Posts Tagged robotics

Smart walk assist improves rehabilitation – YouTube

Using smart algorithms to help the brain develop a new way of walking after a stroke. Incredible advances in rehab technologies!

, , , , ,

Leave a comment

[Abstract] Use of Lower-Limb Robotics to Enhance Practice and Participation in Individuals With Neurological Conditions

Purpose: To review lower-limb technology currently available for people with neurological disorders, such as spinal cord injury, stroke, or other conditions. We focus on 3 emerging technologies: treadmill-based training devices, exoskeletons, and other wearable robots.

Summary of Key Points: Efficacy for these devices remains unclear, although preliminary data indicate that specific patient populations may benefit from robotic training used with more traditional physical therapy. Potential benefits include improved lower-limb function and a more typical gait trajectory.

Statement of Conclusions: Use of these devices is limited by insufficient data, cost, and in some cases size of the machine. However, robotic technology is likely to become more prevalent as these machines are enhanced and able to produce targeted physical rehabilitation.

Recommendations for Clinical Practice: Therapists should be aware of these technologies as they continue to advance but understand the limitations and challenges posed with therapeutic/mobility robots.

Source: Use of Lower-Limb Robotics to Enhance Practice and Participa… : Pediatric Physical Therapy

, , , , , , ,

Leave a comment

[Abstract] A Randomized Trial on the Effects of Attentional Focus on Motor Training of the Upper Extremity Using Robotics with Individuals after Chronic Stroke 

 

Highlights

  • Individuals with moderate-to-severe arm impairment after stroke improved motor control after engaging in high-repetition training
  • There were no differences between external focus or internal focus of attention on retention of motor skills after four weeks of arm training for individuals with stroke
  • Individuals with moderate-to-severe arm impairment may not experience the advantages of an external focus during motor training found in healthy individuals
  • Attentional focus is most likely not an active ingredient for retention of trained motor skills for individuals with moderate-to-severe arm impairment

Abstract

Objective

To compare the long-term effects of external focus (EF) versus internal focus (IF) of attention after 4-weeks of arm training. Design: Randomized, repeated measure, mixed ANOVA.

Setting

Outpatient clinic.

Participants

33 individuals with stroke and moderate-to-severe arm impairment living in the community (3 withdrawals).

Interventions

4-week arm training protocol on the InMotion ARM robot (12 sessions).

Main Outcome Measures

Joint independence, Fugl-Meyer Assessment, and Wolf Motor Function Test measured at baseline, discharge, and 4-week follow-up.

Results

There were no between-group effects for attentional focus. Participants in both groups improved significantly on all outcome measures from baseline to discharge and maintained those changes at 4-week follow-up regardless of group assignment [Jt indep-EF, F(1.6, 45.4) = 17.74, p<.0005, partial η2=.39; Jt indep-IF, F(2, 56)= 18.66, p<.0005, partial η2=.40; FMA, F(2, 56) = 27.83, p<.0005, partial η2=.50 ; WMFT, F(2, 56) =14.05, p<.0005, partial η2=.35].

Conclusion

There were no differences in retention of motor skills between EF and IF participants four weeks after arm training, suggesting that individuals with moderate-to-severe arm impairment may not experience the advantages of an EF found in healthy individuals. Attentional focus is most likely not an active ingredient for retention of trained motor skills for individuals with moderate-to-severe arm impairment, whereas dosage and intensity of practice appear to be pivotal. Future studies should investigate the long-term effects of attentional focus for individuals with mild arm impairment.

Source: A Randomized Trial on the Effects of Attentional Focus on Motor Training of the Upper Extremity Using Robotics with Individuals after Chronic Stroke – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[WEB SITE] Robotic-Assisted Rehabilitation Therapy Designed to Aid Stroke Recovery

Pictured here is the experimental setup for the estimation of the 3 DOF human forearm and wrist impedance. (Photo courtesy of UNIST)

Pictured here is the experimental setup for the estimation of the 3 DOF human forearm and wrist impedance. (Photo courtesy of UNIST)

Scientists from Ulsan National Institute of Science and Technology (UNIST) have developed a new robotic tool to assess muscle overactivity and movement dysfunction in stroke survivors.

They suggest, in a study published recently in IEEE Transactions on Neural Systems and Rehabilitation Engineering, that their robotic-assisted rehabilitation therapy may help improve the stroke patients’ mobility.

The study was led by Professor Sang Hoon Kang of Mechanical, Aerospace and Nuclear Engineering at UNIST in collaboration with Professor Pyung-Hun Chang of DGIST and Dr Kyungbin Park of Samsung Electronics Co Ltd, according to a media release from UNIST.

In their study, Kang and the others on the team developed a rehabilitation robotic system that quantitatively measures the 3 degrees-of-freedom (DOF) impedance of human forearm and wrist in minutes.

Using their impedance estimation device, which they call the distal internal model based impedance control (dIMBIC)-based method, the team was able to accurately characterize the 3 DOF forearm and wrist impedance, including inertia, damping, and stiffness, for the first time, the release continues.

“The dIMBIC-based method can be used to assist in the quantitative and objective evaluation of neurological disorders, like stroke,” Kang says, in the release. “Findings from this study will open a new chapter in robot-assisted rehabilitation in the workplace accident rehabilitation hospitals, as well as in nursing homes and assisted living facilities.”

The research team expects that, in the long run, the proposed 3 DOF impedance estimation may promote wrist and forearm motor control studies and complement the diagnosis of the alteration in wrist and forearm resistance post-stroke by providing objective impedance values including cross-coupled terms, the release concludes.

[Source(s): Ulsan National Institute of Science and Technology (UNIST), Science Daily]

Source: Robotic-Assisted Rehabilitation Therapy Designed to Aid Stroke Recovery – Rehab Managment

, , , , , , , ,

Leave a comment

[Conference Paper Abstract] Effectiveness of dual-tDCS in combination with upper limb robotic-assisted rehabilitation: a randomised, double-blind, cross-over study

Background: The impact of transcranial Direct Current Stimulation (tDCS) is controversial in the neurorehabilitation literature. It has been suggested that tDCS should be combined with other therapy to improve their efficacy.

Aim: To assess the effectiveness of upper limb robotic-assisted therapy (RAT) combined with real or sham-tDCS in chronic stroke patients.

Methods: Twenty-one hemiparetic stroke patients were included in a randomised, controlled, double-blind, cross-over study. Each patient underwent two therapy sessions seven days apart in a randomised order: (1) 20 minutes of real dual-tDCS associated with RAT (REAL+RAT) and (2) 20 minutes of sham dual-tDCS associated with RAT (SHAM+RAT). Patient dexterity (Box & Block and Purdue Pegboard tests) and upper limb kinematics were evaluated before and just after each intervention. The assistance provided by the robot during the intervention was also recorded.

Results: Gross manual dexterity (1.8 +/- 0.7 blocks, p=0.008) and straightness of movement (0.01 +/- 0.03, p<0.05) improved slightly after REAL+RAT compare to before the intervention. There was no improvement after SHAM+RAT. The post-hoc analyses did not objectify difference between interventions: REAL+RAT and SHAM+RAT (p>0.05). The assistance provided by the robot was similar during the two interventions (p>0.05).

Conclusion: The results demonstrated a slight improvement in hand dexterity and arm movement after the REAL+RAT tDCS intervention. The observed effect after one session was small and not clinically relevant, but repetitive sessions could increase the benefits of this combined approach.

Source: Effectiveness of dual-tDCS in combination with upper limb robotic-assisted rehabilitation: a randomised, double-blind, cross-over study | DIAL.pr – BOREAL

, , , , , , , , , ,

Leave a comment

[Abstract] Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects  

Abstract:

Rehabilitation robots have become increasingly popular for stroke rehabilitation. However, the high cost of robots hampers their implementation on a large scale. This study implements the concept of a modular and reconfigurable robot, reducing its cost and size by adopting different therapeutic end effectors for different training movements using a single robot. The challenge is to increase the robot’s portability and identify appropriate kinds of modular tools and configurations. Because literature on the effectiveness of this kind of rehabilitation robot is still scarce, this paper presents the design of a portable and reconfigurable rehabilitation robot and describes its use with a group of post-stroke patients for wrist and forearm training. Seven stroke subjects received training using a reconfigurable robot for 30 sessions, lasting 30 minutes per session. Post-training, statistical analysis showed significant improvement of 3.29 points (16.20%, p = 0.027) on the Fugl-Meyer Assessment Scale for forearm and wrist components (FMA-FW). Significant improvement of active range of motion (AROM) was detected in both pronation-supination (75.59%, p = 0.018) and wrist flexion-extension (56.12%, p = 0.018) after the training. These preliminary results demonstrate that the developed reconfigurable robot could improve subjects’ wrist and forearm movement.

Source: Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects – IEEE Xplore Document

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Press Release: New Move to Use Robots for Stroke Rehabilitation – scriptproject.eu

Due to the high costs of clinical neuro-rehabilitation, post stroke treatments are limited in all countries to only a few weeks to months after the stroke event. Any system aimed at pro-longing neuro-rehabilitation out of the clinics, for example at patients’ homes; that can use low cost treatments, addresses a major issue in our current health care management systems.

How SCRIPT will contribute:

The SCRIPT project will produce two prototype robotic devices, a passive‐actuated device and one actuated actively, both of which can be used in the stroke patient’s home. Provision of motivating and challenging therapeutic activities using a robotic hand and wrist rehabilitation device at home, will provide a chance for more frequent therapies and interactions. It is thought that such frequent interaction will further influence recovery at chronic phases of stroke rehabilitation.

The principal aims of SCRIPT are to:

• use such rehabilitative technologies at patient’s home to enable better management of chronic stroke patients
• focus on hand and wrist exercise; as this presents the least researched area with the most functional relevance and potential for contribution to personal independence.
• look at differences between passive and active actuated devices.
• provide an educational, motivational and engaging interaction, therefore making a therapy session more enjoyable for patients.
• focus on remote management and support of the patient.
• deduce from summative evaluation in this project, the impact on health and recovery and its potential cost implications.

The SCRIPT multidisciplinary team has existing expertise in all aspects of robot‐mediated therapy, clinical evaluation and interface design and usability. After their discharge from the hospital a patient can begin using the SCRIPT developed robotic tools at home. SCRIPT systems will be adaptive to the user requirements and provide immediate feedback to a patient on their performance. The feedback will also be provided to an “off-site” health care professional with in‐depth considerations for security and confidentiality, who can remotely monitor progress, making adjustments to the support that the device provides.

We believe that the SCRIPT systems will be beneficial to patient recovery and can assist with improving their quality of life. SCRIPT will reduce hospital and home visits for patients & carers, and therefore have a large impact on reducing hospital costs; improving the quality and standard of care.

The SCRIPT project is partially funded by the European Commission under the 7th Framework Programme. The project activities will last for 36 months.

The Project partners are:

Coordinator: UNIVERSITY OF HERTFORDSHIRE HIGHER EDUCATION CORPORATION (UH), UK

R.U.ROBOTS LIMITED (RUR), United Kingdom
THE UNIVERSITY OF SHEFFIELD (USFD), United Kingdom
UNIVERSITEIT TWENTE (UT), Netherlands
ROESSINGH RESEARCH AND DEVELOPMENT BV (RRD),Netherlands
MOOG BV (MOOG), Netherlands
SAN RAFFAELE S.p.A. (SRS), Italy
USER INTERFACE DESIGN GMBH (UID), Germany

For any further information about project development and implementation, please contact:

Dr.Farshid Amirabdollahian
School of Computer Science
University of Hertfordshire
College Lane
Hatfield Herts AL10 9AB
United Kingdom
Ph: +44-1707286125
Fax:+44-1707-286-423

Further information can be found at:

http://cordis.europa.eu/fp7/ict/
http://ec.europa.eu/information_society

See our links section for other media coverage from the press release

Source: Press Release: New Move to Use Robots for Stroke Rehabilitation | scriptproject.eu

, , , ,

Leave a comment

[VIDEO] Fourier X1 Exoskeleton – Fourier Intelligence – YouTube

Δημοσιεύτηκε στις 23 Μαρ 2017

At Fourier Intelligence, we do not believe these people are fated to sit on the wheelchair in their rest life. To let them stand up, and to allow them to walk again, we started to develop a genuinely new exoskeleton products- The Fourier X1

, , , ,

Leave a comment

[Abstract+References] A Novel Human-Robot Cooperative Method for Upper Extremity Rehabilitation

Abstract

There are a certain number of arm dysfunction patients whose legs could move. Considering the neuronal coupling between arms and legs during locomotion, this paper proposes a novel human-robot cooperative method for upper extremity rehabilitation. Legs motion is considered at the passive rehabilitation training of disabled arm, and its traversed trajectory is represented by the patient trunk motion. A Kinect based vision module, two computers and a WAM robot construct the human-robot cooperative upper extremity rehabilitation system. The vision module is employed to track the position of the subject trunk in horizontal; the WAM robot is used to guide the arm of post-stroke patient to do passive training with the predefined trajectory, and meanwhile the robot follows the patient trunk movement which is tracked by Kinect in real-time. A hierarchical fuzzy control strategy is proposed to improve the position tracking performance and stability of the system, which consists of an external fuzzy dynamic interpolation strategy and an internal fuzzy PD position controller. Four experiments were conducted to test the proposed method and strategy. The experimental results show that the patient felt more natural and comfortable when the human-robot cooperative method was applied; the subject could walk as he/she wished in the visual range of Kinect. The hierarchical fuzzy control strategy performed well in the experiments. This indicates the high potential of the proposed human-robot cooperative method for upper extremity rehabilitation.

Source: A Novel Human-Robot Cooperative Method for Upper Extremity Rehabilitation | SpringerLink

, , , , , ,

Leave a comment

[ARTICLE] Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation – Full Text

Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration.

Introduction

Following an ischemic insult within the motor cortex, one or more body parts contralateral to the infarct result impaired or paretic. The degree of the motor impairment depends on many factors, such as the extent of the infarct, the identity of the damaged region(s) and the effectiveness of the early medical care. Substantial functional recovery can occur in the first weeks after stroke, mainly due to spontaneous mechanisms (Kwakkel et al., 2004; Cramer, 2008; Darling et al., 2011; Ward, 2011; Grefkes and Fink, 2014). About 26% of stroke survivors are able to carry on everyday activities (Activity of Daily Living or ADLs, i.e., eating, drinking, walking, dressing, bathing, cooking, writing) without any help, but another 26% is forced to shelter in a nursing home (Carmichael, 2005). Impairments of upper and lower limbs are particularly disabling as they impact on the degree of independence in ADLs. Overall, a significant percentage of the patients exhibit persistent disability following ischemic attacks. Therefore, it is critical to increase our knowledge of post-stroke neuroplasticity for implementing novel rehabilitative strategies. In this review we summarize data about plastic reorganizations after injury, both in the ipsilesional and contralesional hemisphere. We also describe non-invasive brain stimulation (NIBS) techniques and robotic devices for stimulating functional recovery in humans and rodent stroke models.

Neuroplasticity After Stroke

The term brain plasticity defines all the modifications in the organization of neural components occurring in the central nervous system during the entire life span of an individual (Sale et al., 2009). Such changes are thought to be highly involved in mechanisms of aging, adaptation to environment and learning. Moreover, neuronal plastic phenomena are likely to be at the basis of adaptive modifications in response to anatomical or functional deficit or brain damage (Nudo, 2006). Ischemic damage causes a dramatic alteration of the entire complex neural network within the affected area. It has been amply demonstrated, by many studies, that the cerebral cortex exhibits spontaneous phenomena of brain plasticity in response to damage (Gerloff et al., 2006; Nudo, 2007). The destruction of neural networks indeed stimulates a reorganization of the connections and this rewiring is highly sensitive to the experience following the damage (Stroemer et al., 1993; Li and Carmichael, 2006). Such plastic phenomena involve particularly the perilesional tissue in the injured hemisphere, but also the contralateral hemisphere, subcortical and spinal regions.

Continue —> Frontiers | Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation | Frontiers in Cellular Neuroscience

Figure 3. Example of a novel robotic system that integrates functional grasping, active reaching arm training and bimanual tasks. An example of a novel robotic system that integrates functional grasping, active reaching arm training and bimanual tasks, consisting of: (i) Virtual Reality: software applications composed of rehabilitative and evaluation tasks; (ii) TrackHold: robotic device to support the weight of the user’s limb during tasks execution; (iii) Robotic Hand Exos: active hand exoskeleton to assist grasping tasks; and (iv) Handgrip sensors to support the bilateral grasping training and evaluation (modified from Sgherri et al., 2017).

, , , , , , ,

Leave a comment

%d bloggers like this: