Posts Tagged Robot-assisted therapy

[ARTICLE] Mapping upper-limb motor performance after stroke – a novel method with utility for individualized motor training – Full Text

Abstract

Background

Chronic upper limb motor impairment is a common outcome of stroke. Therapeutic training can reduce motor impairment. Recently, a growing interest in evaluating motor training provided by robotic assistive devices has emerged. Robot-assisted therapy is attractive because it provides a means of increasing practice intensity without increasing the workload of physical therapists. However, movements practised through robotic assistive devices are commonly pre-defined and fixed across individuals. More optimal training may result from individualizing the selection of the trained movements based on the individual’s impairment profile. This requires quantitative assessment of the degree of the motor impairment prior to training, in relevant movement tasks. However, standard clinical measures for profiling motor impairment after stroke are often subjective and lack precision. We have developed a novel robot-mediated method for systematic and fine-grained mapping (or profiling) of individual performance across a wide range of planar arm reaching movements. Here we describe and demonstrate this mapping method and its utilization for individualized training. We also present a novel principle for the individualized selection of training movements based on the performance maps.

Methods and Results

To demonstrate the utility of our method we present examples of 2D performance maps produced from the kinetic and kinematics data of two individuals with stroke-related upper limb hemiparesis. The maps outline distinct regions of high motor impairment. The procedure of map-based selection of training movements and the change in motor performance following training is demonstrated for one participant.

Conclusions

The performance mapping method is feasible to produce (online or offline). The 2D maps are easy to interpret and to be utilized for selecting individual performance-based training. Different performance maps can be easily compared within and between individuals, which potentially has diagnostic utility.

Background

Impaired upper-limb (UL) function is one of the most common consequences of stroke [123], which can severely hamper activities of daily living and reduce quality of life. Certain intervention methods can promote some recovery of UL motor function though their outcome shows high variability and depends on the intensity (repetition) of the intervention [456789].

Robotic assistive technologies can be beneficial for improving clinical scores of UL motor impairment [910], by allowing intensive training [911121314]. However, currently there is no consistent evidence for the effectiveness of robot-assisted UL therapy for improving daily living activity [15]. One possibility is that the tasks performed with robotic assistance do not generalise to everyday tasks. Another possibility is that the tasks are not optimised for the trained individuals. Currently, in robot-assisted therapy the set of practiced movements are usually pre-determined, with limited regard to the motor profile of the individual (e.g. ‘centre-out’ point-to-point reaches, or forearm pronation/supination, wrist extension/flexion [161718]). However, the effectiveness of training for motor recovery is likely to depend on the difficulty to perform the task due to motor impairment [19]. For example, training focused on unimpaired movements or on tasks that are either too easy or too difficult is likely to contribute relatively little to motor learning and recovery [192021]. An advantage of the robot-mediated approach is that it allows the collection of various accurate and real-time data about motor performance that would be potentially useful for individualized adjustments of the therapy; e.g. selection of training tasks based on the profile of motor performance. Yet, prescribing training conditions based on a motor performance profile requires characterising motor performance across a range of movement conditions for each individual. Here we present a novel computerised method for systematically mapping individuals’ UL motor performance (or impairment) across a wide range of robot-mediated reaching movements. The map can then serve as a basis for individualised and performance-based selection of training movements.

For optimal utilization of a motor performance map, the mapped metrics should reflect basic components of sensorimotor control, so that the map can be directly linked to processes underlying the movements (e.g. muscle activity and movement representation). Continuous metrics, allowing smoothing and interpolation from tested movements to neighbouring untested regions are also valuable. Accordingly, our mapping of reaching performance is done across the two dimensions of target location (in angular coordinates relative to a central position) and of prescribed starting location (again in angular coordinates relative to the selected target, which indicates the dictated movement direction). The range of target and start locations tests both postural and movement-related aspects of motor control, respectively. Importantly, muscle activation patterns and population neural activity in the motor-related cortices show tuning to one or both task dimensions [22232425], and behavioural studies support the essential underlying role of these parameters in planning of reaching movements [2627].

Of course, the usefulness of a motor performance map for prescribing performance-based training also depends on an appropriate principle for the selection of movements to be practiced. Here we demonstrate the utility of our mapping method for individualized task selection based on a principle which we term “steepest gradients” (SG), although the motor performance map can be the basis for alternative task selection principles. The SG principle is founded on the idea that training with tasks performed with an intermediate range of difficulty would allow more improvement and learning-induced plasticity, compared to training with very difficult or easy tasks [1928] .

Here we report the details of the mapping methods, and show its efficacy in portraying relevant motor impairment patterns for individual subjects. We also briefly demonstrate its utility for individually-tailored selection of practiced movement using the SG principle. However, our evidence for the utility and benefit of the mapping method for individualizing UL robot-mediated rehabilitation after stroke will be reported in subsequent publications.[…]

 

Continue —> Mapping upper-limb motor performance after stroke – a novel method with utility for individualized motor training | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1Schematic description of the experimental setting (top view). a The participant held the handle of a robotic manipulandum (indicated onscreen by a red disc; not shown), which allowed planar reaching movements from a start position (white onscreen disc (here gray) to a target position (blue onscreen disc; here black) and provided assisting and guiding forces as needed. Hand’s grip was maintained via a special glove and the forearm was supported against gravity (not shown). The participant leaned his/her head against a headrest, maintaining upright seating posture (ensured using a harness). The horizontal display occluded the hand and the manipulandum from vision. The start-to-target axis (y) and its perpendicular axis (x) correspond to the axes of the assisting and guiding forces, respectively, which were provided during the arm movement as needed by the robot. Adapted from Howard et al. (2009). b The reaching workspace used for mapping performance. The locations of the 8 targets, used in the mapping sessions, are indicated by small open circles. An example of the arm posture when the hand located at the 90o target is shown. Participants were tested with 5cm reaches to each target from 8 start locations (indicated, for the example target, by small black dots). The dashed circle indicates the extent of the mapped workspace. The drawing reflects the actual relationship of target and start locations and arm posture, based on a photograph taken with a healthy participant

Advertisements

, , , , , , , , ,

Leave a comment

[Abstract] The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study

Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive training that is needed to trigger neuroplasticity following a stroke. However, the lack of fully adaptive assist-as-needed control of the robotic devices and an inadequate immersive virtual environment that can promote active participation during training are obstacles hindering the achievement of better training results with fewer training sessions required. This study thus focuses on these research gaps by combining these 2 key components into a rehabilitation system, with special attention on the rehabilitation of fine hand motion skills. The effectiveness of the proposed system is tested by conducting clinical trials on a chronic stroke patient and verified through clinical evaluation methods by measuring the key kinematic features such as active range of motion (ROM), finger strength, and velocity. By comparing the pretraining and post-training results, the study demonstrates that the proposed method can further enhance the effectiveness of fine hand motion rehabilitation training by improving finger ROM, strength, and coordination.

Source: The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study

, , , , , , , , , , ,

Leave a comment

[REVIEW] Is robot-assisted therapy effective in upper extremity recovery in early stage stroke? —a systematic literature review

Abstract

[Purpose] The aim of this study was to systematically investigate the effects of robot-assisted therapy on the upper extremity in acute and subacute stroke patients.

[Subjects and Methods] The papers retrieved were evaluated based on the following inclusion criteria: 1) design: randomized controlled trials; 2) population: stroke patients 3) intervention: robot-assisted therapy; and 4) year of publication: May 2012 to April 2016. Databased searched were: EMBASE, PubMed and COCHRAN databases. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. [Results] Of the 637 articles searched, six studies were included in this systematic review. The PEDro scores range from 7 to 9 points.

[Conclusion] This review confirmed that the robot-assisted therapy with three-dimensional movement and a high degree of freedom had positive effects on the recovery of upper extremity motor function in patients with early-stage stroke. We think that the robot-assisted therapy could be used to improve upper extremity function for early stage stroke patients in
clinical setting.
 

, , , , , ,

Leave a comment

[ARTICLE] Effect of Upper Extremity Robot-Assisted Exercise on Spasticity in Stroke Patients – Full Text

ABSTRACT

Objective: To determine the efficacy of a stretching and strengthening exercise program using an upper extremity robot, as compared with a conventional occupational therapy program for upper extremity spasticity in stroke patients.

 

Methods: Subjects were randomly divided into a robot-assisted therapy (RT) group and a conventional rehabilitation therapy (CT) group. RT group patients received RT and CT once daily for 30 minutes each, 5 days a week, for 2 weeks. RT was performed using an upper-extremity robot (Neuro-X; Apsun Inc., Seoul, Korea), and CT was administered by occupational therapists. CT group patients received CT alone twice daily for 30 minutes, 5 days a week, for 2 weeks. Modified Ashworth Scale (MAS) was used to measure the spasticity of upper extremity. Manual muscle tests (MMT), Manual Function Tests (MFT), Brunnstrom stage, and the Korean version of Modified Barthel Index (K-MBI) were used to measure the strength and function of upper extremity. All measurements were obtained before and after 2-week treatment.

 

Results: The RT and CT groups included 22 subjects each. After treatment, both groups showed significantly lower MAS scores and significant improvement in the MMT, MFT, Brunnstrom stage, and K-MBI scores. Treatment effects showed no significant differences between the two groups.

 

Conclusion: RT showed similar treatment benefits on spasticity, as compared to CT. The study results suggested that RT could be a useful method for continuous, repeatable, and relatively accurate range of motion exercise in stroke patients with spasticity.

INTRODUCTION

Spasticity is defined as a velocity-dependent increase in tonic stretch reflex, resulting from over-excitation of the stretch reflex due to upper motor neuron lesions [1]. It occurs frequently in patients with post-stroke hemiplegia. Excessive spasticity reduces patients’ range of motion (ROM) to the extent that it obstructs daily living activities and functional improvement, thereby adversely affecting successful rehabilitation.

Various treatment methods are used to control spasticity, such as exercise, drug therapy, electrostimulation, surgery, and local nerve block using botulinum toxin [2, 3, 4, 5]. Conventional rehabilitation therapy for spasticity administered by therapists includes passive stretching and ROM exercise treatment. The amount and effects of repetitive exercise manually induced by therapists may differ according to the therapists’ levels of experience [6].

In recent decades, rehabilitation treatment using a robot has been developed to reproduce accurate motions repeatedly with less input of physical effort and time by therapists. Upper extremity rehabilitation treatment using robots has been available since the 1990s and the clinical effects on upper extremity function recovery are reported.

Studies on robotic assisted rehabilitation therapy in stroke patients have shown significant improvement in motor abilities of the exercised limb and enhanced functional outcomes [7, 8, 9, 10, 11]. However, some studies indicated that when the duration and intensity of conventional treatment is matched with robotic treatment, motor recovery, activities of daily living, strength, and motor control show no group-wise differences [7]. Nevertheless, additional sessions of robotic treatment promote better motor recovery in patients with stroke, as compared with additional conventional treatment [12].

Previously, studies indicated variable treatment effects of robot-assisted rehabilitation treatment on upper extremity spasticity. Fazekas et al. [13] reported significant change in Modified Ashworth Score (MAS) of shoulder adductors and elbow flexor only in the robotic treatment group. However, it reportedly has a small, non-significant effect on muscle tone based on MAS in other studies [10, 11, 14].

The aim of the present study was to evaluate the effect of upper extremity rehabilitation robots on spasticity in stroke patients. We conducted a randomized controlled trial to evaluate upper extremity spasticity, motor power and functions in response to therapy.

 

Continue —> KoreaMed Synapse

, , , , , , ,

Leave a comment

[Abstract] Robot-assisted post-stroke motion rehabilitation in upper extremities: a survey

Abstract

Recent neurological research indicates that the impaired motor skills of post-stroke patients can be enhanced and possibly restored through task-oriented repetitive training.

This is due to neuroplasticity – the ability of the brain to change through adulthood. Various rehabilitation processes have been developed to take advantage of neuroplasticity to retrain neural pathways and restore or improve motor skills lost as a result of stroke or spinal cord injuries (SCI).

Research in this area over the last few decades has resulted in a better understanding of the dynamics of rehabilitation in post-stroke patients and development of auxiliary devices and tools to induce repeated targeted body movements. With the growing number of stroke rehabilitation therapies, the application of robotics within the rehabilitation process has received much attention. As such, numerous mechanical and robot-assisted upper limb and hand function training devices have been proposed.

A systematic review of robotic-assisted upper extremity (UE) motion rehabilitation therapies was carried out in this study. The strengths and limitations of each method and its effectiveness in arm and hand function recovery were evaluated. The study provides a comparative analysis of the latest developments and trends in this field, and assists in identifying research gaps and potential future work.

Source: Robot-assisted post-stroke motion rehabilitation in upper extremities: a survey : International Journal on Disability and Human Development

, , , , , , , , , , , , ,

Leave a comment

[Abstract] The Effects of Combination of Robot-Assisted Therapy With Task-Specific or Impairment-Oriented Training on Motor Function and Quality of Life in Chronic Stroke – PM&R

Abstract

Background

Robot-assisted therapy (RT) is a promising intervention for stroke rehabilitation. RT hybridized with therapist-mediated therapy (eg, RT plus task-specific or impairment-oriented training) may possibly yield functionally relevant improvements. A comparative study of the different combination regimens is needed.

Objective

To investigate the efficacy of RT combined with task-specific training or impairment-oriented training on motor function and quality of life in patients with chronic stroke.

Design

A single-blind, randomized comparative efficacy study.

Setting

Two medical centers in Taiwan.

Participants

Twenty-one subjects with chronic stroke.

Interventions

Participants were recruited and randomized into 1 of 2 groups: (1) RT combined with task-specific (RTT) training (enrolled, n = 11; completed, n = 11) or (2) RT combined with impairment-oriented (RTI) training (enrolled, n = 10; completed, n = 9). Participants received 20 intervention sessions (90-100 min/d, 5 d/wk for 4 weeks).

Outcomes

The Fugl-Meyer Motor Assessment Upper Extremity subscale, Stroke Impact Scale, Action Research Arm Test, and Medical Research Council Scale were administered at baseline, posttreatment, and at 3-month follow-up. Two-way repeated-measures analysis of variance was used to investigate the treatment effects.

Results

The improvements of the RTT group in motor function measured by the Fugl-Meyer Motor Assessment Upper Extremity subscale and quality of life assessed by the Stroke Impact Scale were significantly superior to the RTI group after the interventions. The improvements of the RTT group were maintained for 3 months. Both groups demonstrated significant within-group improvements in motor function, muscle power, and quality of life.

Conclusions

RTT may be a more compelling approach to enhance motor function and quality of life for a long-term period than RTI. The combination of RT with task-specific training and with impairment-oriented training had similar benefits on upper limb motor function and muscle strength immediately after the interventions.

Source: The Effects of Combination of Robot-Assisted Therapy With Task-Specific or Impairment-Oriented Training on Motor Function and Quality of Life in Chronic Stroke – PM&R

, , , , , , , , ,

Leave a comment

[ARTICLE] Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study – Neurocase

ABSTRACT

The purpose of this study was to determine whether a conventional robot-assisted therapy of the upper limb was able to improve proprioception and motor recovery of an individual after stroke who exhibited proprioceptive deficits.

After robotic sensorimotor training, significant changes were observed in kinematic performance variables. Two quantitative parameters evaluating position sense improved after training. Range of motion during shoulder and wrist flexion improved, but only wrist flexion remained improved at 3-month follow-up.

These preliminary results suggest that intensive robot-aided rehabilitation may play an important role in the recovery of sensory function. However, further studies are required to confirm these data.

Source: Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study – Neurocase –

, , , ,

Leave a comment

[ARTICLE] Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial – Full Text HTML

The electronic version of this article is the complete one and can be found online at:http://www.jneuroengrehab.com/content/12/1/96

Abstract

Background

Robot-assisted therapy (RT) is a widely used intervention approach to enhance motor recovery in patients after stroke, but its effects on functional improvement remained uncertain. Neuromuscular electrical stimulation (NMES) is one potential adjuvant intervention approach to RT that could directly activate the stimulated muscles and improve functional use of the paretic hand.

Methods

This was a randomized, double-blind, sham-controlled study. Thirty-nine individuals with chronic stroke were randomly assigned to the RT combined with NMES (RT + ES) or to RT with sham stimulation (RT + Sham) groups. The participants completed the intervention 90 to 100 minutes/day, 5 days/week for 4 weeks. The outcome measures included the upper extremity Fugl-Meyer Assessment (UE-FMA), modified Ashworth scale (MAS), Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and Stroke Impact Scale 3.0 (SIS). All outcome measures were assessed before and after intervention, and the UE-FMA, MAL, and SIS were reassessed at 3 months of follow-up.

Results

Compared with the RT + Sham group, the RT + ES group demonstrated greater improvements in wrist flexor MAS score, WMFT quality of movement, and the hand function domain of the SIS. For other outcome measures, both groups improved significantly after the interventions, but no group differences were found.

Conclusion

RT + ES induced significant benefits in reducing wrist flexor spasticity and in hand movement quality in patients with chronic stroke.

Continue —> http://www.jneuroengrehab.com/content/12/1/96/

Flow diagram of participants who enrolled and completed the study. Abbreviations: RT, robot-assistive therapy; ES, electrical stimulation Lee et al. Journal of NeuroEngineering and Rehabilitation 2015 12:96 doi:10.1186/s12984-015-0088-3 Download authors’ original image

, , , , , , , ,

Leave a comment

[ARTICLE] Effects of upper limb robot-assisted therapy in the rehabilitation of stroke patients – Full Text PDF

 Abstract.

[Purpose] The aim of this study was to examine the effects of upper limb robot-assisted therapy in the rehabilitation of stroke patients.

[Subjects and Methods] Fifteen stroke patients with no visual or cognitive problems were enrolled. All subjects received robot-assisted therapy and comprehensive rehabilitation therapy for 30 minutes each. The experimental group received a conventional therapy and an additional half hour per weekday of robot therapy. The patients participated in a total of 20 sessions, each lasting 60 minutes (conventional therapy 30 min, robot-assisted therapy 30 min), which were held 5 days a week for 4 weeks.

[Result] The patients showed a significant difference in smoothness and reach error of the point to point test, circle size and independence of the circle in the circle test, and hold deviation of the playback static test between before and after the intervention. On the other hand, no significant difference was observed in the displacement of the round dynamic test. The patients also showed significant improvement in the Fugl-Meyer Assessment and Modified Barthel Index after the intervention.

[Conclusion] These kinematic factors can provide good information when analyzing the upper limb function of stroke patients in robot-assisted therapy. Nevertheless, further research on technology-based kinematic information will be necessary.

Full Text PDF

, , , , ,

Leave a comment

[ARTICLE] Use of robots in rehabilitative treatment

Abstract

Recently, rehabilitation robotics technology has advanced, and several therapeutic robots have been developed. Robot-assisted rehabilitation therapy has a number of advantages over manual physical therapy. It can relieve the physical therapist from the strenuous task of manual assistance and provide high-dosage and high-intensity training. Therapeutic rehabilitation robots include end-effector and exoskeleton types, which are mainly applied for rehabilitation of upper extremity motor dysfunction or gait disturbance. In addition, they are used for patients with stroke, traumatic brain injury, spinal cord injury, parkinsonism, and cerebral palsy. Several studies have reported that robot-assisted therapy has a beneficial effect on motor function in patients with impaired motor function, either alone or as an additional therapeutic tool in combination with conventional rehabilitation therapy. We believe that ongoing improvement in robotic technology will help to overcome the disadvantages of conventional rehabilitation therapy and to optimize rehabilitation therapies for disabled patients.

via KoreaMed Synapse.

, ,

Leave a comment

%d bloggers like this: