Posts Tagged rehabilitation device

[BOOK Chapter] Application of a Robotic Rehabilitation Training System for Recovery of Severe Plegie Hand Motor Function after a Stroke – Full Text PDF


We have developed a rehabilitation training system (UR-System-PARKO: Useful
and Ultimate Rehabilitation System-PARKO) for patients after a stroke to promote
recovery of motor function of the severe plegic hand with hemiplegia. A clinical
test with six patients for the therapeutic effect of the UR-System-PARKO for severe
plegic hand was performed. For all patients, the active ranges of motion (total
active motion) of finger extension improved after training with the UR-SystemPARKO. Moreover, the modified Ashworth scale (MAS) scores of finger extension
increased. Thus, the training reduced the spastic paralysis. These results suggest the
effectiveness of training with the UR-System-PARKO for recovery of motor function as defined by finger extension in the severe plegic hand.

1. Introduction

Stroke is the leading cause of disability in Japan, with more than 1 million people
in Japan living with a disability as a result of stroke. Therefore, interventions that
address the sensorimotor impairments resulting from stroke are important. Motor
function may be restored more than 6 months after a stroke [1, 2], but these studies
included patients with only moderate poststroke hemiplegia, whereas most stroke
survivors have a severely plegic hand with difficulty extending the fingers [3]. This
suggests that a method is needed for treatment of these severely affected cases.
However, although a few studies on rehabilitation therapy for severe plegic hands
have been reported, no marked recovery of ability in extension of the fingers of
the plegic hands was achieved in any study [4, 5]. Proprioceptive neuromuscular
facilitation (PNF) is a therapeutic method that was reported to increase the muscle
strength of the plegic extremities in patients with stroke-induced hemiplegia [6].
However, since PNF is indicated for patients with a certain level of joint motion,
this method has not been used for severe plegic hands where the fingers cannot
extend. Thus, the first author developed a method to build up the extensor digitorum muscle strength using PNF [7, 8] for stroke patients with severe hemiplegia.

With this therapy, he has performed repeated facilitation training using his hands
on stroke patients with a severe plegic hand to help them recover their motor function, and a good treatment outcome was achieved [9, 10] (Figure 1).
Facilitation training uses extension of the elbow joint with resistance applied to
the tips of the fully extended hemiplegic fingers to increase the force of the extensor digitorum muscle. However, this approach is time-consuming for the therapist.
Therefore, development of a training system is required instead of repeated
facilitation training by a therapist. The objectives of this study were to develop
a training system to increase the output of the extensor digitorum muscle force
and to verify the effect of training with the developed system on a severe plegic
hand. The training system is called the UR-System-PARKO (a useful and ultimate
rehabilitation support system for PARKO). The UR-System-PARKO was developed
by remodeling the simplified training system, which developed previously for
resistance training of hemiplegic upper limbs [11]. A brace for securing the plegic
hand to the UR-System-PARKO was developed on the basis of repeated facilitation
training by a therapist.[…]

Download Full Text PDF

, , , , , , , , , , ,

Leave a comment

[ARTICLE] An Evaluation of the Design and Usability of a Novel Robotic Bilateral Arm Rehabilitation Device for Patients with Stroke – Full Text

Introduction: Robot-assisted therapy for upper limb rehabilitation is an emerging research topic and its design process must integrate engineering, neurological pathophysiology, and clinical needs.

Purpose of the study: This study developed/evaluated the usefulness of a novel rehabilitation device, the MirrorPath, designed for the upper limb rehabilitation of patients with hemiplegic stroke.

Methods: The process follows Tseng’s methodology for innovative product design and development, namely two stages, device development and usability assessment. During the development process, the design was guided by patients’ rehabilitation needs as defined by patients and their therapists. The design applied synchronic movement of the bilateral upper limbs, an approach that is compatible with the bilateral movement therapy and proprioceptive neuromuscular facilitation theories. MirrorPath consists of a robotic device that guides upper limb movement linked to a control module containing software controlling the robotic movement.

Results: Five healthy subjects were recruited in the pretest, and 4 patients, 4 caregivers, and 4 therapists were recruited in the formal test for usability. All recruited subjects were allocated to the test group, completed the evaluation, and their data were all analyzed. The total system usability scale score obtained from the patients, caregivers, and therapists was 71.8 ± 11.9, indicating a high level of usability and product acceptance.

Discussion and conclusion: Following a standard development process, we could yield a design that meets clinical needs. This low-cost device provides a feasible platform for carrying out robot-assisted bilateral movement therapy of patients with hemiplegic stroke.

Clinical Trial Registration: identifier NCT02698605.


The World Health Organization (WHO) has reported that stroke is the third leading cause of death in developed countries and involves approximately 15 million stoke events annually. One-third of stroke patients die and a further one-third of events results in permanent disability. Depending on the location of the brain insult, stroke can lead to a wide range of functional impairments (Mackay et al., 2004); these include language, cognition, sensation, and motor functions. Motor impairment impacts the patient’s ability to perform activities of daily living. For the majority of patients, recovery of motor function involving an upper limb is slower than that of lower limb (Feys et al., 1998). Indeed, most activities of daily living rely the functioning of the upper limb, thus emphasizing the need for effective upper limb rehabilitation.

With an attempt to enhance the effectiveness of upper limb rehabilitation among stroke patients, a series of rehabilitation techniques have been developed and refined in recent decades; these include task-oriented motor training, constraint-induced movement therapy, mirror therapy, and bilateral movement training. Each of these methods has a number of theoretical advocates and each has been shown to be effective clinically. For instance, bilateral movement therapy, which involves coordinated movement of the bilateral upper limbs, has been shown to enhance upper limb recovery and coordination between the hands. Stoykov et al. (2009) found that bilateral arm training is more effective than unilateral training when restoring proximal upper limb function because it seems to improve the functional linkages between the bilateral hemispheres.

Even after receiving a full course of conventional rehabilitation, 60% of stroke patients still have difficulties when using their affected upper limb (Kwakkel et al., 1999). As a result, it has become the upmost importance to develop novel rehabilitation strategies that are able to help patients reach a higher level of recovery. One such approach is robot-assisted rehabilitation, which incorporates robotic technologies into the rehabilitation processes. Several well-known robot-assisted movement therapies for the upper limb has been implemented clinically, including MIT-Manus (Krebs et al., 1998), Bi-Manu-Track (Hesse et al., 2003), BATRAC (Cauraugh et al., 2010), and MIME (Burgar et al., 2000), each of which follows different movement therapy theories. Regarding the body parts that are mainly involved in therapy, Bi-Manu-Track focuses on the bilateral forearms and wrists, while BATRAC and MIME focus on the shoulder and elbow of the affected limb. Regarding the movement dimension, BATRAC involves movement in one-dimension, while MIME allows three-dimensional movement. In fact, the higher the degrees of freedom adopted during the movement therapy, the more complex is the design of the robotic device. As a result, it has become important to come up with a feasible design that fulfills the patient’s rehabilitation needs while avoiding the high costs that can be associated with instrument acquirement and maintenance. Furthermore, the effectiveness of the system needs to be comparable to that provided by conventional therapies so that a motivation to pursue this therapeutic option can be established (Kwakkel et al., 2008; Lo et al., 2010).

As an approach to the development of mechanical rehabilitation devices for hemiplegic upper limbs, Timmermans et al. (2009) proposed that three design domains are required; these were the therapy techniques used, the motivation of the patient, and resulting performance rewards. An online survey of physical therapists, 233 in total, indicated that a preferred upper limb robotic device needs to accommodate different hand movements, to be able to be used while in a seated position, to be able to provide the user with feedback, to focus on the restoration of activities of daily living, to able to be used at home, to have adjustable resistance levels and to cost less than US$6,000 (Lu et al., 2011).

In terms of usability, the interaction between the user and the machine tends to be overlooked during the development stage. Although a variety of upper limb rehabilitation machines have been proposed, only a few have been commercialized. This low market acceptance can be attributed to the high cost of these devices, safety concerns, and poor usability (Lee et al., 2005). To this end, the aim of this study was to design a bilateral upper limb rehabilitation device called MirrorPath for the rehabilitation of stroke patients that follows the theories of bilateral movement therapy and proprioceptive neuromuscular facilitation (PNF). These two theories were initially developed by Knott and Kabat and have been shown to have a positive effect on the range of active and passive motions needed by stroke patients (Sharman et al., 2006). Our device will guide the patient’s upper limbs, each of which moves along a diagonal motion path on the horizontal plane. The position and velocity of motion of the bilateral limbs are perfectly mirrored across the midline on the table. Finally, usability testing was conducted on the completed prototype.

Continue —>  Frontiers | An Evaluation of the Design and Usability of a Novel Robotic Bilateral Arm Rehabilitation Device for Patients with Stroke | Frontiers in Neurorobotics

Figure 2. (A) A patient performed bilateral diagonal movements using the device; (B) due to weakness of right upper limb, the patient’s grip was assisted with an elastic bandage, and the patient’s elbow was support by a sling; (C) the application scenario.

, , , , , , , , ,

Leave a comment

%d bloggers like this: