Posts Tagged rehabilitation

[WEB SITE] ISU Engineering continues work on Augmented Reality Device to Aid Arm Rehabilitation

Photo 1

Alba Perez-Gracia and student Omid Heidari demonstrating the virtual reality system.
Photo courtesy of Idaho State University

 

“We have accomplished half of the work, which is creating the engineering systems to test this work and now we have to develop the protocol for using it for rehabilitation to see how well it works,” said Alba Perez-Gracia, ISU chair and associate professor of mechanical engineering, and a lead researcher on the project.

The ISU researchers, who are working on this collaborative project with Texas A&M and California State University, Fullerton, first mapped arm motions and digitalized them and then have created a virtual world where people wearing a portable virtual-reality device can use the system as a therapeutic intervention. The researchers will soon be testing the new tool with human subjects.

Subjects wear a virtual reality headset and use it to complete tasks created for the virtual world. The virtual reality system picks up the actual movements of their own arm and displays it as a cartoon figure within the virtual world. The subject may then participate in the virtual world task that include picking up balls and throwing them at a target or stacking cubes using their right or left hand. In addition, the system has been developed to reflect the image of the arm being used.

For example, if a person is using the right arm to complete the task, the virtual reality system reflects the image so that the cartoon arm actions being portrayed look as if it is the left arm performing the task. This reflected image of arm function has the potential to be used as a therapeutic intervention because previous research has shown that observing an action activates the same area of the brain as performing the action.

“It is called the mirror neuron system,” said Nancy Devine, associate dean of the ISU School of Rehabilitation and Communications Sciences, who is a co-researcher on the project. “When you observe body movements, the cells in the brain that would produce that movement are active even though that arm isn’t being used.”

She said if you just look at brain activity, in some areas of the brain you can’t distinguish an active movement from an observed movement.

“So, if you take someone who has had a stroke and can’t use one arm, you can take their arm that is still working and reflect it to the other arm by putting them in this engaging virtual environment and we can be providing an exercise that is effective in helping rehabilitate the damaged areas,” Devine added.

Although the work on this specific project ends at the end of the academic year, ISU’s work on this type of project may continue.

“We have created the portable virtual-reality device that the patient can wear, which projects the motion happening for the patients,” Perez-Gracia said. “We hope it will be a starting point for future projects on using virtual reality and robotics for helping in rehabilitation and training of human motion.”

This research has been taking place at the ISU Robotics Laboratory and the Bioengineering laboratory at the Engineering Research Complex. On this project, Perez-Gracia and Devine have been working with the third researcher of the team, Marco P. Schoen, professor of mechanical engineering, Omid Heidari, a doctoral student in mechanical engineering, master of science students A.J. Alriyadh, Asib Mahmud, Vahid Pourgharibshahi and John Roylance, and undergraduate students Dillan Hoy, Madhuri Aryal and Merat Rezai. Eydie Kendall, assistant professor of physical and occupational therapy, also collaborated on the project.

“We have very good equipment here that we can do experiments with and that is very appealing,” said Heidari, who said the laboratory has become his second home. “Instead of just writing code on computers and stuff, we are actually doing something here that is very practical and very interesting. We did the motion capture, the kinematic part, and now we are working on finishing the virtual reality part of the project. We are getting closer to having a good model of what we want.”

via ISU Engineering continues work on Augmented Reality Device to Aid Arm Rehabilitation | Community | idahostatejournal.com

Advertisements

, , , , , , , , , ,

Leave a comment

[Abstract] Virtual Rehabilitation through Nintendo Wii in Poststroke Patients: Follow-Up

Objective

To evaluate in the follow-up the sensory-motor recovery and quality of life patients 2 months after completion of the Nintendo Wii console intervention and determine whether learning retention was obtained through the technique.

Methods

Five hemiplegics patients participated in the study, of whom 3 were male with an average age of 54.8 years (SD = 4.6). Everyone practiced Nintendo Wii therapy for 2 months (50 minutes/day, 2 times/week, during 16 sessions). Each session lasting 60 minutes, under a protocol in which only the games played were changed, plus 10 minutes of stretching. In the first session, tennis and hula hoop games were used; in the second session, football (soccer) and boxing were used. For the evaluation, the Fulg-Meyer and Short Form Health Survey 36 (SF-36) scales were utilized. The patients were immediately evaluated upon the conclusion of the intervention and 2 months after the second evaluation (follow-up).

Results

Values for the upper limb motor function sub-items and total score in the Fugl–Meyer scale evaluation and functional capacity in the SF-36 questionnaire were sustained, indicating a possible maintenance of the therapeutic effects.

Conclusion

The results suggest that after Nintendo Wii therapy, patients had motor learning retention, achieving a sustained benefit through the technique.

via Virtual Rehabilitation through Nintendo Wii in Poststroke Patients: Follow-Up

, , , , , , , , ,

Leave a comment

[Abstract] The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review

Objectives

Stroke is a leading cause of disability. Alternative and more effective techniques for stroke rehabilitation have been sought to overcome limitations of conventional therapies. Repetitive transcranial magnetic stimulation (rTMS) arises as a promising tool in this context. This systematic review aims to provide a state of the art on the application of rTMS in stroke patients and to assess its effectiveness in clinical rehabilitation of motor function.

Methods

Studies included in this review were identified by searching PubMed and ISI Web of Science. The search terms were (rTMS OR “repetitive transcranial magnetic stimulation”) AND (stroke OR “cerebrovascular accident” OR CVA) AND (rehab OR rehabilitation OR recover*). The retrieved records were assessed for eligibility and the most relevant features extracted to a summary table.

Results

Seventy out of 691 records were deemed eligible, according to the selection criteria. The majority of the articles report rTMS showing potential in improving motor function, although some negative reports, all from randomized controlled trials, contradict this claim. Future studies are needed because there is a possibility that a bias for non-publication of negative results may be present.

Conclusions

rTMS has been shown to be a promising tool for stroke rehabilitation, in spite of the lack of standard operational procedures and harmonization. Efforts should be devoted to provide a greater understanding of the underlying mechanisms and protocol standardization.

Source: The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review – ScienceDirect

, , , ,

Leave a comment

[BOOK] Chapter 4: The Design Process and Usability Assessment of an Exergame System to Facilitate Strength for Task Training for Lower Limb Stroke Rehabilitation

media/F3.png

Abstract

Successful stroke rehabilitation relies on early, long-term, repetitive and intensive treatment, which is rarely adhered to by patients. Exergames can increase patients’ engagement with their therapy. Marketed exergaming systems for lower limb rehabilitation are hard to find and, none yet, facilitate Strength for Task Training (STT), a novel physiotherapeutic method for stroke rehabilitation. STT involves performing brief but intensive strength training (priming) prior to task-specific training to promote neural plasticity and maximize the gains in locomotor ability. This research investigates how the design of an exergame system (game and game controller) for lower limb stroke rehabilitation can facilitate unsupervised STT and therefore allow stroke patients to care for their own health. The findings suggest that specific elements of STT can be incorporated in an exergame system. Barriers to use can be reduced through considering the diverse physiological and cognitive abilities of patients and aesthetic consideration can help create a meaningful system than promotes its use in the home. The semantics of form and movement play an essential role for stroke patients to be able to carry out their exercises.

1. Background

With over 15 million cases worldwide every year [1], strokes are a leading cause of serious long-term disability [23]. Up to 75% of people affected by stroke have lower limb mobility limitations [34], including hemiplegia (muscle paralysis) or hemiparesis (muscle weakness) down one side of the body [5]. The World Health Organization (WHO) has highlighted the need for home health care that calls for rehabilitative devices, self-monitoring tools and self-management skills [6].

Success for stroke rehabilitation relies on early, intensive, long term repetitive treatment to regain motor control [57] by learning to use existing redundant neural pathways [8]. However, although abundantly prescribed by clinicians, as little as 31% of patients perform these exercises correctly and consistently, often due to their monotonous nature [9].

Recent studies show that systems of rehabilitative devices with incorporated digital games for exercising (exergames) improve patient engagement with their home-based therapies. This has promoted beneficial patient outcomes for different long-term conditions, including upper limb stroke rehabilitation [51011], and more effective recovery [12]. While there exist systems designed for upper-limb stroke rehabilitation [51314] and for improving gait and balance [1517], only one was found targeted specifically towards lower limb stroke rehabilitation [18].[…]

Continue —> The Design Process and Usability Assessment of an Exergame System to Facilitate Strength for Task Training for Lower Limb Stroke Rehabilitation | InTechOpen

, , , , , , ,

Leave a comment

[Systematic review] The potential of real-time fMRI neurofeedback for stroke rehabilitation – Full Text

Abstract

Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback aids the modulation of neural functions by training self-regulation of brain activity through operant conditioning. This technique has been applied to treat several neurodevelopmental and neuropsychiatric disorders, but its effectiveness for stroke rehabilitation has not been examined yet. Here, we systematically review the effectiveness of rt-fMRI neurofeedback training in modulating motor and cognitive processes that are often impaired after stroke. Based on predefined search criteria, we selected and examined 33 rt-fMRI neurofeedback studies, including 651 healthy individuals and 15 stroke patients in total. The results of our systematic review suggest that rt-fMRI neurofeedback training can lead to a learned modulation of brain signals, with associated changes at both the neural and the behavioural level. However, more research is needed to establish how its use can be optimized in the context of stroke rehabilitation.

1. Introduction

The number of stroke survivors is continuously increasing with the ageing of the population: about 15 million people worldwide suffer from stroke every year, of whom 5 million die, whereas another 5 million become chronically disabled (WHO, 2012). Behavioural deficits in cognitive and motor domains are highly prevalent and persistent in stroke survivors (Bickerton et al., 2014; Demeyere, Riddoch, Slavkova, Bickerton, & Humphreys, 2015; Demeyere et al., 2016; Jaillard, Naegele, Trabucco-Miguel, LeBas, & Hommel, 2009; Planton et al., 2012; Verstraeten, Mark, & Sitskoorn, 2016). Neurophysiological and neuroimaging studies suggested that stroke causes network-wide changes across structurally intact regions, directly or indirectly connected to the site of infarction (Carrera & Tononi, 2014; Carter et al., 2010; Gillebert & Mantini, 2013; Grefkes et al., 2008; Ward & Cohen, 2004). Disruptions in even one of the many networks or brain regions implicated in the different aspects of motor function and cognition can have a major impact on quality of life (Achten, Visser-Meily, Post, & Schepers, 2012; Hochstenbach, Mulder, Limbeek, Donders, & Schoonderwaldt, 1998). Accordingly, both local tissue damage and secondary changes in brain function should be considered when developing rehabilitation strategies to improve the recovery rate and generally increase the quality of life in stroke survivors (Chechlacz, Mantini, Gillebert, & Humphreys, 2015; Chechlacz et al., 2013; Corbetta et al., 2015; Gillebert & Mantini, 2013). In this regard, the use of neurofeedback may be a promising approach.

1.1. Neurofeedback

Neurofeedback works as a closed loop system that provides real-time information regarding the participant’s own brain activity and/or connectivity, which can be used to develop self-learning strategies to modulate these brain signals (Weiskopf, Mathiak, et al., 2004). It follows the principle of operant conditioning, a method of learning that occurs through reinforcing specific behaviour with rewards and punishments (Skinner, 1938). If the participant learns to control activity of the brain areas targeted through neurofeedback, this may ultimately lead to a measurable behavioural change that is related to the function of those areas (DeCharms et al., 2005; Haller, Birbaumer, & Veit, 2010; Hartwell et al., 2016).

The origins of neurofeedback are rooted in electroencephalography (EEG), which measures dynamic changes of electrical potentials over the participant’s scalp (Nowlis & Kamiya, 1970). This technique is portable and inexpensive, and provides estimates of brain activity at high temporal resolution. EEG neurofeedback has been widely used over the years to induce long-lasting behavioural changes, both in healthy volunteers and in patients (Gruzelier, 2014; Nelson, 2007). However, because of the low spatial resolution associated with this technique, it is very challenging to selectively target brain areas of interest. As such, the effects of EEG neurofeedback are often not specific (Rogala et al., 2016; Scharnowski & Weiskopf, 2015). Other neuroimaging techniques used for neurofeedback include magnetoencephalography (MEG) (Buch et al., 2012; Okazaki et al., 2015) and functional near-infrared spectroscopy (fNIRS) (Kober et al., 2014; Mihara et al., 2013). However, as also for EEG, their spatial resolution is relatively limited and they do not permit to target precise brain regions.

The field of neurofeedback has rapidly developed and delved into new avenues by the introduction of real-time functional magnetic resonance imaging (rt-fMRI) technology (Cox, Jesmanowicz, & Hyde, 1995). Accordingly, in the past years there has been a steady increase of studies focussing on rt-fMRI neurofeedback applications to induce behavioural changes (Sulzer et al., 2013). Rt-fMRI neurofeedback uses the blood-oxygenation level-dependent (BOLD) signal to present contingent feedback to the participant and to enable modulation of brain activity (Fig. 1). Various acquisition parameters are available, and chosen based on a trade-off between spatial and temporal resolution, and signal-to-noise ratio (Weiskopf, Scharnowski, et al., 2004). The analysis is performed almost immediately or with a delay of a few seconds depending on the available computational resources. With a much higher spatial resolution than EEG, fMRI allows for a refined delineation of both cortical and subcortical target regions. These properties can be valuable for neurofeedback applications (Stoeckel et al., 2014). Recent studies suggest that rt-fMRI is a mature technology to use in the context of neurofeedback training (for a review, see e.g., Ruiz, Buyukturkoglu, Rana, Birbaumer, & Sitaram, 2014; Weiskopf, 2012). As a result, doors are being opened to the application of rt-fMRI neurofeedback in ameliorating disrupted brain functions in stroke survivors.[…]

Fig. 1

Fig. 1. Real-time fMRI neurofeedback is a closed-loop system that can be used to voluntarily modulate brain-activity through the principle of operant conditioning. (A) The participants use self-generated or prior instructed strategies to attempt to change their brain activity. (B) fMRI data are acquired and (C) processed in real-time. Computer programs select the relevant signals and (D) return these to the participants after varied degrees of pre-processing to allow them to adjust their control strategies.

Continue —>  The potential of real-time fMRI neurofeedback for stroke rehabilitation: A systematic review – ScienceDirect

, , , , ,

Leave a comment

[ARTICLE] Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors – Full Text

Various robotic exoskeletons have been proposed for hand function assistance during activities of daily living (ADL) of stroke survivors. However, traditional exoskeletons involve the use of complex rigid systems that impede the natural movement of joints, and thus reduce the wearability and cause discomfort to the user. The objective of this paper is to design and evaluate a soft robotic glove that is able to provide hand function assistance using fabric-reinforced soft pneumatic actuators. These actuators are made of silicone rubber which has an elastic modulus similar to human tissues. Thus, they are intrinsically soft and compliant. Upon air pressurization, they are able to support finger range of motion (ROM) and generate the desired actuation of the finger joints. In this work, the soft actuators were characterized in terms of their blocked tip force, normal and frictional grip force outputs. Combining the soft actuators and flexible textile materials, a soft robotic glove was developed for grasping assistance during ADL for stroke survivors. The glove was evaluated on five healthy participants for its assisted ROM and grip strength. Pilot test was performed in two stroke survivors to evaluate the efficacy of the glove in assisting functional grasping activities. Our results demonstrated that the actuators designed in this study could generate desired force output at a low air pressure. The glove had a high kinematic transparency and did not affect the active ROM of the finger joints when it was being worn by the participants. With the assistance of the glove, the participants were able to perform grasping actions with sufficient assisted ROM and grip strength, without any voluntary effort. Additionally, pilot test on stroke survivors demonstrated that the patient’s grasping performance improved with the presence and assistance of the glove. Patient feedback questionnaires also showed high level of patient satisfaction and comfort. In conclusion, this paper has demonstrated the possibility of using soft wearable exoskeletons that are more wearable, lightweight, and suitable to be used on a daily basis for hand function assistance of stroke survivors during activities of daily living.

Introduction

The ability to perform basic activities of daily living (ADL) impacts a person’s quality of life and independence (Katz, 1983Andersen et al., 2004). However, an individual’s independence to perform ADLs is jeopardized due to hand motor impairments, which can be observed in patients with neurological disorders such as stroke. In order to improve hand motor functions in terms of strength and range of motion (ROM) (Kutner et al., 2010), stroke survivors undergo rehabilitation programs comprising repetitive practice of simulated ADL tasks (Michaelsen et al., 2006). Normally, patients undergo rehabilitation exercises in a specialized rehabilitation center under the guidance of physiotherapists or occupational therapists. However, due to increasing patient population, it is foreseen that there will be a shortage of physiotherapists to assist in the rehabilitative process. Thus, there will be comparatively less therapy time, which will eventually lead to a slower recovery process for the patients. Over the past decade, technological developments in robotics have facilitated the rehabilitative process and have shown potential to assist patients in their daily life (Maciejasz et al., 2014). One example of such a device is the hand exoskeleton, which is secured around the hand to guide and assist the movement of the encompassed joints. However, due to the complexity of the hand, designing a hand exoskeleton remains a challenging task.

Traditional hand exoskeletons involve the use of rigid linkage-based mechanisms. In this kind of mechanism, rigid components, such as linear actuators, rotary motors, racks, and pinions as well as rigid linkages are normally involved (Worsnopp et al., 2007Rotella et al., 2009Martinez et al., 2010). To assist hand movements that have high degrees of freedom (DOFs), traditional exoskeletons can be incorporated with a substantial number of actuators to achieve the requirement. However, this means that their application is limited due to the increasing bulkiness for higher DOFs. Therefore, these devices are normally restricted in clinical settings and not suitable for performing home therapy. Additionally, their rigidity, weight and constraint on the non-actuated DOFs of the joints pose complications. As a result, the level of comfort and safety of patients is reduced. In view of this, there is an apparent need for the development of exoskeletons that may be used in both clinical and home settings. A lightweight and wearable exoskeleton may allow patients to bring back home to continue daily therapy or to serve as an assistive device for the ADLs.

The development of wearable robotic exoskeletons serves to provide an alternative approach toward addressing this need. Instead of using rigid linkage as an interface between the hand and the actuators, wearable exoskeletons typically utilize flexible materials such as fabric (Sasaki et al., 2004Yap et al., 2016a) and polymer (Kang et al., 2016), driven by compliant actuators such as cables (Sangwook et al., 2014Xiloyannis et al., 2016) and soft inflatable actuators (Polygerinos et al., 2015dYap et al., 2016c). Therefore, they are more compliant and lightweight compared to the rigid linkage-based mechanism. Cable-driven based exoskeletons involve the use of cables that are connected to actuators in the form of electrical motors situated away from the hand (Nilsson et al., 2012Ying and Agrawal, 2012Sangwook et al., 2014Varalta et al., 2014). By providing actuations on both dorsal and palmar sides of the hand, bi-directional cable-driven movements are possible (Kang et al., 2016). These cables mimic the capability of the tendons of the human hand and they are able to transmit the required pulling force to induce finger flexion and extension. However, the friction of the cable, derailment of the tendon, and inaccurate routing of the cable due to different hand dimensions can affect the efficiency of force transmission in the system.

On the other hand, examples of the soft inflatable actuators are McKibben type muscles (Feifei et al., 2006Tadano et al., 2010), sheet-like rubber muscles (Sasaki et al., 2004Kadowaki et al., 2011), and soft elastomeric actuators (Polygerinos et al., 2015b,cYap et al., 2015); amongst which, soft elastomeric actuators have drawn increasing research interest due to their high compliance (Martinez et al., 2013). This approach typically embeds pneumatic chamber networks in elastomeric constructs to achieve different desired motions with pressurized air or water (Martinez et al., 2012). Soft elastomeric actuators are highly customizable. They are able to achieve multiple DOFs and complex motions with a single input, such as fluid pressurization. The design of a wearable hand exoskeleton that utilizes soft elastomeric actuators is usually simple and does not require precise routing for actuation, compared to the cable-driven mechanism. Thus, the design reduces the possibility of misalignment and the setup time. These properties allow the development of hand exoskeletons that are more compliant and wearable, with the ability to provide safe human-robot interaction. Additionally, several studies have demonstrated that compactness and ease of use of an assistive device critically affect its user acceptance (Scherer et al., 20052007). Thus, these exoskeletons provide a greater chance of user acceptance.

Table 1 summarizes the-state-of-art of soft robotic assistive glove driven by inflatable actuators. Several pioneer studies on inflatable assistive glove have been conducted by Sasaki et al. (2004)Kadowaki et al. (2011) and Polygerinos et al. (2015a,b,c). Sasaki et al. have developed a pneumatically actuated power assist glove that utilizes sheet-like curved rubber muscle for hand grasping applications. Polygerinos et al. have designed a hydraulically actuated grip glove that utilizes fiber-reinforced elastomeric actuators that can be mechanically programmed to generate complex motion paths similar to the kinematics of the human finger and thumb. Fiber reinforcement has been proved to be an effective method to constrain the undesired radial expansion of the actuators that does not contribute to effective motion during pressurization. However, this method limits the bending capability of the actuators (Figure S1); as a result, higher pressure is needed to achieve desired bending.

Table 1. Hand assistive exoskeletons driven by inflatable actuators.

Continue —> Frontiers | Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors | Neuroscience

Figure 1. (A) A fabric-reinforced soft actuators with a corrugated fabric layer and an elastic fabric later [Actuator thickness, T = 12 mm, and length, L = 160 mm (Thumb), 170 mm (Little Finger), 180 mm (Index & Ring Fingers), 185 mm (Middle Finger)]. (B) Upon air pressurization, the corrugated fabric layer unfolds and expands due to the inflation of the embedded pneumatic chamber. Radial budging is constrained when the corrugated fabric layer unfolds fully. The elastic fabric elongates during air pressurization and stores elastic energy. The actuator achieves bending and extending motions at the same time. (C) A bending motion is preferred at the finger joints (II, IV, VI). An extending motion is preferred over the bending motion at the finger segments (I, III, V) and the opisthenar (VII).

, , , ,

Leave a comment

[Abstract] Providing Sources of Self-Efficacy Through Technology Enhanced Post-Stroke Rehabilitation in the Home.

Abstract

This research explores the impact of receiving feedback through a Personalised Self-Managed Rehabilitation System (PSMrS) for home-based post-stroke rehabilitation on the users’ self-efficacy; more specifically, mastery experiences and the interpretation of biomechanical data. Embedded within a realistic evaluation methodological approach, exploring the promotion of self-efficacy from the utilisation of computer-based technology to facilitate post-stroke upper-limb rehabilitation in the home included; semi-structured interviews, quantitative user data (activity and usage), observations and field notes. Data revealed that self-efficacy was linked with obtaining positive knowledge of results feedback. Encouragingly, this also transferred to functional activities such as, confidence to carry out kitchen tasks and bathroom personal activities. Findings suggest the PSMrS was able to provide key sources of self-efficacy by providing feedback which translated key biomechanical data to the users. Users could interpret and understand their performance, gain a sense of mastery and build their confidence which in some instances led to increased confidence to carry out functional activities. However, outcome expectations and socio-structural factors impacted on the self-efficacy associated with the use of the system. Increasing the understanding of how these factors promote or inhibit self-management and self-efficacy is therefore crucial to the successful adoption of technology solutions and promotion of self-efficacy.

Source: Providing Sources of Self-Efficacy Through Technology Enhanced Post-Stroke Rehabilitation in the Home. – PubMed – NCBI

, , , ,

Leave a comment

[BOOK] Rehabilitation for the Unwanted: Patients and Their Caretakers – Βιβλία Google

 

Routledge29 Σεπ 2017 – 242 σελίδες
This book is a study detailing what happens to people and what life is like in a rehabilitation program. The program discussed is embedded in an institution, called “”Farewell Hospital”” by the authors, that was designed to fill a demand for facilities for those judged unable to live on their own. Due to physical or mental handicaps and no family, friends, or other social agents who are willing to make a home for them outside of a public institution, these patients were placed in a rehabilitation unit.Most patients were placed with the rehabilitation unit as a brief interlude before their permanent placement in the custodial unit of the vast institution where they would live out their lives. This work deals with the question of what happens to patients once they are rehabilitated and the non-therapeutic rules and practices of the health and welfare structure of which they are a part. In this case, the rehabilitation specialists and ward workers set themselves the task of improving the life chances of their clients by treating their ailments when possible and by improving their physical functioning so that they were better able to care for their own needs.The authors examine the effects of the organizational relationships on rehabilitation outcomes and on the lives of the people who make hospitals their home. The text attempts to sustain feeling for the historical context of their study the “”problem”” of larger numbers of disabled, poverty-stricken persons, who are no longer wanted by anyone and asserts that a “”solution”” must be found.

Source: Rehabilitation for the Unwanted: Patients and Their Caretakers – Elizabeth Eddy – Βιβλία Google

, , ,

Leave a comment

[ARTICLE] Adapting Tai Chi for Upper Limb Rehabilitation Post Stroke: A Feasibility Study

Abstract: 

Background: Tai chi (TC) has been reported as being beneficial for improving balance post stroke, yet its utility in upper limb rehabilitation remains unknown. Methods: Twelve chronic stroke survivors with persistent paresis of an upper limb underwent 60 minutes of adapted TC twice a week for eight weeks, with a 4-week follow up. A 10-min TC home program was recommended for the days without sessions. TC level of performance, attendance to the sessions, duration of self-practice at home, and adapted TC movements used were recorded. Results: Eleven participants completed the study. A clinical reasoning algorithm underlying the adaptation of TC was elaborated throughout the trial. Participants with varying profiles including a severely impaired upper limb, poor balance, shoulder pain, and severe spasticity were not only capable of practicing the adapted TC, but attended all 16 sessions and practiced TC at home for a total of 16.51 ± 9.21 h. The degree of self-practice for subgroups with low upper limb function, shoulder pain, or moderate-to-severe spasticity was similar to that of subgroups with greater upper limb function, no shoulder pain, and minimal-to-no spasticity. Conclusion: Adapted TC seems feasible for upper limb rehabilitation post stroke. Although the study was based on a small sample size and requires confirmation, low upper limb function, insufficient balance, spasticity, and shoulder pain do not appear to hinder the practice of TC.

1. Introduction

Stroke is a leading cause of serious, long-term disability among middle-aged and older adults worldwide [1]. Functional impairment of an upper limb is reported in approximately 85% of stroke survivors [2]. The effects of current treatments for arm weakness are shown to be suboptimal [3]. Though upper limb recovery has been found to continue even in the chronic stage [4], long-term rehabilitation services are limited for a large proportion of chronic stroke patients after returning home [5,6]. Therefore, novel and effective approaches are needed to provide timely and ongoing upper limb rehabilitation.
Tai chi is an ancient martial art originating from Chinese healing traditions. Typified by slow and gentle movements, tai chi is an “internal” martial art that cultivates the flow and balance of qi, which is translated as vital energy [7]. The relaxation of body and mind is a main feature which is said to facilitate the flow of qi [8]. Also, tai chi requires well-coordinated sequencing of segments to make the body move as a whole unit to help the flow of qi [9]. Thus, tai chi is a moving form of qigong, which is a practice focusing on cultivation, circulation, and harmonization of qi. To date, tai chi is accepted as a suitable, low impact, home-based exercise option for aged and patients with chronic diseases [10,11,12]. Since tai chi emphasizes slow and continuous weight transfer between the two feet, it has been widely shown as beneficial for improving balance and for fall prevention in the aged [13,14,15].
In recent years, some studies have also reported the benefits of tai chi in improving balance in chronic stroke patients [16,17,18]. However, the use of tai chi in upper limb rehabilitation post stroke remains unknown. Tai chi is not only an exercise of lower limb, but a whole-body exercise. Upper limb muscle strength and flexibility have been shown to improve in the aged following the practice of tai chi [19,20,21]. Tai chi practitioners have also demonstrated better arm movement control and eye–hand coordination in older adults [21,22,23,24]. Furthermore, the relaxation component of tai chi may have the potential to improve the motor function of the paretic upper limb. Therefore, tai chi may be a promising upper limb rehabilitation method.
However, the presence of hemiplegia may be an important barrier to using tai chi for upper limb rehabilitation post stroke, potentially limiting the ability to actually perform upper limb tai chi movements. Similarly, shoulder pain and severe spasticity of the affected arm may impact on the ability to perform tai chi movements. Furthermore, the standing position used in traditional tai chi styles poses difficulties for persons with poor balance. Adapting tai chi to take into account these limitations may need to be included in post-stroke rehabilitation. Although sitting tai chi has been reported to be used in persons with spinal cord injuries to improve muscle strength of the upper limbs [25], little is known about how to adapt tai chi with respect to paretic upper limbs. Moreover, the feasibility of using adapted tai chi movements for upper limb rehabilitation remains unknown.
Therefore, this study aimed to explore the use of adapted tai chi movements for upper limb rehabilitation. More specifically, the objective was to evaluate the feasibility of using adapted tai chi for upper limb rehabilitation post stroke, including: (1) whether the adapted tai chi was performable and acceptable by participants; and (2) whether the potential influencing factors such as impairment level of an upper limb, insufficient balance, shoulder pain, and spasticity constrained the practice of the adapted tai chi. A second objective was to document the clinical reasoning underlying the adaptations made to tai chi based on the participants’ characteristics when used for upper limb rehabilitation post stroke. The efficacy of adapted tai chi has been reported elsewhere [26]. […]

Continue —>  Medicines | Free Full-Text | Adapting Tai Chi for Upper Limb Rehabilitation Post Stroke: A Feasibility Study | HTML

Medicines 04 00072 g001

Figure 1. Individual self-practice hours per month of participants.

, , , , , ,

Leave a comment

[BOOK] Virtual Reality Enhanced Robotic Systems for Disability Rehabilitation – Google Books

Virtual Reality Enhanced Robotic Systems for Disability Rehabilitation

Front Cover
Hu, Fei
IGI GlobalJan 7, 2016 – Technology & Engineering – 383 pages

The study of technology and its implications in the medical field has become an increasingly crucial area of research. By integrating technological innovations into clinical practices, patients can receive improved diagnoses and treatments, as well as faster and safer recoveries.

Virtual Reality Enhanced Robotic Systems for Disability Rehabilitation is an authoritative reference source for the latest scholarly research on the use of computer-assisted rehabilitation methods for disabled patients. Highlighting the application of robots, sensors, and virtual environments, this book is ideally designed for graduate students, engineers, technicians, and company administrators interested in the incorporation of auto-training methods in patient recovery.

Source: Virtual Reality Enhanced Robotic Systems for Disability Rehabilitation – Google Books

, , , ,

Leave a comment

%d bloggers like this: