Posts Tagged robotics

[Abstract] Pre-therapeutic Device for Post-stroke Hemiplegic Patients’ Wrist and Finger Rehabilitation

Abstract

Background/Objectives

This paper suggests a pre-therapeutic device for post-stroke hemiplegic patients’ wrist and finger rehabilitation both to decrease and analyze their muscle tones before the main physical or occupational therapy.

Method/Statistical Analysis

We designed a robot which consists of a BLDC motor, a torque sensor, linear motion guides and bearings. Mechanical structure of the robot induces flexion and extension of wrist and finger (MCP) joints simultaneously with the single motor. The frames of the robot were 3D printed. During the flexion/extension exercise, angular position and repulsive torque of the joints are measured and displayed in real time.

Findings

A prototype was 3D printed to conduct preliminary experiment on normal subject. From the neutral joint position (midway between extension and flexion), the robot rotated 120 degrees to extension direction and 30 degrees to flexion direction. First, the subject used the machine with the usual wrist and finger characteristics without any tones. Second, the same subject intentionally gave strength to the joints in order to imitate affected upper limb of a hemiplegic patient. During extension exercise, maximum repulsive torque of the normal hand was 2 Nm whereas that of the firm hand was almost 5 Nm. The result revealed that the device was capable enough to not only rotate rigid wrist and fingers with the novel robotic structure, but also present quantitative data such as the repulsive torque according to the joint orientation as an index of joint spasticity level.

Improvements/Applications

We are planning to improve the system by applying torque control and arranging experiments at hospitals to obtain patients’ data and feedbacks to meet actual needs in the field.

via Indian Journals

, , , , , ,

1 Comment

[VIDEO] Indego Therapy – Alice’s Story — Anatomical Concepts (UK)

MEET ALICE

After her brain injury, there seemed little hope for recovery. With the right therapy, tools and attitude she has defied all odds.
Her stepfather, Bob, and therapists at More Rehab tell us her story, her rehabilitation journey so far, and the particular benefits of walking therapy with the Indego exoskeleton.

We’re sure you agree that she is an extraordinary woman!
We also hope that you can see that it is a combination of great therapy, excellent technology, incredible support and hard work that creates results. Here at Anatomical Concepts we focus on the Technology, and we partner with great therapists (just like More Rehab) who we know will give a high standard of support, training and encouragement.

You can learn a lot more about Indego here or complete the form below and we’ll be in touch!

via Indego Therapy – Alice’s Story — Anatomical Concepts (UK)

, , , ,

Leave a comment

[ARTICLE] Hand Rehabilitation Robotics on Poststroke Motor Recovery – Full Text

Abstract

The recovery of hand function is one of the most challenging topics in stroke rehabilitation. Although the robot-assisted therapy has got some good results in the latest decades, the development of hand rehabilitation robotics is left behind. Existing reviews of hand rehabilitation robotics focus either on the mechanical design on designers’ view or on the training paradigms on the clinicians’ view, while these two parts are interconnected and both important for designers and clinicians. In this review, we explore the current literature surrounding hand rehabilitation robots, to help designers make better choices among varied components and thus promoting the application of hand rehabilitation robots. An overview of hand rehabilitation robotics is provided in this paper firstly, to give a general view of the relationship between subjects, rehabilitation theories, hand rehabilitation robots, and its evaluation. Secondly, the state of the art hand rehabilitation robotics is introduced in detail according to the classification of the hardware system and the training paradigm. As a result, the discussion gives available arguments behind the classification and comprehensive overview of hand rehabilitation robotics.

1. Background

Stroke, caused by death of brain cells as a result of blockage of a blood vessel supplying the brain (ischemic stroke) or bleeding into or around the brain (hemorrhagic stroke), is a serious medical emergency []. Stroke can result in death or substantial neural damage and is a principal contributor to long-term disabilities []. According to the World Health Organization estimates, 15 million people suffer stroke worldwide each year []. Although technology advances in health care, the incidence of stroke is expected to rise over the next decades []. The expense on both caring and rehabilitation is enormous which reaches $34 billion per year in the US []. More than half of stroke survivors experience some level of lasting hemiparesis or hemiplegia resulting from the damage to neural tissues. These patients are not able to perform daily activities independently and thus have to rely on human assistance for basic activities of daily living (ADL) like feeding, self-care, and mobility [].

The human hands are very complex and versatile. Researches show that the relationship between the distal upper limb (i.e., hand) function and the ability to perform ADL is stronger than the other limbs []. The deficit in hand function would seriously impact the quality of patients’ life, which means more demand is needed on the hand motor recovery. However, although most patients get reasonable motor recovery of proximal upper extremity according to relevant research findings, recovery at distal upper extremity has been limited due to low effectivity []. There are two main reasons for challenges facing the recovery of the hand. First, in movement, the hand has more than 20 degree of freedom (DOF) which makes it flexible, thus being difficult for therapist or training devices to meet the needs of satiety and varied movements []. Second, in function, the area of cortex in correspondence with the hand is much larger than the other motor cortex, which means a considerable amount of flexibility in generating a variety of hand postures and in the control of the individual joints of the hand. However, to date, most researches have focused on the contrary, lacking of individuation in finger movements []. Better rehabilitation therapies are desperately needed.

Robot-assisted therapy for poststroke rehabilitation is a new kind of physical therapy, through which patients practice their paretic limb by resorting to or resisting the force offered by the robots []. For example, the MIT-Manus robot uses the massed training approach by practicing reaching movements to train the upper limbs []; the Mirror Image Movement Enabler (MIME) uses the bilateral training approach to train the paretic limb while reducing abnormal synergies []. Robot-assisted therapy has been greatly developed over the past three decades with the advances in robotic technology such as the exoskeleton and bioengineering, which has become a significant supplement to traditional physical therapy []. For example, compared with the therapist exhausted in training patients with manual labor, the hand exoskeleton designed by Wege et al. can move the fingers of patients dexterously and repeatedly []. Besides, some robots can also be controlled by a patient’s own intention extracted from biosignals such as electromyography (EMG) and electroencephalograph (EEG) signals []. These make it possible to form a closed-loop rehabilitation system with the robotic technology, which cannot be achieved by any conventional rehabilitation therapy [].

Existing reviews of hand rehabilitation robotics on poststroke motor recovery are insufficient, for most studies research on the application of robot-assisted therapy on other limbs instead of the hand []. Furthermore, current reviews focus on either the hardware design of the robots or the application of specific training paradigms [], while both of them are indispensable to an efficient hand rehabilitation robot. The hardware system makes the foundation of the robots’ function, while the training paradigm serves as the real functional parts in the motor recovery that decides the effect of rehabilitation training. These two parts are closely related to each other.

This paper focuses on the application of robot-assisted therapy on hand rehabilitation, giving an overview of hand rehabilitation robotics from the hardware systems to the training paradigms in current designs, for a comprehensive understanding is pretty meaningful to the development of an effective rehabilitation robotic system. The second section provides a general view of the robots in the entire rehabilitation robotic system. Then, the third section sums up and classifies hardware systems and the training paradigms in several crucial aspects on the author’s view. Last, the state of the art hand rehabilitation robotics is discussed and possible direction of future robotics in hand rehabilitation is predicted.[…]

Continue —-> Hand Rehabilitation Robotics on Poststroke Motor Recovery

 

An external file that holds a picture, illustration, etc.Object name is BN2017-3908135.003.jpg

Figure 3
Examples of different kinds of robots [].

, , , , , , , ,

Leave a comment

[WEB SITE] European Rehabilitation Robotics School

Who We Are

SCHOOL CONCEPT AND VISION

The wide spectrum of employment in PRM (Physical and Rehabilitation Medicine) of Robotics and New Technologies is a concrete reality, but PRM training Centres offering proper programs are sparse at national and international level and skills needed to appropriately apply robotics are usually achieved “on the field” by rehabilitation professionals without any prior specific education.
The inter-professional cooperation, so strongly needed in research and clinical activities, is very weak in Health facilities and between medical professionals with engineers and other ICT experts.
The actual gap is mostly educational and there is a great need to enhance training and knowledges for PRM physicians (and the same for Physiotherapists, Speech Therapists, Occupational Therapists, Orthotics and Engineers).

 

European Society of PRM (ESPRM) promotes, through Scientific Committe on Robotics and in cooperation UEMS PRM Section and Board an innovative approach based on a summer annual School (Robotic Rehabilitation Summer School-R2S2) with the main goals to enhance scientific information and foster education in Robotics applications.
The educational programme is developed in the frame of the theoretical knowledge and evidence-based approach provided by recent researches indications and international publications, while exploiting the technical support of IISART and other Companies which carry out research and productions in this field in connection with growing technical and clinical experiences realized all over the Europe.

What We Do

SCHOOL WEBSITE MISSION

 

The purpose of the School is to harmonize and increase the level of knowledge concerning the use of robotics in rehabilitation, for PRM physicians (and if possible all rehabilitation professionals) to enhance collaboration, communication and sharing, both on a clinical and research basis.
Students will be able at the end of the Sessions to plan and manage routinely and daily therapies integrating robotics and new technologies; they will have the basis for financial or organizational issues for such therapies and, finally, they will be able to design and realize proper research trials aimed at assessing the efficacy, effectiveness and efficiency of robotic rehabilitation. School Courses are open to European PRM physicians and students.

It is a fundamental tool to maintain and increase all over the year and places the activity:

Before School/On Line

Educational material (slides packages, webinars etc) will be available on-line from 2 months before practical session for all enrolled students.

Post School/On-Line

All educational materials will be available online for all students; a “meet the experts” service will be available also for six months after the end of the School/On-Site.

Visit SITE —>  European Rehabilitation Robotics School

, , , ,

Leave a comment

[WEB SITE] Neuromotor Behavior and Neurorehabilitation Engineering Lab

Welcome

Welcome to the home page of the Neuromotor Behavior and Neurorehabilitation Engineering Lab headed by Dr. Sergei Adamovich. The focus of the lab is to study neural control of movement in health and disease, and to design, develop and test novel systems and technology-based approaches to neurorehabilitation. The long-term objective is to translate the principles of neuroscience to evidence-based interventions that can be used by clinicians to rehabilitate patients with motor disorders.  We are located in the Department of Biomedical Engineering at New Jersey Institute of Technology and in the Department of Rehabilitation and Movement Science at Rutgers University.

Current Research

Using Robotics and Virtual Reality in Stroke Rehabilitation

Dr. Adamovich, in collaboration with Dr. Alma Merians (Rutgers University),  was one of the first to initiate the use of interactive virtual environments combined with instrumented gloves and hand exoskeletons for upper extremity rehabilitation, broadening the group of people that can utilize VR and gaming technology for motor rehabilitation and incorporating adaptive algorithms, activity scaling, haptic and visual effects to target specific skill re-acquisition. The group has developed a library of  simulations that incorporated these devices. They use various modes of haptic feedback and distortions of visual feedback in virtual reality to allow patients with severe paralysis and even lack of volitional movement to begin training very early after a stroke. Central to this, they aim to study the underlying neural mechanisms that can be engaged with this type of training, whether these circuits in stroke patients are also mediating training-induced recovery, and if circuits’ integrity can be used to predict the responsiveness to the gain / mirror therapy. This work is currently supported in part by the NIH grant R01HD58301.

Brain Imaging and Stimulation

Dr. Adamovich has many years of experience studying brain representations of motor actions, the neural mechanisms of online correction of movement errors arising from visual and proprioceptive channels, and how we learn to reduce such error through anticipatory control. In collaboration with Dr. Eugene Tunik (Northeastern University),  he has addressed these questions using a combination of various technologies (TMS, fMRI, EEG, VR, robotics) and patient-based experimentation in stroke, Parkinson’s, deafferented patients and healthy individuals. His findings highlight the critical interplay between central and peripheral mechanisms of motor control and identifies important interactions among various brain areas such as the parietal, premotor and primary motor cortices in incorporating feedback into online error correction and learning. This work is currently supported by the NIH grant R01 NS085122.

 

Center for Rehabilitation Robotics   Sergei Adamovich and Richard Foulds, co-directors

This center is currently (2017) comprised of 8 projects applying robotics and virtual reality to improve the lives of individuals with disabilities.  The largest of these is an NIH project (2017-2022, $3,571,000) using a unique combination of robotics and virtual reality for neurorehabilitation of people who have arm limitations resulting from a recent stroke.  Five smaller projects on wearable robots are supported by an NIDILRR center grant (2015-2020, $4,625,000) and address lower extremity exoskeletons to restore walking by individuals with stroke, epidural electrical stimulation to increase spinal cord transmission and improve the use of exoskeletons by people with spinal cord injury, and the study of new robotic technology for stroke therapy to be used in the home. Two development projects are designing new human-robot interfaces allowing users to control exoskeletons in a biologically natural way.  An NSF grant is developing a new lower extremity exoskeleton for advanced research.  And, a translation project supported by the Parent Project Muscular Dystrophy allows the Center to equip 30 young men with Duchenne Muscular Dystrophy with NJIT-developed exoskeletons that will extend the use of their arms for up to 5 years.  The Kessler Foundation and Rutgers Department of Rehabilitation and Movement Science are major collaborators. As of November 2017, grants total $9,210,500.

Past Research

Cerebral Palsy

The major goal of this study was to demonstrate that robot-assisted VR therapy will improve clinical and biomechanical outcomes in children with cerebral palsy, that these improvements will be larger when compared to that of the conventional therapy, and that they will transfer to real world reach-to-grasp movements.  This work was supported by NIDRR grant H133EO50011, from 2005 to 2011.

 

Visit site —> Home

, , , , , , , ,

Leave a comment

[Abstract] Investigation of multi-joint coordinated upper limb rehabilitation assisted with electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot after stroke

Abstract

More than 80% of stroke survivors worldwide suffer from permanent upper limb motor deficits. Restoration of upper limb motor functions in conventional rehabilitation remains challenging; the main difficulties are as follows: 1) lack of intensive, repetitive practice in manually delivered treatment; 2) lack of coordination management of upper limb motor tasks, particularly those involving the distal joints, e.g., the wrist and the hand; and 3) lack of understanding of the optimal joint supportive scheme in task-oriented upper limb training. More effective training strategies are necessary for upper limb rehabilitation following stroke. Robots have proved to be valuable assistants in labour-demanding post-stroke rehabilitation, with a controllable mechanical design and repeatable dynamic support in physical training. A series of rehabilitation robots for multi-joint practices were successfully designed in our previous works. In this work, we proposed a device-assisted multi-joint coordinated strategy for post-stroke upper limb training. The objectives of the study were as follows: 1) To evaluate the rehabilitation effectiveness of multi-joint coordinated upper limb practice assisted by an electromyography (EMG)-driven neuromuscular electric stimulation (NMES)-robot for stroke survivors in both the subacute and chronic stages. 2) To compare different joint supportive schemes using NMES-robots and identify the optimized scheme for upper limb rehabilitation. The objectives were achieved through three independent clinical trials using common clinical assessments, namely, the Fugl-Meyer Assessment (FMA), Modified Ashworth Scales (MAS), Action Research Arm Test (ARAT), and Functional Independence Measurement (FIM), and cross-session EMG evaluations to trace the recovery progress of individual muscle activities (i.e. EMG activation level) and muscular coordination (i.e. Co-contraction Index, CI) between a pair of muscles.
The first clinical randomized controlled trial (RCT) was conducted to investigate the clinical effects and rehabilitation effectiveness of the new training strategy in the subacute stroke period. Subjects were randomly assigned to two groups and received either 20 sessions of NMES-robot-assisted training (NMES-robot group, n=14) or time-matched conventional treatments (control group, n=10). Significant improvements were achieved in FMA (full score and shoulder/elbow), ARAT, and FIM for both groups [P<0.001, effect sizes (EFs)>0.279], whereas significant improvements in FMA (wrist/hand) and MAS (wrist) after treatment were only observed in the NMES-robot group (P<0.05, EFs>0.145), with the outcomes maintained for 3 months. In the NMES-robot group, CIs of the muscle pairs of biceps brachii and flexor carpi radialis (BIC&FCR) and biceps brachii and triceps brachii (BIC&TRI) were significantly reduced and the EMG activation level of the FCR decreased significantly. The result indicated comparable proximal motor improvements in both groups and better distal motor outcomes and more effective release of muscle spasticity across the whole upper limb in the NMES-robot group. The second part of the work was a clinical trial with a single-group design. Recruited chronic stroke patients (n=17) received 20 sessions of NMES-robot-assisted multi-joint coordinated upper limb training. Significant improvements were observed in FMA (full score and shoulder/elbow), ARAT, and FIM (P<0.05, EFs>0.157) and maintained for 3 months. CIs of the FCR&TRI and BIC&TRI muscle pairs and EMG activation levels of the FCR and BIC significantly decreased. The results indicated that the new training strategy was effective for upper limb recovery in the chronic stroke, with the long sustainability of the motor outcomes. In the third trial, another clinical RCT was conducted to investigate the training effects of different joint supportive schemes. The recruited chronic subjects were randomly assigned to receive task-oriented multi-joint practices with NMES-robotic support either to the finger-palm (hand group, n=15) or to the wrist-elbow (sleeve group, n=15). Significant improvements in FMA (full score and shoulder/elbow) and ARAT (P<0.05, EFs>0.147) were observed in both groups, whereas significant improvements in FMA (wrist/hand) and MAS (finger, wrist, and elbow) (P<0.05, EFs>0.149) were only observed in the hand group. These results indicated that the distal supportive scheme was more effective in distal motor recovery and whole arm spasticity control than the proximal supportive one under the same training strategy. In conclusion, NME-robot-assisted multi-joint coordinated training was able to achieve significant motor outcomes and effective muscle spasticity control in the entire upper limb, especially at the distal segments, i.e., the wrist and the fingers, in both subacute and chronic stroke patients. Moreover, the distal supportive scheme proved more effective than the proximal supportive scheme in multi-joint coordinated upper limb training.

via Investigation of multi-joint coordinated upper limb rehabilitation assisted with electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robot after stroke | PolyU Institutional Research Archive

 

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial

Abstract

Background: The combined use of Robot-assisted UL training and Botulinum toxin (BoNT) appear to be a promising therapeutic synergism to improve UL function in chronic stroke patients.

Objective: To evaluate the effects of Robot-assisted UL training on UL spasticity, function, muscle strength and the electromyographic UL muscles activity in chronic stroke patients treated with Botulinum toxin.

Methods: This single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with UL spastic hemiparesis. The experimental group (n = 16) received robot-assisted UL training and BoNT treatment. The control group (n = 16) received conventional treatment combined with BoNT treatment. Training protocols lasted for 5 weeks (45 min/session, two sessions/week). Before and after rehabilitation, a blinded rater evaluated patients. The primary outcome was the Modified Ashworth Scale (MAS). Secondary outcomes were the Fugl-Meyer Assessment Scale (FMA) and the Medical Research Council Scale (MRC). The electromyographic activity of 5 UL muscles during the “hand-to-mouth” task was explored only in the experimental group and 14 healthy age-matched controls using a surface Electromyography (EMGs).

Results: No significant between-group differences on the MAS and FMA were measured. The experimental group reported significantly greater improvements on UL muscle strength (p = 0.004; Cohen’s d = 0.49), shoulder abduction (p = 0.039; Cohen’s d = 0.42), external rotation (p = 0.019; Cohen’s d = 0.72), and elbow flexion (p = 0.043; Cohen’s d = 1.15) than the control group. Preliminary observation of muscular activity showed a different enhancement of the biceps brachii activation after the robot-assisted training.

Conclusions: Robot-assisted training is as effective as conventional training on muscle tone reduction when combined with Botulinum toxin in chronic stroke patients with UL spasticity. However, only the robot-assisted UL training contributed to improving muscle strength. The single-group analysis and the qualitative inspection of sEMG data performed in the experimental group showed improvement in the agonist muscles activity during the hand-to-mouth task.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03590314

Introduction

Upper limb (UL) sensorimotor impairments are one of the major determinants of long-term disability in stroke survivors (). Several disturbances are the manifestation of UL impairments after stroke (i.e., muscle weakness, changes in muscle tone, joint disturbances, impaired motor control). However, spasticity and weakness are the primary reason for rehabilitative intervention in the chronic stages (). Historically, spasticity refers to a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks resulting from hyperexcitability of the stretch reflex () while weakness is the loss of the ability to generate the normal amount of force.

From 7 to 38% of post-stroke patients complain of UL spasticity in the first year (). The pathophysiology of spasticity is complicated, and new knowledge has progressively challenged this definition. Processes involving central and peripheral mechanisms contribute to the spastic movement disorder resulting in abnormal regulation of tonic stretch reflex and increased muscle resistance of the passively stretched muscle and deficits in agonist and antagonist coactivation (). The resulting immobilization of the muscle at a fixed length for a prolonged time induces secondary biomechanical and viscoelastic properties changes in muscles and soft tissues, and pain (). These peripheral mechanisms, in turn, leads to further stiffness, and viscoelastic muscle changes (). Whether the muscular properties changes may be adaptive and secondary to paresis are uncertain. However, the management of UL spasticity should combine treatment of both the neurogenic and peripheral components of spasticity ().

UL weakness after stroke is prevalent in both acute and chronic phases of recovery (). It is a determinant of UL function in ADLs and other negative consequences such as bone mineral content (), atrophy and altered muscle pattern of activation. Literature supports UL strengthening training effectiveness for all levels of impairment and in all stages of recovery (). However, a small number of trials have been performed in chronic subgroup patients, and there is still controversy in including this procedure in UL rehabilitation ().

Botulinum toxin (BoNT) injection in carefully selected muscles is a valuable treatment for spastic muscles in stroke patients improving deficits in agonist and antagonist coactivation, facilitating agonist recruitment and increasing active range of motion (). However, improvements in UL activity or performance is modest (). With a view of improving UL function after stroke, moderate to high-quality evidence support combining BoNT treatment with other rehabilitation procedures (). Specifically, the integration of robotics in the UL rehabilitation holds promise for developing high-intensity, repetitive, task-specific, interactive treatment of upper limb (). The combined use of these procedures to compensate for their limitations has been studied in only one pilot RCT reporting positive results in UL function (Fugl-Meyer UL Assessment scale) and muscular activation pattern (). With the limits of the small sample, the results support the value of combining high-intensity UL training by robotics and BoNT treatment in patients with UL spastic paresis.

Clinical scales are currently used to assess the rehabilitation treatment effects, but these outcome measures may suffer from some drawbacks that can be overcome by instrumental assessment as subjectivity, limited sensitivity, and the lack of information on the underlying training effects on motor control (). Instrumental assessment, such as surface electromyography (sEMG) during a functional task execution allows assessing abnormal activation of spastic muscles and deficits of voluntary movements in patients with stroke.

Moreover, the hand-to-mouth task is representative of Activities of Daily Life (ADL) such as eating and drinking. Kinematic analysis of the hand-to-mouth task has been widely used to assess UL functions in individuals affected by neurological diseases showing adequate to more than adequate test-retest reliability in healthy subjects (). The task involves flexing the elbow a slightly flexing the shoulder against gravity, and it is considered to be a paradigmatic functional task for the assessment of spasticity and strength deficits on the elbow muscles (). Although sEMG has been reported to be a useful assessment procedure to detect muscle activity improvement after rehabilitation, limited results have been reported ().

The primary aim of this study was to explore the therapeutic synergisms of combined robot-assisted upper limb training and BoNT treatment on upper limb spasticity. The secondary aim was to evaluate the treatment effects on UL function, muscle strength, and the electromyographic activity of UL muscles during a functional task.

The combined treatment would contribute to decrease UL spasticity and improve function through a combination of training effects between BoNT neurolysis and the robotic treatment. A reduction of muscle tone would parallel improvement in muscle strength ought to the high-intensity, repetitive and task-specific robotic training. Since spasticity is associated with abnormal activation of shortening muscles and deficits in voluntary movement of the UL, the sEMG assessment would target these impairments ().

Materials and Methods

Trial Design

A single-blind RCT with two parallel group is reported. The primary endpoint was the changes in UL spasticity while the secondary endpoints were changes in UL function, muscle strength and the electromyographic activity of UL muscles during a functional task. The study was conducted according to the tenets of the Declaration of Helsinki, the guidelines for Good Clinical Practice, and the Consolidated Standards of Reporting Trials (CONSORT), approved by the local Ethics Committee “Nucleo ricerca clinica–Research and Biostatistic Support Unit” (prog n.2366), and registered at clinical trial (NCT03590314).

Patients

Chronic post-stroke patients with upper-limb spasticity referred to the Neurorehabilitation Unit (AOUI Verona) and the Physical Medicine and Rehabilitation Section, “OORR” Hospital (University of Foggia) were assessed for eligibility.

Inclusion criteria were: age > 18 years, diagnosis of ischemic or hemorrhagic first-ever stroke as documented by a computerized tomography scan or magnetic resonance imaging, at least 6 months since stroke, Modified Ashworth Scale (MAS) score (shoulder and elbow) ≤ 3 and ≥1+ (), BoNT injection within the previous 12 weeks of at least one of muscles of the affected upper limb, Mini-Mental State Examination (MMSE) score ≥24 () and Trunk Control Test score = 100/100 ().

Exclusion criteria were: any rehabilitation intervention in the 3 months before recruitment, bilateral cerebrovascular lesion, severe neuropsychologic impairment (global aphasia, severe attention deficit or neglect), joint orthopedic disorders.

All participants were informed regarding the experimental nature of the study. Informed consent was obtained from all subjects. The local ethics committee approved the study.

Interventions

Each patient underwent a BoNT injection in the paretic limb. The dose of BoNT injected into the target muscle was based on the severity of spasticity in each case. Different commercial formulations of BoNT were used according to the pharmaceutical portfolio contracts of our Hospitals (Onabotulinumtoxin A, Abobotulinumtoxin A, and Incobotulinumtoxin A). The dose, volume and number of injection sites were set accordingly. A Logiq ® Book XP portable ultrasound system (GE Healthcare; Chalfont St. Giles, UK) was used to inject BoNT into the target muscle.

Before the start of the study authors designed the experimental (EG) and the control group (CG) protocols. Two physiotherapists, one for each group, carried out the rehabilitation procedures. Patients of both groups received ten individual sessions (45 min/session, two sessions/week, five consecutive weeks). Treatments were performed in the rehabilitative gym of the G. B. Rossi University Hospital Neurological Rehabilitation Unit, or “OORR” Hospital.

Robot-Assisted UL Training

The Robot-assisted UL Training group was treated using the electromechanical device Armotion (Reha Technology, Olten, Switzerland). It is an end-effector device that allows goal-directed arm movements in a bi-dimensional space with visual feedback. It offers different training modalities such as passive, active, passive-active, perturbative, and assistive modes. The robot can move, drive or oppose the patient’s movement and allows creating a personalized treatment, varying parameters such as some repetitions, execution speed, resistance degree of motion. The exercises available from the software are supported by games that facilitate the functional use of the paretic arm (). The robot is equipped with a control system called “impedance control” that modulates the robot movements for adapting to the motor behavior of the patient’s upper limb. The joints involved in the exercises were the shoulder and the elbow, is the wrist fixed to the device.

The Robot-assisted UL Training consisted of passive mobilization and stretching exercises for affected UL (10 min) followed by robot-assisted exercises (35 min). Four types of exercises contained within the Armotion software and amount of repetitions were selected as follows: (i) “Collect the coins” (45–75 coins/10 min), (ii) “Drive the car” (15–25 laps/10 min), (iii) “Wash the dishes” (40–60 repetitions/10 min), and (iv) “Burst the balloons” (100–150 balloons/5 min) (Figure 1). All exercises were oriented to achieving several goals in various directions, emphasizing the elbow flexion-extension and reaching movement. The robot allows participants to execute the exercises through an “assisted as needed” control strategy. For increment the difficulty, we have varied the assisted and non-assisted modality, increasing the number of repetitions over the study period.

An external file that holds a picture, illustration, etc.
Object name is fneur-10-00041-g0001.jpg

Figure 1
The upper limb robot-assisted training setting.

Conventional Training

The conventional training consisted of UL passive mobilization and stretching (10 min) followed by UL exercises (35 min) that incorporated single or multi-joint movements for the scapula, shoulder, and elbow, performed in different positions (i.e., supine and standing position). The increase of difficulty and progression of intensity were obtained by increasing ROM, repetitions and performing movements against gravity or slight resistance (). Training parameters were recorded on the patient’s log. […]

 

Continue —>  Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial

, , , , , , , , ,

Leave a comment

[ARTICLE] Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial – Full Text

Background: The combined use of Robot-assisted UL training and Botulinum toxin (BoNT) appear to be a promising therapeutic synergism to improve UL function in chronic stroke patients.

Objective: To evaluate the effects of Robot-assisted UL training on UL spasticity, function, muscle strength and the electromyographic UL muscles activity in chronic stroke patients treated with Botulinum toxin.

Methods: This single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with UL spastic hemiparesis. The experimental group (n = 16) received robot-assisted UL training and BoNT treatment. The control group (n = 16) received conventional treatment combined with BoNT treatment. Training protocols lasted for 5 weeks (45 min/session, two sessions/week). Before and after rehabilitation, a blinded rater evaluated patients. The primary outcome was the Modified Ashworth Scale (MAS). Secondary outcomes were the Fugl-Meyer Assessment Scale (FMA) and the Medical Research Council Scale (MRC). The electromyographic activity of 5 UL muscles during the “hand-to-mouth” task was explored only in the experimental group and 14 healthy age-matched controls using a surface Electromyography (EMGs).

Results: No significant between-group differences on the MAS and FMA were measured. The experimental group reported significantly greater improvements on UL muscle strength (p = 0.004; Cohen’s d = 0.49), shoulder abduction (p = 0.039; Cohen’s d = 0.42), external rotation (p = 0.019; Cohen’s d = 0.72), and elbow flexion (p = 0.043; Cohen’s d = 1.15) than the control group. Preliminary observation of muscular activity showed a different enhancement of the biceps brachii activation after the robot-assisted training.

Conclusions: Robot-assisted training is as effective as conventional training on muscle tone reduction when combined with Botulinum toxin in chronic stroke patients with UL spasticity. However, only the robot-assisted UL training contributed to improving muscle strength. The single-group analysis and the qualitative inspection of sEMG data performed in the experimental group showed improvement in the agonist muscles activity during the hand-to-mouth task.

Introduction

Upper limb (UL) sensorimotor impairments are one of the major determinants of long-term disability in stroke survivors (1). Several disturbances are the manifestation of UL impairments after stroke (i.e., muscle weakness, changes in muscle tone, joint disturbances, impaired motor control). However, spasticity and weakness are the primary reason for rehabilitative intervention in the chronic stages (13). Historically, spasticity refers to a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks resulting from hyperexcitability of the stretch reflex (4) while weakness is the loss of the ability to generate the normal amount of force.

From 7 to 38% of post-stroke patients complain of UL spasticity in the first year (5). The pathophysiology of spasticity is complicated, and new knowledge has progressively challenged this definition. Processes involving central and peripheral mechanisms contribute to the spastic movement disorder resulting in abnormal regulation of tonic stretch reflex and increased muscle resistance of the passively stretched muscle and deficits in agonist and antagonist coactivation (67). The resulting immobilization of the muscle at a fixed length for a prolonged time induces secondary biomechanical and viscoelastic properties changes in muscles and soft tissues, and pain (811). These peripheral mechanisms, in turn, leads to further stiffness, and viscoelastic muscle changes (28). Whether the muscular properties changes may be adaptive and secondary to paresis are uncertain. However, the management of UL spasticity should combine treatment of both the neurogenic and peripheral components of spasticity (910).

UL weakness after stroke is prevalent in both acute and chronic phases of recovery (3). It is a determinant of UL function in ADLs and other negative consequences such as bone mineral content (3), atrophy and altered muscle pattern of activation. Literature supports UL strengthening training effectiveness for all levels of impairment and in all stages of recovery (3). However, a small number of trials have been performed in chronic subgroup patients, and there is still controversy in including this procedure in UL rehabilitation (3).

Botulinum toxin (BoNT) injection in carefully selected muscles is a valuable treatment for spastic muscles in stroke patients improving deficits in agonist and antagonist coactivation, facilitating agonist recruitment and increasing active range of motion (681214). However, improvements in UL activity or performance is modest (13). With a view of improving UL function after stroke, moderate to high-quality evidence support combining BoNT treatment with other rehabilitation procedures (1915). Specifically, the integration of robotics in the UL rehabilitation holds promise for developing high-intensity, repetitive, task-specific, interactive treatment of upper limb (15). The combined use of these procedures to compensate for their limitations has been studied in only one pilot RCT reporting positive results in UL function (Fugl-Meyer UL Assessment scale) and muscular activation pattern (16). With the limits of the small sample, the results support the value of combining high-intensity UL training by robotics and BoNT treatment in patients with UL spastic paresis.

Clinical scales are currently used to assess the rehabilitation treatment effects, but these outcome measures may suffer from some drawbacks that can be overcome by instrumental assessment as subjectivity, limited sensitivity, and the lack of information on the underlying training effects on motor control (17). Instrumental assessment, such as surface electromyography (sEMG) during a functional task execution allows assessing abnormal activation of spastic muscles and deficits of voluntary movements in patients with stroke.

Moreover, the hand-to-mouth task is representative of Activities of Daily Life (ADL) such as eating and drinking. Kinematic analysis of the hand-to-mouth task has been widely used to assess UL functions in individuals affected by neurological diseases showing adequate to more than adequate test-retest reliability in healthy subjects (1819). The task involves flexing the elbow a slightly flexing the shoulder against gravity, and it is considered to be a paradigmatic functional task for the assessment of spasticity and strength deficits on the elbow muscles (1720). Although sEMG has been reported to be a useful assessment procedure to detect muscle activity improvement after rehabilitation, limited results have been reported (1621).

The primary aim of this study was to explore the therapeutic synergisms of combined robot-assisted upper limb training and BoNT treatment on upper limb spasticity. The secondary aim was to evaluate the treatment effects on UL function, muscle strength, and the electromyographic activity of UL muscles during a functional task.

The combined treatment would contribute to decrease UL spasticity and improve function through a combination of training effects between BoNT neurolysis and the robotic treatment. A reduction of muscle tone would parallel improvement in muscle strength ought to the high-intensity, repetitive and task-specific robotic training. Since spasticity is associated with abnormal activation of shortening muscles and deficits in voluntary movement of the UL, the sEMG assessment would target these impairments (281115).

Materials and Methods

Trial Design

A single-blind RCT with two parallel group is reported. The primary endpoint was the changes in UL spasticity while the secondary endpoints were changes in UL function, muscle strength and the electromyographic activity of UL muscles during a functional task. The study was conducted according to the tenets of the Declaration of Helsinki, the guidelines for Good Clinical Practice, and the Consolidated Standards of Reporting Trials (CONSORT), approved by the local Ethics Committee “Nucleo ricerca clinica–Research and Biostatistic Support Unit” (prog n.2366), and registered at clinical trial (NCT03590314).

Patients

Chronic post-stroke patients with upper-limb spasticity referred to the Neurorehabilitation Unit (AOUI Verona) and the Physical Medicine and Rehabilitation Section, “OORR” Hospital (University of Foggia) were assessed for eligibility.

Inclusion criteria were: age > 18 years, diagnosis of ischemic or hemorrhagic first-ever stroke as documented by a computerized tomography scan or magnetic resonance imaging, at least 6 months since stroke, Modified Ashworth Scale (MAS) score (shoulder and elbow) ≤ 3 and ≥1+ (22), BoNT injection within the previous 12 weeks of at least one of muscles of the affected upper limb, Mini-Mental State Examination (MMSE) score ≥24 (23) and Trunk Control Test score = 100/100 (24).

Exclusion criteria were: any rehabilitation intervention in the 3 months before recruitment, bilateral cerebrovascular lesion, severe neuropsychologic impairment (global aphasia, severe attention deficit or neglect), joint orthopedic disorders.

All participants were informed regarding the experimental nature of the study. Informed consent was obtained from all subjects. The local ethics committee approved the study.

Interventions

Each patient underwent a BoNT injection in the paretic limb. The dose of BoNT injected into the target muscle was based on the severity of spasticity in each case. Different commercial formulations of BoNT were used according to the pharmaceutical portfolio contracts of our Hospitals (Onabotulinumtoxin A, Abobotulinumtoxin A, and Incobotulinumtoxin A). The dose, volume and number of injection sites were set accordingly. A Logiq ® Book XP portable ultrasound system (GE Healthcare; Chalfont St. Giles, UK) was used to inject BoNT into the target muscle.

Before the start of the study authors designed the experimental (EG) and the control group (CG) protocols. Two physiotherapists, one for each group, carried out the rehabilitation procedures. Patients of both groups received ten individual sessions (45 min/session, two sessions/week, five consecutive weeks). Treatments were performed in the rehabilitative gym of the G. B. Rossi University Hospital Neurological Rehabilitation Unit, or “OORR” Hospital.

Robot-Assisted UL Training

The Robot-assisted UL Training group was treated using the electromechanical device Armotion (Reha Technology, Olten, Switzerland). It is an end-effector device that allows goal-directed arm movements in a bi-dimensional space with visual feedback. It offers different training modalities such as passive, active, passive-active, perturbative, and assistive modes. The robot can move, drive or oppose the patient’s movement and allows creating a personalized treatment, varying parameters such as some repetitions, execution speed, resistance degree of motion. The exercises available from the software are supported by games that facilitate the functional use of the paretic arm (25). The robot is equipped with a control system called “impedance control” that modulates the robot movements for adapting to the motor behavior of the patient’s upper limb. The joints involved in the exercises were the shoulder and the elbow, is the wrist fixed to the device.

The Robot-assisted UL Training consisted of passive mobilization and stretching exercises for affected UL (10 min) followed by robot-assisted exercises (35 min). Four types of exercises contained within the Armotion software and amount of repetitions were selected as follows: (i) “Collect the coins” (45–75 coins/10 min), (ii) “Drive the car” (15–25 laps/10 min), (iii) “Wash the dishes” (40–60 repetitions/10 min), and (iv) “Burst the balloons” (100–150 balloons/5 min) (Figure 1). All exercises were oriented to achieving several goals in various directions, emphasizing the elbow flexion-extension and reaching movement. The robot allows participants to execute the exercises through an “assisted as needed” control strategy. For increment the difficulty, we have varied the assisted and non-assisted modality, increasing the number of repetitions over the study period.[…]

 

Figure 1. The upper limb robot-assisted training setting.

Continue —> Frontiers | Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial | Neurology

, , , , , , , , , ,

Leave a comment

[WEB SITE] Connecting Care for Stroke Patients – Rehab Managment

 

 

by Meri K. Slaugenhaupt, MPT, and Valerie Bucek, MA, CCC-SLP/L

According to the Centers for Disease Control and Prevention, someone in the United States has a stroke every 40 seconds. Someone dies from a stroke every 4 minutes. It is a leading cause of long-term disability. A stroke occurs when there is a disruption in blood flow to the brain. The most common kind of stroke, ischemic stroke, occurs when a clot or mass obstructs a blood vessel. A hemorrhagic stroke occurs when a weakened blood vessel ruptures.

This article follows the treatment of stroke survivor Greg Myers, who was finishing his workday when he suddenly became confused and had difficulty walking and talking. A co-worker called Emergency Medical Services, and Myers was transported to the nearest acute care primary stroke center for treatment. Myers had suffered a right cerebellar hemorrhage. His hospital course was complicated by the need for evacuation of the hematoma, post-occipital craniotomy, and wound dehiscence. After several days of acute medical care and monitoring, it was determined that Myers would benefit from intensive multidisciplinary rehabilitation services to address his residual physical deficits and cognitive needs. To begin his stroke rehabilitation journey, Myers chose HealthSouth Harmarville Rehabilitation Hospital (which will be known as Encompass Health Rehabilitation Hospital of Harmarville beginning January 1, 2019).

Evidence-Based Rehabilitation

Since 2002, HealthSouth Harmarville has been certified as a Joint Commission Disease-Specific Care Stroke Program. The team follows evidence-based Clinical Practice Guidelines (CPG) for treatment of individuals with stroke. By following these guidelines, the team has confidence that treatments are based upon the most current evidence-based research and philosophies.

Comprehensive rehabilitation services, such as those provided at HealthSouth Harmarville, are found to be one of the most effective ways to achieve functional recovery and independence after a stroke. Intensive rehabilitation services facilitates neuroplasticity and recovery of motor function. Neuroplasticity is the ability for the brain to “rewire” or adapt to new circumstances by reorganizing synaptic connections. By engaging in therapy that is challenging, repetitive, and task specific, motor pathways that have been disrupted by the stroke can be rewired and strengthened.

Reducing Complications of Stroke

One of the goals of the clinical practice guidelines is to reduce the complications of stroke. One of the most frequent complications following a stroke is difficulty swallowing, or dysphagia. Stroke survivors with dysphagia have an increased risk of pneumonia, dehydration, and malnutrition. Instrumental assessment in the form of a Modified Barium Swallow study (MBS) or Fiber-Optic Endoscopic Evaluation of Swallowing (FEES) determine an appropriate, safe diet and the course of treatment. Swallowing difficulty is treated by exercise, diet modification, and technology, such as neuromuscular electrical stimulation.

Early therapy intervention is also important to maximize motor recovery in our stroke patients. Deconditioning and non-use are a hurdle to restoring function, especially with the elderly stroke population. Physiological changes and complications as a result of prolonged bedrest can lead to additional loss of muscle mass, contractures, skin breakdown, and deep vein thrombosis, all of which further hinder the stroke-recovery process.

Technology and the Path to Walking

Being able to walk again is a common goal shared by most stroke survivors, and Myers was no exception. Studies show that stroke affects mobility in greater than half of stroke survivors. Those suffering from gait disturbances often have further difficulties with balance and cardiovascular endurance, and are subsequently more likely to fall. Therefore, improvements achieved with gait function frequently carry over to improvements in many other aspects of daily living.

In the past decade, technology has moved to the forefront of therapeutic intervention as an adjunct to conventional practice. This is true for all disciplines and ranges from Vital Stimulation in the treatment of dysphagia to robotics in the treatment of movement disorders.

Body weight-supported technology is one such area of technological advancement being utilized for gait training. Partial body weight (PBW)-supported devices are designed to use a harness and/or suspension system to assist with standing and safety during ambulation. When partial body weight devices are used over a treadmill, the therapist is able to change gait speed and work on gait quality under controlled, safe conditions. However, many PBW devices do not require use of a treadmill and can be used over the ground while providing similar training benefits to patients.

Automated technology incorporates the use of robotics, using attachments to the patient’s hip, knees, and ankles. These robotics guide the patient’s lower-extremity movement and promote normal movement throughout the entire gait cycle. Robotic body weight support is generally used with more involved patients who have significant difficulty with lower extremity movement. These devices allow the therapist to gradually decrease the support provided as gait improves.

Fall Protection and Balance

A clinical advantage that these technologies have over other conventional gait training is the reduced support required by the therapist. When asked about using a PBW support device, Tammy Whitlinger, a physical therapist assistant at HealthSouth Harmarville for 28 years, states, “I am able to safely initiate gait training earlier, and my patients are less anxious about the training because they know that they can’t fall.”

Balance deficits resulting from a stroke can also be very debilitating and frustrating for individuals. Since Myers had a stroke that affected the cerebellar part of his brain, balance training was also a major component of his therapy program. Myers’s balance program included a variety of approaches including altering visual feedback and multi-surface challenges. Equipment utilized for balance deficits can be as simple as carpet or foam. More complex devices are designed to use interactive technology and visual feedback to further analyze a patient’s posture and balance deficits.

Treadmills are another piece of technology commonly found in the clinic that are used to improve motor recovery after stroke. Treadmill training can be used with or without partial body weight support. When used along with conventional therapy, treadmill training has been shown to improve gait quality and efficiency, strength, and cardiovascular fitness. Other adjunct modalities are also utilized by physical therapists to address aerobic fitness and reciprocal movements of the lower extremities, such as stepper machines, elliptical trainers, and stationary/recumbent bikes.

Upper Extremity Dysfunction

Advanced technology used for the treatment of upper extremity dysfunction has also impacted stroke rehabilitation. Improving deficits in fine motor control, coordination, and weakness are often a focus of treatment in stroke recovery. Electrical stimulation, biofeedback, or robotics are utilized in many technologies to retrain arm movements and hand function. Some of these devices are even coupled with gaming to provide motivation and entertainment for the patient while exercising.

Family/caregiver involvement early on is very beneficial to a successful inpatient rehabilitation stay and transition to home. Our Clinical Practice Guidelines recommend that patients and caregivers be educated throughout the entire stay to learn about disease process, expected outcomes, treatment goals, and follow-up support services available in the home and community. As part of our discharge planning and preparation for a safe transition home, we completed a home visit for Myers. This is when the physical and occupational therapist team takes the patient home in order to problem-solve accessibility issues and to perform caregiver training in their own environment. By doing this, Myers and his wife were less anxious and fearful about their transition home.

Neuro-Focused Outpatient Rehab

Quality inpatient rehabilitation is a vital step in the journey of returning to community participation. Many patients choose to receive home health services after inpatient rehabilitation to assist with the transition to home. Myers briefly utilized home health before initiating the next stage of his recovery, which was a neuro-focused outpatient program found at HealthSouth Harmarville. Outpatient therapy provides an opportunity for stroke survivors to build endurance and to practice skills in higher levels of difficulty. Concerns and issues that have arisen from community integration can be incorporated into treatment and resolved. Instrumental activities of daily living are also a focus of the outpatient program. Participation in activities such as disease-specific support groups and wellness programs can help to facilitate return to the community.

HealthSouth Harmarville offers the entire continuum of care for patients, ranging from inpatient rehabilitation to home health to outpatient services to community support groups. Myers’s wife, Cathy, has become an active participant in the hospital’s Stroke Support Group, attending the educational programs and interacting with families of other stroke survivors. Myers, himself, continues to make gains in physical functioning, daily living skills, communication, and cognitive skills in outpatient therapy. He has returned to some of the leisure activities he enjoyed before his stroke. The couple took another step toward normalcy by going on a vacation to Aruba in August.

Additionally, Greg Myers was honored at the hospital’s National Rehabilitation Awareness Week celebration in September as one of five Rehab Champions treated in the last year who displayed determination, a positive attitude, and the ability to overcome obstacles in order to be successful. RM

Meri K. Slaugenhaupt, MPT, has served on the HealthSouth Harmarville Rehabilitation Hospital team since 1993, beginning as a physical therapist and now serves as the team’s program champion of the stroke program. In this role, Slaugenhaupt has obtained Stroke Joint Commission Disease Specific Certification, making HealthSouth Harmarville the first rehabilitation hospital to achieve this status in 2002. Under Slaugenhaupt’s leadership the hospital has achieved its 8th Joint Commission disease-specific care certification in 2017 for the stroke program. She earned her bachelor’s degree in physiology with a minor in exercise science from Penn State University in 1991. She then earned her master’s in physical therapy at the University of Pittsburgh.

Valerie Bucek, MA, CCC-SLP/L, has been a member of the HealthSouth Harmarville Rehabilitation Hospital team for more than 25 years. She began her work there as a staff speech pathologist and a speech therapy supervisor prior to her current role as the hospital’s therapy manager. Bucek received a bachelor’s degree in speech pathology from Duquesne University and a master’s degree in communication disorders from the University of Pittsburgh. She is one of the leaders of the hospital’s stroke and Parkinson’s disease programs, is founder and facilitator of the HealthSouth Harmarville Community Stroke Support Group, and is an affiliate for the ASHA Special Interest Division-Adult Neurogenic Communication Disorders. For more information, contactRehabEditor@medqor.com.

via Connecting Care for Stroke Patients – Rehab Managment

, , , , , , , ,

Leave a comment

[Abstract] Usability Evaluation of a Novel Robotic Power Wheelchair for Indoor and Outdoor Navigation

Highlights

Figure thumbnail fx1

  • Power wheelchair (electric-powered wheelchair [EPW]) users are prone to tips and falls when driving outdoor terrains.
  • Mobility Enhancement roBotic (MEBot) was designed to improve navigational skills of EPW users in common terrains.
  • Active EPW users compared MEBot capabilities to their own EPWs in a driving course.
  • Results demonstrated MEBot’s efficiency and efficacy to drive in all terrains.
  • EPW users recommended semiautonomous applications and an intuitive interface.

Abstract

Objective

To compare the Mobility Enhancement roBotic (MEBot) wheelchair’s capabilities with commercial electric-powered wheelchairs (EPWs) by performing a systematic usability evaluation.

Design

Usability in effectiveness, efficacy, and satisfaction was evaluated using quantitative measures. A semistructured interview was employed to gather feedback about the users’ interaction with MEBot.

Setting

Laboratory testing of EPW driving performance with 2 devices in a controlled setting simulating common EPW driving tasks.

Participants

A convenience sample of expert EPW users (N=12; 9 men, 3 women) with an average age of 54.7±10.9 years and 16.3± 8.1 years of EPW driving experience.

Interventions

Not applicable.

Main Outcome Measures

Powered mobility clinical driving assessment (PMCDA), Satisfaction Questionnaire, National Aeronautics and Space Administration’s Task Load Index.

Results

Participants were able to perform significantly higher number of tasks (P=.004), with significantly higher scores in both the adequacy-efficacy (P=.005) and the safety (P=.005) domains of the PMCDA while using MEBot over curbs and cross-slopes. However, participants reported significantly higher mental demand (P=.005) while using MEBot to navigate curbs and cross-slopes due to MEBot’s complexity to perform its mobility applications which increased user’s cognitive demands.

Conclusions

Overall, this usability evaluation demonstrated that MEBot is a promising EPW device to use indoors and outdoors with architectural barriers such as curbs and cross-slopes. Current design limitations were highlighted with recommendations for further improvement.

via Usability Evaluation of a Novel Robotic Power Wheelchair for Indoor and Outdoor Navigation – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

%d bloggers like this: