Posts Tagged robotic assisted

[VIDEO] Hocoma Lokomat Product Presentation | UK – YouTube

Relearn how to walk from the beginning with Hocoma’s Lokomat, a robotic-assisted therapy solution that enables intensive gait training. The Lokomat uses an individually adjustable exoskeleton combined with dynamic body weight support. Summit Medical and Scientific are UK distributors for Hocoma. Contact us about the Hocoma Lokomat in the UK, and read more on our website: https://summitmedsci.co.uk/products/h…

 

, , ,

Leave a comment

[WEB SITE] Robotic-Assisted Rehabilitation Therapy Designed to Aid Stroke Recovery

Pictured here is the experimental setup for the estimation of the 3 DOF human forearm and wrist impedance. (Photo courtesy of UNIST)

Pictured here is the experimental setup for the estimation of the 3 DOF human forearm and wrist impedance. (Photo courtesy of UNIST)

Scientists from Ulsan National Institute of Science and Technology (UNIST) have developed a new robotic tool to assess muscle overactivity and movement dysfunction in stroke survivors.

They suggest, in a study published recently in IEEE Transactions on Neural Systems and Rehabilitation Engineering, that their robotic-assisted rehabilitation therapy may help improve the stroke patients’ mobility.

The study was led by Professor Sang Hoon Kang of Mechanical, Aerospace and Nuclear Engineering at UNIST in collaboration with Professor Pyung-Hun Chang of DGIST and Dr Kyungbin Park of Samsung Electronics Co Ltd, according to a media release from UNIST.

In their study, Kang and the others on the team developed a rehabilitation robotic system that quantitatively measures the 3 degrees-of-freedom (DOF) impedance of human forearm and wrist in minutes.

Using their impedance estimation device, which they call the distal internal model based impedance control (dIMBIC)-based method, the team was able to accurately characterize the 3 DOF forearm and wrist impedance, including inertia, damping, and stiffness, for the first time, the release continues.

“The dIMBIC-based method can be used to assist in the quantitative and objective evaluation of neurological disorders, like stroke,” Kang says, in the release. “Findings from this study will open a new chapter in robot-assisted rehabilitation in the workplace accident rehabilitation hospitals, as well as in nursing homes and assisted living facilities.”

The research team expects that, in the long run, the proposed 3 DOF impedance estimation may promote wrist and forearm motor control studies and complement the diagnosis of the alteration in wrist and forearm resistance post-stroke by providing objective impedance values including cross-coupled terms, the release concludes.

[Source(s): Ulsan National Institute of Science and Technology (UNIST), Science Daily]

Source: Robotic-Assisted Rehabilitation Therapy Designed to Aid Stroke Recovery – Rehab Managment

, , , ,

Leave a comment

[ARTICLE] Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? – Full Text

Abstract

Background

Contrary to common belief of clinicians that hemorrhagic stroke survivors have better functional prognoses than ischemic, recent studies show that ischemic survivors could experience similar or even better functional improvements. However, the influence of stroke subtype on gait and posture outcomes following an intervention blending conventional physiotherapy with robotic-assisted gait therapy is missing.

Objective

This study compared gait and posture outcome measures between ambulatory hemorrhagic patients and ischemic patients, who received a similar 4 weeks’ intervention blending a conventional bottom-up physiotherapy approach and an exoskeleton top-down robotic-assisted gait training (RAGT) approach with Lokomat.

Methods

Forty adult hemiparetic stroke inpatient subjects were recruited: 20 hemorrhagic and 20 ischemic, matched by age, gender, side of hemisphere lesion, stroke severity, and locomotor impairments. Functional Ambulation Category, Postural Assessment Scale for Stroke, Tinetti Performance Oriented Mobility Assessment, 6 Minutes Walk Test, Timed Up and Go and 10-Meter Walk Test were performed before and after a 4-week long intervention. Functional gains were calculated for all tests.

Results

Hemorrhagic and ischemic subjects showed significant improvements in Functional Ambulation Category (P<0.001 and P = 0.008, respectively), Postural Assessment Scale for Stroke (P<0.001 and P = 0.003), 6 Minutes Walk Test (P = 0.003 and P = 0.015) and 10-Meter Walk Test (P = 0.001 and P = 0.024). Ischemic patients also showed significant improvements in Timed Up and Go. Significantly greater mean Functional Ambulation Category and Tinetti Performance Oriented Mobility Assessment gains were observed for hemorrhagic compared to ischemic, with large (dz = 0.81) and medium (dz = 0.66) effect sizes, respectively.

Conclusion

Overall, both groups exhibited quasi similar functional improvements and benefits from the same type, length and frequency of blended conventional physiotherapy and RAGT protocol. The use of intensive treatment plans blending top-down physiotherapy and bottom-up robotic approaches is promising for post-stroke rehabilitation.

Continue —>  Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy?

, , , , , , , ,

Leave a comment

[Conference Paper Abstract] Effectiveness of dual-tDCS in combination with upper limb robotic-assisted rehabilitation: a randomised, double-blind, cross-over study

Background: The impact of transcranial Direct Current Stimulation (tDCS) is controversial in the neurorehabilitation literature. It has been suggested that tDCS should be combined with other therapy to improve their efficacy.

Aim: To assess the effectiveness of upper limb robotic-assisted therapy (RAT) combined with real or sham-tDCS in chronic stroke patients.

Methods: Twenty-one hemiparetic stroke patients were included in a randomised, controlled, double-blind, cross-over study. Each patient underwent two therapy sessions seven days apart in a randomised order: (1) 20 minutes of real dual-tDCS associated with RAT (REAL+RAT) and (2) 20 minutes of sham dual-tDCS associated with RAT (SHAM+RAT). Patient dexterity (Box & Block and Purdue Pegboard tests) and upper limb kinematics were evaluated before and just after each intervention. The assistance provided by the robot during the intervention was also recorded.

Results: Gross manual dexterity (1.8 +/- 0.7 blocks, p=0.008) and straightness of movement (0.01 +/- 0.03, p<0.05) improved slightly after REAL+RAT compare to before the intervention. There was no improvement after SHAM+RAT. The post-hoc analyses did not objectify difference between interventions: REAL+RAT and SHAM+RAT (p>0.05). The assistance provided by the robot was similar during the two interventions (p>0.05).

Conclusion: The results demonstrated a slight improvement in hand dexterity and arm movement after the REAL+RAT tDCS intervention. The observed effect after one session was small and not clinically relevant, but repetitive sessions could increase the benefits of this combined approach.

Source: Effectiveness of dual-tDCS in combination with upper limb robotic-assisted rehabilitation: a randomised, double-blind, cross-over study | DIAL.pr – BOREAL

, , , , , , , , , ,

Leave a comment

[ARTICLE] Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review protocol – Full Text

Abstract

Review question/objective: The objective of this review is to synthesize the best available evidence on the effectiveness of robotic assistive devices in the rehabilitation of adult stroke patients for recovery of impairments in the upper and lower limbs. The secondary objective is to investigate the sustainability of treatment effects associated with use of robotic devices.

The specific review question to be addressed is: can robotic assistive devices help adult stroke patients regain motor movement of their upper and lower limbs?

Background

Stroke is a leading cause of long-term disability and is the third most common cause of mortality in developed countries with 15 million people suffering a stroke yearly.1 Different parts of the brain control different bodily functions. If a person survives a stroke, the effects can vary, depending on the location of brain damage, severity and duration of the stroke. Broadly, the effects of stroke can be physical, cognitive or emotional in nature. In terms of the physical effects of stroke, the loss of motor abilities of the limbs presents significant challenges for patients, as their mobility and activities of daily living (ADLs) are affected. The upper or lower limbs can experience weakness (paresis) or paralysis (plegia), with the most common type of limb impairment being hemiparesis, which affects eight out of 10 stroke survivors.2 Other physical effects of stroke are loss of visual fields, vision perception, difficulty swallowing (dysphagia), apraxia of speech, incontinence, joint pain or neuropathic pain (caused by inability of the brain to correctly interpret sensory signals in response to stimuli on the affected limbs). Cognitive effects of stroke are aphasia, memory loss and vascular dementia. Stroke patients can lose the ability to understand speech or the capacity to read, think or reason, and normal mental tasks can present big challenges, affecting their quality of life. The drastic changes in physical and cognitive abilities caused by stroke also lead to emotional effects for stroke patients. Stroke survivors can experience depression when they encounter problems in doing tasks that they can easily do pre-stroke. Along with depression, they can experience a lack of motivation and mental fatigue.

For stroke patients, rehabilitation is the pathway to regaining or managing their impaired functions. There is no definite end to recovery but the most rapid improvement is within the first six months post stroke.3 Before a patient undergoes rehabilitation, an assessment is first done to determine if a patient is medically stable and fit for a rehabilitation program. If the patient is assessed to be suitable, then depending on the level of rehabilitative supervision required, the patient could undergo rehabilitation in various settings – as an in-patient/outpatient (at either a hospital or nursing facility) or at home.3,4Rehabilitation should be administered by a multi-disciplinary team of physiotherapists, occupational therapist, speech therapist and neuropsychologists, who work together to offer an integrated, holistic rehabilitation therapy.4 Depending on the type of impairment, rehabilitation specialists will assess the appropriate therapies needed and set realistic goals for patients to achieve. Generally, stroke patients should be given a minimum of 45 min for each therapy session over at least five days per week, as long as the patient can tolerate the rehabilitation regimen.3

One of the main goals in stroke rehabilitation is the restoration of motor skills, and this involves patients undergoing repetitive, high-intensity, task-specific exercises that enable them to regain their motor and functional abilities.5,6 It is theorized that the brain is plastic in nature and that repetitive exercises over long periods can enable the brain to adapt and regain the motor functionality that has been repeatedly stimulated.7This involves the formation of new neuronal interconnections that enable the re-transmission of motor signals.8

Source: Effectiveness of robotic assisted rehabilitation for mobilit… : JBI Database of Systematic Reviews and Implementation Reports

, , , , , , ,

Leave a comment

%d bloggers like this: