Posts Tagged reserve

[Abstract + References] Cognitive Reserve as an Emerging Concept in Stroke Recovery

Stroke is a leading cause of death and disability. It is a complex and largely heterogeneous condition. Prognosis for variations in impairment and recovery following stroke continues to be challenging and inaccurate, highlighting the need to examine the influence of other currently unknown variables to better predict and understand interindividual differences in stroke impairment and recovery. The concept of “cognitive reserve,” a feature of brain function said to moderate the relationship between brain pathology and clinical outcomes, might provide a partial explanation. This review discusses the potential significance of cognitive reserve in the context of stroke, with reference to reduced burden of disability poststroke, health promotion, intervention and secondary prevention of cognitive impairment, ease and challenges of translation into clinical practice, prognosis and prediction of recovery, and clinical decisions and trial stratification. Discussions from the review aim to encourage stroke clinicians and researchers to better consider the role of premorbid, lifestyle-related variables, such as cognitive reserve, in facilitating successful neurological outcomes and recovery following stroke.

1. Murphy, TH, Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861872.
Google Scholar | Crossref | Medline | ISI


2. Donkor, ES. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165.
Google Scholar | Crossref | Medline


3. Boyd, LA, Hayward, KS, Ward, NS, et alBiomarkers of stroke recovery: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017;12:480493.
Google Scholar | SAGE Journals | ISI


4. Jang, SH. The role of the corticospinal tract in motor recovery in patients with a stroke: a review. NeuroRehabilitation. 2009;24:285290.
Google Scholar | Crossref | Medline | ISI


5. Stinear, CM, Byblow, WD, Ackerley, SJ, Smith, MC, Borges, VM, Barber, PA. PREP2: a biomarker-based algorithm for predicting upper limb function after stroke. Ann Clin Transl Neurol. 2017;4:811820.
Google Scholar | Crossref | Medline


6. Chamorro, A, Vila, N, Ascaso, C, et alEarly prediction of stroke severity. Role of the erythrocyte sedimentation rate. Stroke. 1995;26:573576.
Google Scholar | Crossref | Medline | ISI


7. Cheng, B, Forkert, ND, Zavaglia, M, et alInfluence of stroke infarct location on functional outcome measured by the modified Rankin scale. Stroke. 2014;45:16951702.
Google Scholar | Crossref | Medline | ISI


8. Fridriksson, J, Guo, D, Fillmore, P, Holland, A, Rorden, C. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain. 2013;136(pt 11):34513460.
Google Scholar | Crossref | Medline


9. Grube, MM, Koennecke, HC, Walter, G, et al; Berlin Stroke Register . Association between socioeconomic status and functional impairment 3 months after ischemic stroke: the Berlin Stroke Register. Stroke. 2012;43:33253330.
Google Scholar | Crossref | Medline


10. Lansberg, MG, Lee, J, Christensen, S, et alRAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Stroke. 2011;42:16081614.
Google Scholar | Crossref | Medline | ISI


11. Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448460.
Google Scholar | Crossref | Medline | ISI


12. Umarova, RM. Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: implications for understanding neglect. Cortex. 2017;97:327338.
Google Scholar | Crossref | Medline


13. Pinter, D, Enzinger, C, Fazekas, F. Cerebral small vessel disease, cognitive reserve and cognitive dysfunction. J Neurol. 2015;262:24112419.
Google Scholar | Crossref | Medline


14. Barulli, D, Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci. 2013;17:502509.
Google Scholar | Crossref | Medline | ISI


15. Winkleby, MA, Jatulis, DE, Frank, E, Fortmann, SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health. 1992;82:816820.
Google Scholar | Crossref | Medline | ISI


16. Stern, Y. Cognitive reserve. Neuropsychologia. 2009;47:20152028.
Google Scholar | Crossref | Medline | ISI


17. Rosenich, E, Hordacre, B, McDonnell, M, Hillier, SL. Brain and cognitive reserve measurement in healthy and neurological populations: a scoping reviewPaper presented at: 47th Annual Meeting of the International Neuropsychological SocietyFebruary 2019New York, NY.
Google Scholar


18. Satz, P. Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology. 1993;7:273295.
Google Scholar | Crossref


19. Stern, Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(3 suppl 2):S69S74.
Google Scholar | Crossref | Medline | ISI


20. Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11:10061012.
Google Scholar | Crossref | Medline | ISI


21. Jones, RN, Manly, J, Glymour, MM, Rentz, DM, Jefferson, AL, Stern, Y. Conceptual and measurement challenges in research on cognitive reserve. J Int Neuropsychol Soc. 2011;17:593601.
Google Scholar | Crossref | Medline | ISI


22. Lenehan, ME, Summers, MJ, Saunders, NL, et alSending your grandparents to university increases cognitive reserve: the Tasmanian Healthy Brain Project. Neuropsychology. 2016;30:525531.
Google Scholar | Crossref | Medline


23. Steffener, J, Reuben, A, Rakitin, BC, Stern, Y. Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve. Brain Imaging Behav. 2011;5:212221.
Google Scholar | Crossref | Medline


24. Steffener, J, Stern, Y. Exploring the neural basis of cognitive reserve in aging. Biochim Biophys Acta. 2012;1822:467473.
Google Scholar | Crossref | Medline


25. Cizginer, S, Marcantonio, E, Vasunilashorn, S, et alThe cognitive reserve model in the development of delirium: the successful aging after elective surgery study. J Geriatr Psychiatry Neurol. 2017;30:337345.
Google Scholar | SAGE Journals | ISI


26. Albers, GW, Marks, MP, Kemp, S, et al; EFUSE 3 Investigators . Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708718.
Google Scholar | Crossref | Medline


27. Vance, DE, Crowe, M. A proposed model of neuroplasticity and cognitive reserve in older adults. Act Adapt Aging. 2006;30:6179.
Google Scholar | Crossref


28. Booth, AJ, Rodgers, JD, Schwartz, CE, et alActive cognitive reserve influences the regional atrophy to cognition link in multiple sclerosis. J Int Neuropsychol Soc. 2013;19:11281133.
Google Scholar | Crossref | Medline


29. Sachdev, PS, Brodaty, H, Valenzuela, MJ, Lorentz, LM, Koschera, A. Progression of cognitive impairment in stroke patients. Neurology. 2004;63:16181623.
Google Scholar | Crossref | Medline | ISI


30. Vemuri, P, Lesnick, TG, Przybelski, SA, et alVascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain. 2015;138(3 pt):761771. doi:10.1093/brain/awu393
Google Scholar | Crossref | Medline


31. Langhorne, P, Bernhardt, J, Kwakkel, G. Stroke rehabilitation. Lancet. 2011;377:16931702.
Google Scholar | Crossref | Medline | ISI


32. Levin, MF, Kleim, JA, Wolf, SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23:313319.
Google Scholar | SAGE Journals | ISI


33. Stern, Y, Gazes, Y, Razlighi, Q, Steffener, J, Habeck, C. A task-invariant cognitive reserve network. Neuroimage. 2018;178:3645.
Google Scholar | Crossref | Medline


34. Buchman, AS, Yu, L, Boyle, PA, Schneider, JA, De Jager, PL, Bennett, DA. Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology. 2016;86:735741.
Google Scholar | Crossref | Medline


35. Nithianantharajah, J, Hannan, AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol. 2009;89:369382.
Google Scholar | Crossref | Medline | ISI


36. Babulal, GM, Huskey, TN, Roe, CM, Goette, SA, Connor, LT. Cognitive impairments and mood disruptions negatively impact instrumental activities of daily living performance in the first three months after a first stroke. Top Stroke Rehabil. 2015;22:144151.
Google Scholar | Crossref | Medline


37. Brainin, M, Tuomilehto, J, Heiss, WD, et alPost-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015;22:229238,e13-e16.
Google Scholar | Crossref | Medline | ISI


38. Cumming, TB, Marshall, RS, Lazar, RM. Stroke, cognitive deficits, and rehabilitation: still an incomplete picture. Int J Stroke. 2013;8:3845.
Google Scholar | SAGE Journals | ISI


39. Pendlebury, ST, Rothwell, PM; Oxford Vascular Study . Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study. Lancet Neurol. 2019;18:248258.
Google Scholar | Crossref | Medline


40. Makin, SDJ, Turpin, S, Dennis, MS, Wardlaw, JM. Cognitive impairment after lacunar stroke: systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes. J Neurol Neurosurg Psychiatry. 2013;84:893900.
Google Scholar | Crossref | Medline | ISI


41. Ojala-Oksala, J, Jokinen, H, Kopsi, V, et alEducational history is an independent predictor of cognitive deficits and long-term survival in postacute patients with mild to moderate ischemic stroke. Stroke. 2012;43:29312935.
Google Scholar | Crossref | Medline | ISI


42. Umarova, RM, Sperber, C, Kaller, CP, et alCognitive reserve impacts on disability and cognitive deficits in acute stroke. J Neurol. 2019;266:24952504.
Google Scholar | Crossref | Medline


43. Farfel, JM, Nitrini, R, Suemoto, CK, et al; Brazilian Aging Brain Study Group . Very low levels of education and cognitive reserve: a clinicopathologic study. Neurology. 2013;81:650657.
Google Scholar | Crossref | Medline


44. Makin, SD, Doubal, FN, Shuler, K, et alThe impact of early-life intelligence quotient on post stroke cognitive impairment. Eur Stroke J. 2018;3:145156.
Google Scholar | SAGE Journals | ISI


45. Alladi, S, Bak, TH, Mekala, S, et alImpact of bilingualism on cognitive outcome after stroke. Stroke. 2016;47:258261.
Google Scholar | Crossref | Medline


46. Glymour, MM, Weuve, J, Fay, ME, Glass, T, Berkman, LF. Social ties and cognitive recovery after stroke: does social integration promote cognitive resilience? Neuroepidemiology. 2008;31:1020.
Google Scholar | Crossref | Medline | ISI


47. Abutalebi, J, Guidi, L, Borsa, V, et alBilingualism provides a neural reserve for aging populations. Neuropsychologia. 2015;69:201210.
Google Scholar | Crossref | Medline


48. Antoniou, M, Wright, SM. Uncovering the mechanisms responsible for why language learning may promote healthy cognitive aging. Front Psychol. 2017;8:2217.
Google Scholar | Crossref | Medline


49. Luk, G, Bialystok, E, Craik, FI, Grady, CL. Lifelong bilingualism maintains white matter integrity in older adults. J Neurosci. 2011;31:1680816813.
Google Scholar | Crossref | Medline | ISI


50. Langhorne, P, Coupar, F, Pollock, A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741754.
Google Scholar | Crossref | Medline | ISI


51. Stinear, CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16:826836.
Google Scholar | Crossref | Medline


52. Bigourdan, A, Munsch, F, Coupé, P, et alEarly fiber number ratio is a surrogate of corticospinal tract integrity and predicts motor recovery after stroke. Stroke. 2016;47:10531059.
Google Scholar | Crossref | Medline | ISI


53. Grefkes, C, Fink, GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13:206216.
Google Scholar | Crossref | Medline | ISI


54. Cramer, SC . Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008;63:272287.
Google Scholar | Crossref | Medline | ISI


55. Marshall, IJ, Wang, Y, Crichton, S, McKevitt, C, Rudd, AG, Wolfe, CD. The effects of socioeconomic status on stroke risk and outcomes. Lancet Neurol. 2015;14:12061218.
Google Scholar | Crossref | Medline | ISI


56. Bettger, JP, Zhao, X, Bushnell, C, et alThe association between socioeconomic status and disability after stroke: findings from the Adherence eValuation After Ischemic stroke Longitudinal (AVAIL) registry. BMC Public Health. 2014;14:281.
Google Scholar | Crossref | Medline | ISI


57. Marsh, EB, Lawrence, E, Hillis, AE, Chen, K, Gottesman, RF, Llinas, RH. Pre-stroke employment results in better patient-reported outcomes after minor stroke. Clin Neurol Neurosurg. 2018;165:3842.
Google Scholar | Crossref | Medline


58. El Hachioui, H, Lingsma, HF, van de Sandt-Koenderman, MW, Dippel, DW, Koudstaal, PJ, Visch-Brink, EG. Long-term prognosis of aphasia after stroke. J Neurol Neurosurg Psychiatry. 2013;84:310315.
Google Scholar | Crossref | Medline


59. Watila, MM, Balarabe, SA. Factors predicting post-stroke aphasia recovery. J Neurol Sci. 2015;352:1218.
Google Scholar | Crossref | Medline


60. González-Fernández, M, Davis, C, Molitoris, JJ, Newhart, M, Leigh, R, Hillis, AE. Formal education, socioeconomic status, and the severity of aphasia after stroke. Arch Phys Med Rehabil. 2011;92:18091813.
Google Scholar | Crossref | Medline


61. Marchina, S, Zhu, LL, Norton, A, Zipse, L, Wan, CY, Schlaug, G. Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke. 2011;42:22512256.
Google Scholar | Crossref | Medline | ISI


62. Hackett, ML, Pickles, K. Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. Int J Stroke. 2014;9:10171025.
Google Scholar | SAGE Journals | ISI


63. Backhouse, EV, McHutchison, CA, Cvoro, V, Shenkin, SD, Wardlaw, JM. Cognitive ability, education and socioeconomic status in childhood and risk of post-stroke depression in later life: a systematic review and meta-analysis. PLoS One. 2018;13:e0200525.
Google Scholar | Crossref | Medline


64. Feigin, VL, Forouzanfar, MH, Krishnamurthi, R, et alGlobal and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383:245255.
Google Scholar | Crossref | Medline | ISI


65. Feigin, VL, Roth, GA, Naghavi, M, et alGlobal burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913924.
Google Scholar | Crossref | Medline | ISI


66. Nunnari, D, Bramanti, P, Marino, S. Cognitive reserve in stroke and traumatic brain injury patients. Neurol Sci. 2014;35:15131518.
Google Scholar | Crossref | Medline


67. Richards, M, Sacker, A. Lifetime antecedents of cognitive reserve. J Clin Exp Neuropsychol. 2003;25:614624.
Google Scholar | Crossref | Medline | ISI


68. Fratiglioni, L, Paillard-Borg, S, Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3:343353.
Google Scholar | Crossref | Medline | ISI


69. Chan, D, Shafto, M, Kievit, R, et alLifestyle activities in mid-life contribute to cognitive reserve in late-life, independent of education, occupation, and late-life activities. Neurobiol Aging. 2018;70:180183.
Google Scholar | Crossref | Medline


70. Moretti, L, Cristofori, I, Weaver, SM, Chau, A, Portelli, JN, Grafman, J. Cognitive decline in older adults with a history of traumatic brain injury. Lancet Neurol. 2012;11:11031112.
Google Scholar | Crossref | Medline | ISI


71. Mirza, SS, Portegies, ML, Wolters, FJ, et alHigher education is associated with a lower risk of dementia after a stroke or TIA. The Rotterdam study. Neuroepidemiology. 2016;46:120127.
Google Scholar | Crossref | Medline


72. Malsch, C, Liman, T, Wiedmann, S, et alOutcome after stroke attributable to baseline factors—the PROSpective Cohort with Incident Stroke (PROSCIS). PLoS One. 2018;13:e0204285.
Google Scholar | Crossref | Medline


73. Colcombe, SJ, Erickson, KI, Scalf, PE, et alAerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61:11661170.
Google Scholar | Crossref | Medline | ISI


74. Marzolini, S, Oh, P, McIlroy, W, Brooks, D. The effects of an aerobic and resistance exercise training program on cognition following stroke. Neurorehabil Neural Repair. 2013;27:392402.
Google Scholar | SAGE Journals | ISI


75. Bo, W, Lei, M, Tao, S, et alEffects of combined intervention of physical exercise and cognitive training on cognitive function in stroke survivors with vascular cognitive impairment: a randomized controlled trial. Clin Rehabil. 2019;33:5463.
Google Scholar | SAGE Journals | ISI


76. Ploughman, M, Eskes, GA, Kelly, LP, et alSynergistic benefits of combined aerobic and cognitive training on fluid intelligence and the role of IGF-1 in chronic stroke. Neurorehabil Neural Repair. 2019;33:199212.
Google Scholar | SAGE Journals | ISI


77. Wang, HX, MacDonald, SW, Dekhtyar, S, Fratiglioni, L. Association of lifelong exposure to cognitive reserve-enhancing factors with dementia risk: a community-based cohort study. PLoS Med. 2017;14:e1002251.
Google Scholar | Crossref | Medline


78. Chapko, D, McCormack, R, Black, C, Staff, R, Murray, A. Life-course determinants of cognitive reserve (CR) in cognitive aging and dementia—a systematic literature review. Aging Ment Health. 2018;22:915926.
Google Scholar | Crossref | Medline


79. Feigin, VL, Krishnamurthi, R, Bhattacharjee, R, et alNew strategy to reduce the global burden of stroke. Stroke. 2015;46:17401747.
Google Scholar | Crossref | Medline | ISI


80. Willis, K, Hakim, AM. Stroke prevention and cognitive reserve: emerging approaches to modifying risk and delaying onset of dementia. Front Neurol. 2013;4:13.
Google Scholar | Crossref | Medline


81. Nucci, M, Mapelli, D, Mondini, S. Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging Clin Exp Res. 2012;24:218226.
Google Scholar | Medline


82. Stinear, C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9:12281232.
Google Scholar | Crossref | Medline | ISI


83. Leary, JB, Kim, GY, Bradley, CL, et alThe association of cognitive reserve in chronic-phase functional and neuropsychological outcomes following traumatic brain injury. J Head Trauma Rehabil. 2018;33:E28E35.
Google Scholar | Crossref | Medline


84. Cramer, SC, Wolf, SL, Adams, HP, et alStroke recovery and rehabilitation research: issues, opportunities, and the National Institutes of Health StrokeNet. Stroke. 2017;48:813819.
Google Scholar | Crossref | Medline


85. Fortune, DG, Walsh, RS, Richards, HL. Cognitive reserve and preinjury educational attainment: effects on outcome of community-based rehabilitation for longer-term individuals with acquired brain injury. Int J Rehabil Res. 2016;39:234239.
Google Scholar | Crossref | Medline


86. Munsch, F, Sagnier, S, Asselineau, J, et alStroke location is an independent predictor of cognitive outcome. Stroke. 2016;47:6673.
Google Scholar | Crossref | Medline


87. Matthews, KA, Gallo, LC. Psychological perspectives on pathways linking socioeconomic status and physical health. Annu Rev Psychol. 2011;62:501530.
Google Scholar | Crossref | Medline | ISI


88. Glader, EL, Edlund, H, Sukhova, M, Asplund, K, Norrving, B, Eriksson, M. Reduced inequality in access to stroke unit care over time: a 15-year follow-up of socioeconomic disparities in Sweden. Cerebrovasc Dis. 2013;36:407411.
Google Scholar | Crossref | Medline


89. Stecksén, A, Glader, EL, Asplund, K, Norrving, B, Eriksson, M. Education level and inequalities in stroke reperfusion therapy: observations in the Swedish stroke register. Stroke. 2014;45:27622768.
Google Scholar | Crossref | Medline


90. Ikanga, J, Hill, EM, MacDonald, DA. The conceptualization and measurement of cognitive reserve using common proxy indicators: testing some tenable reflective and formative models. J Clin Exp Neuropsychol. 2017;39:7283.
Google Scholar | Crossref | Medline


91. Reed, BR, Mungas, D, Farias, ST, et alMeasuring cognitive reserve based on the decomposition of episodic memory variance. Brain. 2010;133(pt 8):21962209.
Google Scholar | Crossref | Medline


92. Sandry, J, DeLuca, J, Chiaravalloti, N. Working memory capacity links cognitive reserve with long-term memory in moderate to severe TBI: a translational approach. J Neurol. 2015;262:5964.
Google Scholar | Crossref | Medline


93. Schwartz, CE, Michael, W, Zhang, J, Rapkin, BD, Sprangers, MAG. Assessing reserve-building pursuits and person characteristics: psychometric validation of the Reserve-Building Measure. Qual Life Res. 2018;27:423436.
Google Scholar | Crossref | Medline

via Cognitive Reserve as an Emerging Concept in Stroke Recovery – Emily Rosenich, Brenton Hordacre, Catherine Paquet, Simon A. Koblar, Susan L. Hillier,

, , , , ,

Leave a comment

[Abstract] The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases

ABSTRACT

The acute and chronic effects of traumatic brain injury (TBI) have been widely described; however, there is limited knowledge on how a TBI sustained during early adulthood or mid-adulthood will influence aging. Epidemiological studies have explored whether TBI poses a risk for dementia and other neurodegenerative diseases associated with aging. We will discuss the influence of TBI and resulting medical comorbidities such as endocrine, sleep, and inflammatory disturbances on age-related gray and white matter changes and cognitive decline. Post mortem studies examining amyloid, tau, and other proteins will be discussed within the context of neurodegenerative diseases and chronic traumatic encephalopathy. The data support the suggestion that pathological changes triggered by an earlier TBI will have an influence on normal aging processes and will interact with neurodegenerative disease processes rather than the development of a specific disease, such as Alzheimer’s or Parkinson’s. Chronic neurophysiologic change after TBI may have detrimental effects on neurodegenerative disease.

Users who read this article also read

No Access
A Systematic Review of Psychological Interventions for Sleep and Fatigue after Mild Traumatic Brain Injury

Karen A. SullivanHannah BlaineSherrie-Anne KayeAlice TheadomCatherine HadenSimon S. Smith

Journal of Neurotrauma. November 2017, ahead of print.

Abstract | Full Text PDF or HTML | Reprints/Permissions

No Access
Prefrontal Cortical Thickening after Mild Traumatic Brain Injury: A One-Year Magnetic Resonance Imaging Study

Patrizia Dall’AcquaSönke JohannesLadislav MicaHans-Peter SimmenRichard GlaabJavier FandinoMarkus SchwendingerChristoph MeierErika Jasmin UlbrichAndreas MüllerLutz JänckeJürgen Hänggi

Journal of Neurotrauma. Dec 2017: 3270-3279.

Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions

No Access
Risk Factors for Mild Traumatic Brain Injury and Subsequent Post-Traumatic Stress Disorder and Mental Health Disorders among United States Army Soldiers

Dennis E. ScofieldSusan P. ProctorJoseph R. KardouniOwen T. HillCraig J. McKinnon

Journal of Neurotrauma. Dec 2017: 3249-3255.

Abstract | Full Text PDF or HTML | Reprints | Permissions

No Access
Age at First Exposure to Repetitive Head Impacts Is Associated with Smaller Thalamic Volumes in Former Professional American Football Players

Vivian SchultzRobert A. SternYorghos TripodisJulie StammPawel WrobelChristian LepageIsabelle WeirJeffrey P. GuenetteAlicia ChuaMichael L. AloscoChristine M. BaughNathan G. FrittsBrett M. MartinChristine E. ChaissonMichael J. ColemanAlexander P. LinOfer PasternakMartha E. ShentonInga K. Koerte

Journal of Neurotrauma. November 2017, ahead of print.

Abstract | Full Text PDF or HTML | Reprints/Permissions

No Access
The Default Mode Network as a Biomarker of Persistent Complaints after Mild Traumatic Brain Injury: A Longitudinal Functional Magnetic Resonance Imaging Study

Harm J. van der HornMyrthe E. ScheenenMyrthe E. de KoningEdith J. LiemburgJacoba M. SpikmanJoukje van der Naalt

Journal of Neurotrauma. Dec 2017: 3262-3269.

Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions

No Access
The Invisibility of Mild Traumatic Brain Injury: Impaired Cognitive Performance as a Silent Symptom

Leore R. HeimMiaad BaderShahaf EdutLital RachmanyRenana Baratz-GoldsteinRan LinAviya ElpazDoaa QubtyLior BikovskiVardit RubovitchShaul SchreiberChaim G. Pick

Journal of Neurotrauma. Sep 2017: 2518-2528.

Abstract | Full Text PDF or HTML | Supplementary Material | Reprints | Permissions

via The Impact of Traumatic Brain Injury on Later Life: Effects on Normal Aging and Neurodegenerative Diseases | Abstract

, , , , ,

Leave a comment

%d bloggers like this: