb and reinserting it into another fixture designated by a letter of the alphabet, choosing letters of the alphabet to form words and phrases. All actions are performed by clicking and draging mouse on the appropriate body part

, , , , , , , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement – Full Text

Abstract

Objective:

To report the fidelity of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after stroke (RATULS) randomized controlled trial, the types of goals selected and the proportion of goals achieved.

Design:

Descriptive analysis of data on fidelity, goal selection and achievement from an intervention group within a randomized controlled trial.

Setting:

Out-patient stroke rehabilitation within four UK NHS centres.

Subjects:

259 participants with moderate-severe upper limb activity limitation (Action Research Arm Test 0–39) between one week and five years post first stroke.

Intervention:

The enhanced upper limb therapy programme aimed to provide 36 one-hour sessions, including 45 minutes of face-to-face therapy focusing on personal goals, over 12 weeks.

Results:

7877/9324 (84%) sessions were attended; a median of 34 [IQR 29–36] per participant. A median of 127 [IQR 70–190] repetitions were achieved per participant per session attended. Based upon the Canadian Occupational Performance Measure, goal categories were: self-care 1449/2664 (54%); productivity 374/2664 (14%); leisure 180/2664 (7%) and ‘other’ 661/2664 (25%). For the 2051/2664 goals for which data were available, 1287 (51%) were achieved, ranging between 27% by participants more than 12 months post stroke with baseline Action Research Arm Test scores 0–7, and 88% by those less than three months after stroke with scores 8–19.

Conclusions:

Intervention fidelity was high. Goals relating to self-care were most commonly selected. The proportion of goals achieved varied, depending on time post stroke and baseline arm activity limitation.

Introduction

Up to 80% of stroke survivors have difficulties using their affected arm in daily activities,1 which often persist in the longer term, impacting on the ability to engage social roles and on autonomy.2 There is a need for further high quality evidence to support interventions to improve arm function after stroke.1,3,4 Repetitive functional task training has shown promise for improving arm function,3,5 and therefore further trials of this type of intervention are particularly important. The Robot-Assisted Training for the Upper Limb after Stroke (RATULS) randomized controlled trial, the largest of its kind to date (n = 770), was published recently.6 Participants were randomized to receive robot-assisted training, an enhanced upper limb therapy programme (where repetitive functional task practice focused on personal goals), or usual care.6 There was little evidence of a difference in the primary outcome of arm activity limitation (i.e. success in attaining pre-specified improvement in the Action Research Arm Test7,8 score at three months) between randomization groups. However, participants who were randomized to receive the enhanced upper limb therapy programme performed significantly better in a number of secondary outcomes when compared to those who received usual care. Clinically important benefits at the end of the three month intervention period were observed in measures of impairment (Fugl-Meyer Assessment Motor Score),8,9 activities of daily living and mobility (Stroke Impact Scale).10 Additionally, there were statistically significant improvements which were not considered clinically important, as the confidence intervals did not include values that are currently deemed to be Minimum Clinically Important Differences. These statistically significant improvements were in measures of arm function (Action Research Arm Test), hand function (Stroke Impact Scale),10 and activities of daily living (Barthel Activity of Daily Living Index)11 – with the latter continuing to 6 months follow-up. Participants randomized to receive the enhanced upper limb therapy programme also performed significantly better than those randomized to receive robot-assisted training in measures of activities of daily living at three months (Stroke Impact Scale10 and Barthel Index11) but these improvements also did not reach the threshold for being considered clinically important.6

It is important that the development and fidelity of interventions are fully reported to enable the results of a trial to be interpreted, and for the intervention to be replicable in routine clinical practice or future research. However, stroke rehabilitation trials often fall short in terms of reporting these aspects.12,13 The development and description of the enhanced upper limb therapy programme followed the Template for Intervention Description and Replication (TIDieR) framework,12 and the planned delivery of the intervention (TIDieR items 1–11) has been reported.14 The aim of this paper is to report the intervention fidelity (TIDieR item 12) and a descriptive analysis of the types of personal goals selected and the proportion achieved.[…]

Continue —-> https://journals.sagepub.com/doi/full/10.1177/0269215520953833

, , , , , , , , ,

Leave a comment

[ARTICLE] Exoskeleton use in post-stroke gait rehabilitation: a qualitative study of the perspectives of persons post-stroke and physiotherapists – Full Text

Abstract

Background

Wearable powered exoskeletons are a new and emerging technology developed to provide sensory-guided motorized lower limb assistance enabling intensive task specific locomotor training utilizing typical lower limb movement patterns for persons with gait impairments. To ensure that devices meet end-user needs it is important to understand and incorporate end-users perspectives, however research in this area is extremely limited in the post-stroke population. The purpose of this study was to explore in-depth, end-users perspectives, persons with stroke and physiotherapists, following a single-use session with a H2 exoskeleton.

Methods

We used a qualitative interpretive description approach utilizing semi-structured face to face interviews, with persons post-stroke and physiotherapists, following a 1.5 h session with a H2 exoskeleton.

Results

Five persons post-stroke and 6 physiotherapists volunteered to participate in the study. Both participant groups provided insightful comments on their experience with the exoskeleton. Four themes were developed from the persons with stroke participant data: (1) Adopting technology; (2) Device concerns; (3) Developing walking ability; and, (4) Integrating exoskeleton use. Five themes were developed from the physiotherapist participant data: (1) Developer-user collaboration; (2) Device specific concerns; (3) Device programming; (4) Patient characteristics requiring consideration; and, (5) Indications for use.

Conclusions

This study provides an interpretive understanding of end-users perspectives, persons with stroke and neurological physiotherapists, following a single-use experience with a H2 exoskeleton. The findings from both stakeholder groups overlap such that four over-arching concepts were identified including: (i) Stakeholder participation; (ii) Augmentation vs. autonomous robot; (iii) Exoskeleton usability; and (iv) Device specific concerns. The end users provided valuable perspectives on the use and design of the H2 exoskeleton, identifying needs specific to post-stroke gait rehabilitation, the need for a robust evidence base, whilst also highlighting that there is significant interest in this technology throughout the continuum of stroke rehabilitation.

Introduction

Over the period 1990–2017 there has been a 3% increase in age-standardized rates of global stroke prevalence [1] and a 33% decrease in mortality due to improved risk factor control and treatments [2]. Therefore, stroke survivors are living longer with mild to severe lifelong disabilities requiring long term assistance [1]. As a result, stroke presents a significant socioeconomic burden accounting for the largest proportion of total disability adjusted life years (47.3%) of neurological disorders [3]. Walking impairments, one aspect of stroke disabilities, negatively impact independence and quality of life [4], and recovery of walking is a primary goal post-stroke [5].

Wearable powered exoskeletons are a new and emerging technology originally developed as robots to enable persons who were completely paralyzed due to spinal cord injury to stand and walk [67], but more recently developed to provide sensory-guided motorized lower limb assistance to persons with gait impairments [8]. They require the active participation of the user from the perspective of integrating postural control/balance and the locomotion pattern in real life environments whilst simultaneously providing assistance to achieve typical lower limb movement patterns in a task specific manner [8]. The Exo-H2 is a novel powered exoskeleton in that it has six actuated joints, the hip, knee and ankle bilaterally, and uses an assistive gait control algorithm to provide lower limb assistance when the gait pattern deviates from a prescribed pattern [9]. As stroke impairments typically influence hip, knee and ankle movements the H2 was considered an appropriate exoskeleton for our study [810].

Significant limitations persist in current exoskeleton designs such as weight, cost, size, speed and efficiency [11]. Although end-users’ perspectives are essential in the design and development of assistive technology [1213], there is a paucity of literature from both persons with disabilities and physiotherapists (PTs) perspectives [1415]. Over the last decade end-user perspectives have primarily been studied in spinal cord injury (SCI) in which four studies used semi-structured interviews [16,17,18,19], and 3 studies used survey methods [20,21,22] with sample size ranging from 3 to 20 persons. However, these studies included both complete and incomplete SCI with most participants being non-ambulatory representing a very different end-user population compared to persons post-stroke. A further two studies reported end-user perspectives using survey methods with persons with multiple sclerosis (MS) [23], and persons with MS, SCI or acquired brain injury (ABI) [24]. Wolff et al.,(2014) utilized an online survey to evaluate perspectives on potential use of exoskeletons with wheelchair users, primarily persons with SCI, and healthcare professionals, but no PTs were included [25]. To date only one study by Read et al.,(2020) specifically investigated perspectives of 3 PTs on exoskeleton use using semi-structured interviews with persons with SCI or stroke. Currently, a mixed-methods study is underway to investigate perspectives of PTs and persons with stroke [26]. Thus, further research is needed to explore in-depth, utilizing a qualitative research approach, end-users’ perspectives on lower limb exoskeleton use in post-stroke gait rehabilitation.

It is important to understand and incorporate end-user perspectives [27], persons post-stroke and physiotherapists, with respect to the design of exoskeletons and their implementation to effectively facilitate uptake both in clinical practice and community settings. Therefore, the purpose of our study is to explore the perspectives of persons post-stroke and physiotherapists following a 1.5 h single-use session with a H2 exoskeleton.[…]

Continue —-> https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-020-00750-x

, , , , , , ,

Leave a comment

[Abstract] Potential benefits of music playing in stroke upper limb motor rehabilitation

Highlights

• Music-based interventions integrate most of the principles of motor training and multimodal stimulation.

• The use of music in rehabilitation can improve motor and cognitive functions of subacute and chronic stroke patients.

• Music-based interventions lead to better mood and quality of life in stroke patients than conventional approaches.

• Future studies should better address methodological aspects to improve the level of evidence of these interventions.

Abstract

Music-based interventions have emerged as a promising tool in stroke motor rehabilitation as they integrate most of the principles of motor training and multimodal stimulation.

This paper aims to review the use of music in the rehabilitation of upper extremity motor function after stroke. First, we review the evidence supporting current music-based interventions including Music-supported Therapy, Music glove, group music therapy, Rhythm- and music-based intervention, and Musical sonification. Next, we describe the mechanisms that may be responsible for the effectiveness of these interventions, focusing on motor learning aspects, how multimodal stimulation may boost motor performance, and emotional and motivational aspects related to music.

Then, we discuss methodological concerns in music therapy research related to modifications of therapy protocols, evaluation of patients and study designs. Finally, we highlight clinical considerations for the implementation of music-based interventions in clinical settings

Source: https://www.sciencedirect.com/science/article/abs/pii/S0149763419310024

, , , , , , , , , ,

Leave a comment

[Abstract] Using superior colliculus principles of multisensory integration to reverse hemianopia

Highlights

Unilateral blindness can be rehabilitated by multisensory training.

Training stimuli must be arranged in spatiotemporally congruent assemblies.

The training protocol is effective in human and non-human animals.

The midbrain superior colliculus is believed to support recovered vision.

Abstract

The diversity of our senses conveys many advantages; it enables them to compensate for one another when needed, and the information they provide about a common event can be integrated to facilitate its processing and, ultimately, adaptive responses. These cooperative interactions are produced by multisensory neurons. A well-studied model in this context is the multisensory neuron in the output layers of the superior colliculus (SC). These neurons integrate and amplify their cross-modal (e.g., visual-auditory) inputs, thereby enhancing the physiological salience of the initiating event and the probability that it will elicit SC-mediated detection, localization, and orientation behavior. Repeated experience with the same visual-auditory stimulus can also increase the neuron’s sensitivity to these individual inputs. This observation raised the possibility that such plasticity could be engaged to restore visual responsiveness when compromised. For example, unilateral lesions of visual cortex compromise the visual responsiveness of neurons in the multisensory output layers of the ipsilesional SC and produces profound contralesional blindness (hemianopia). The possibility that multisensory plasticity could restore the visual responses of these neurons, and reverse blindness, was tested in the cat model of hemianopia. Hemianopic subjects were repeatedly presented with spatiotemporally congruent visual-auditory stimulus pairs in the blinded hemifield on a daily or weekly basis. After several weeks of this multisensory exposure paradigm, visual responsiveness was restored in SC neurons and behavioral responses were elicited by visual stimuli in the previously blind hemifield. The constraints on the effectiveness of this procedure proved to be the same as those constraining SC multisensory plasticity: whereas repetitions of a congruent visual-auditory stimulus was highly effective, neither exposure to its individual component stimuli, nor to these stimuli in non-congruent configurations was effective. The restored visual responsiveness proved to be robust, highly competitive with that in the intact hemifield, and sufficient to support visual discrimination.

Source: https://www.sciencedirect.com/science/article/abs/pii/S0028393220300841?dgcid=rss_sd_all&utm_campaign=RESR_MRKT_Researcher_inbound&utm_medium=referral&utm_source=researcher_app

, , , , ,

Leave a comment

[Abstract] Age is negatively associated with upper limb recovery after conventional but not robotic rehabilitation in patients with stroke: a secondary analysis of a randomized-controlled trial

Abstract

Background

There is consistent evidence that robotic rehabilitation is at least as effective as conventional physiotherapy for upper extremity (UE) recovery after stroke, suggesting to focus research on which subgroups of patients may better respond to either intervention. In this study, we evaluated which baseline variables are associated with the response after the two approaches.

Methods

This is a secondary analysis of a randomized-controlled trial comparing robotic and conventional treatment for the UE. After the assigned intervention, changes of the Fugl-Meyer Assessment UE score by ≥ 5 points classified patients as responders to treatment. Variables associated with the response were identified in a univariate analysis. Then, variables independently associated with recovery were investigated, in the whole group, and the two groups separately.

Results

A sample of 190 patients was evaluated after the treatment; 121 were responders. Age, baseline impairment, and neglect were significantly associated with worse response to the treatment. Age was the only independently associated variable (OR 0.967, p = 0.023). Considering separately the two interventions, age remained negatively associated with recovery (OR 0.948, p = 0.013) in the conventional group, while none of the variables previously identified were significantly associated with the response to treatment in the robotic group.

Conclusions

We found that, in our sample, age is significantly associated with the outcome after conventional but not robotic UE rehabilitation. Possible explanations may include an enhanced positive attitude of the older patients towards technological training and reduced age-associated fatigue provided by robotic-assisted exercise. The possibly higher challenge proposed by robotic training, unbiased by the negative stereotypes concerning very old patients’ expectations and chances to recover, may also explain our findings.

Download references

Source: https://link.springer.com/article/10.1007%2Fs00415-020-10143-8#Ack1

, , , , , , ,

Leave a comment

[Abstract] Combining brain–computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review

Abstract

Background

The traditional rehabilitation for neurological diseases lacks the active participation of patients, its process is monotonous and tedious, and the effects need to be improved. Therefore, a new type of rehabilitation technology with more active participation combining brain–computer interface (BCI) with virtual reality (VR) has developed rapidly in recent years and has been used in rehabilitation in neurological diseases.

Objectives

This narrative review analyzed and characterized the development and application of the new training system (BCI-VR) in rehabilitation of neurological diseases from the perspective of the BCI paradigm, to provide a pathway for future research in this field.

Methods

The review involved a search of the Web of Science-Science Citation Index/Social Sciences Citation Index and the China National Knowledge Infrastructure databases; 39 papers were selected. Advantages and challenges of BCI-VR – based neurological rehabilitation were analyzed in detail.

Results

Most BCI-VR studies included could be classified by 3 major BCI paradigms: motor imagery, P300, and steady-state visual-evoked potential. Integrating VR scenes into BCI systems could effectively promote the recovery process from nervous system injuries as compared with traditional methods.

Conclusion

As compared with rehabilitation based on traditional BCI, rehabilitation based on BCI-VR can provide better feedback information for patients and promote the recovery of brain function. By solving the challenges and continual development, the BCI-VR system can be broadly applied to the clinical treatment of various neurological diseases.

Source: https://www.sciencedirect.com/science/article/abs/pii/S1877065720301184?dgcid=rss_sd_all&utm_campaign=RESR_MRKT_Researcher_inbound&utm_medium=referral&utm_source=researcher_app

, , , , ,

Leave a comment

%d bloggers like this: