Posts Tagged Robustness

[Abstract + References] A Novel Exoskeleton with Fractional Sliding Mode Control for Upper Limb Rehabilitation

Summary

The robotic intervention has great potential in the rehabilitation of post-stroke patients to regain their lost mobility. In this paper, firstly, we present a design of a novel, 7 degree-of-freedom (DOF) upper limb robotic exoskeleton (u-Rob) that features shoulder scapulohumeral rhythm with a wide range of motions (ROM) compared to other existing exoskeletons. An ergonomic shoulder mechanism with two passive DOF was included in the proposed exoskeleton to provide scapulohumeral motion with corresponding full ROM. Also, the joints of u-Rob have more range of motions compared to its existing counterparts. Secondly, we propose a fractional sliding mode control (FSMC) to control u-Rob. Applying the Lyapunov theory to the proposed control algorithm, we showed the stability of it. To control u-Rob, FSMC has shown effectiveness to handle unmodeled dynamics (e.g. friction, disturbance, etc.) in terms of better tracking and chatter compared to traditional SMC.

References

1.Stroke Statistics In, (The Internet Stroke Centre 2019).Google Scholar
2.BenjaminE. J.BlahaM. J.ChiuveS. E.CushmanM.DasS. R.DeoR.de FerrantiS. D.FloydJ.FornageM.GillespieC.IsasiC. R.JimenezM. C.JordanL. C.JuddS. E.LacklandD.LichtmanJ. H.LisabethL.LiuS.LongeneckerC. T.MackeyR. H.MatsushitaK.MozaffarianD.MussolinoM. E.NasirK.NeumarR. W.PalaniappanL.PandeyD. K.ThiagarajanR. R.ReevesM. J.RitcheyM.RodriguezC. J.RothG. A.RosamondW. D.SassonC.TowfighiA.TsaoC. W.TurnerM. B.ViraniS. S.VoeksJ. H.WilleyJ. Z.WilkinsJ. T.WuJ. H.AlgerH. M.WongS. S.P. Muntner and On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, “Heart disease and stroke statistics-2017 update: A report from the American Heart Association,” Circulation 135(10), e146e603 (2017).CrossRef | Google Scholar
3.Rehabilitation Therapy after a Stroke In, (National Stroke Association, 2019).Google Scholar
4.PoliP.MoroneG.RosatiG. and MasieroS., “Robotic technologies and rehabilitation: New tools for stroke patients’ therapy,” BioMed Res. Int. 20138 (2013).Google Scholar
5.BaiS.ChristensenS. and IslamM. R. U., “An Upper-body Exoskeleton with a Novel Shoulder Mechanism for Assistive Applications,” 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017) pp. 10411046.Google Scholar
6.BrahmiB.SaadM.LunaC. O.ArchambaultP. S. and RahmanM. H., “Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties,” Robotica 36(11), 17571779 (2018).CrossRef | Google Scholar
7.CarignanC.TangJ.RoderickS. and NaylorM., “A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton,” 2007 IEEE 10th International Conference on Rehabilitation Robotics (2007) pp. 179187.Google Scholar
8.ChristensenS. and BaiS.A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons (Springer International PublishingCham2017) pp. 5156.Google Scholar
9.CuiX.ChenW.JinX. and AgrawalS. K., “Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance,” IEEE/ASME Trans. Mechatron. 22(1), 161172 (2017).CrossRef | Google Scholar
10.KiguchiK.EsakiR.TsurutaT.WatanabeK. and FukudaT., “An exoskeleton system for elbow joint motion rehabilitation,” Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003) (2003) vol. 1222, pp. 12281233.Google Scholar
11.KiguchiK. and HayashiY., “An EMG-based control for an upper-limb power-assist exoskeleton robot,” IEE Trans. Syst. Man Cybernetics, Part B (Cybernetics) 42(4), 10641071 (2012).CrossRef | Google Scholar | PubMed
12.KiguchiK.RahmanM. H.SasakiM. and TeramotoK., “Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist,” Robot. Auton. Syst. 56(8), 678691 (2008).CrossRef | Google Scholar
13.KimB. and DeshpandeA. D., “Controls for the Shoulder Mechanism of an Upper-body Exoskeleton for Promoting Scapulohumeral Rhythm,” 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (2015) pp. 538542.Google Scholar
14.KimB. and DeshpandeA. D., “An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,” Int. J. Rob. Res. 36(4), 414435 (2017).CrossRef | Google Scholar
15.LiuL.ShiY.-Y. and XieL., “A novel multi-dof exoskeleton robot for upper limb rehabilitation,” J. Mech. Med. Biol. 16(08), 1640023 (2016).CrossRef | Google Scholar
16.MahdavianM.ToudeshkiA. G. and Yousefi-KomaA., “Design and Fabrication of a 3DoF Upper Limb Exoskeleton,” 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM) (2015) pp. 342346.Google Scholar
17.MiheljM.NefT. and RienerR., “ARMin II – 7 DoF Rehabilitation Robot: Mechanics and Kinematics,” Proceedings 2007 IEEE International Conference on Robotics and Automation (2007) pp. 41204125.Google Scholar
18.NefT.GuidaliM.Klamroth-MarganskaV. and RienerR., “ARMin – Exoskeleton Robot for Stroke Rehabilitation,” In: World Congress on Medical Physics and Biomedical Engineering (DösselO. and SchlegelW. C., eds.) September 7–12, 2009, Munich, Germany (Springer Berlin HeidelbergBerlin, Heidelberg, 2009) pp. 127130.Google Scholar
19.NefT.GuidaliM. and RienerR., “ARMin III – Arm therapy exoskeleton with an ergonomic shoulder actuation,” Appl. Bionics Biomech. 6(2), (2009) pp. 127142.CrossRef | Google Scholar
20.NefT.MiheljM.KieferG.PerndlC.MullerR. and RienerR., “ARMin – Exoskeleton for Arm Therapy in Stroke Patients,” 2007 IEEE 10th International Conference on Rehabilitation Robotics (2007) pp. 6874.Google Scholar
21.NefT.MiheljM. and RienerR., “ARMin: A robot for patient-cooperative arm therapy,” Med. Biol. Eng. Comput. 45(9), 887900 (2007).CrossRef | Google Scholar | PubMed
22.NefT. and RienerR., “Shoulder Actuation Mechanisms for Arm Rehabilitation Exoskeletons,” 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2008) pp. 862868.Google Scholar
23.OttenA.VoortC.StienenA.AartsR.van AsseldonkE. and van der KooijH., “LIMPACT: A hydraulically powered self-aligning upper limb exoskeleton,” IEEE/ASME Trans. Mechatron. 20(5), 22852298 (2015).CrossRef | Google Scholar
24.PanD.GaoF.MiaoY. and CaoR., “Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms,” Adv. Eng. Software 793646 (2015).CrossRef | Google Scholar
25.PerryJ. C.RosenJ. and BurnsS., “Upper-limb powered exoskeleton design,” IEEE/ASME Trans. Mechatron. 12(4), 408417 (2007).CrossRef | Google Scholar
26.Piña-MartnezE.RobertsR.Rodriguez-LealE.Flores-ArredondoJ. H. and SotoR., “A Novel Exoskeleton for Continuous Monitoring of the Upper-Limb During Gross Motor Rehabilitation,” In: Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR 2016), October 18–21, 2016, Segovia, Spain (IbáñezJ.González-VargasJ.AzornJ. M.AkayM. and PonsJ. L., eds.) (Springer International PublishingCham2017) pp. 11991203.CrossRef | Google Scholar
27.RahmanM. H.RahmanM. J.CristobalO. L.SaadM.KennéJ. P. and ArchambaultP. S., “Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements,” Robotica 33(1), 1939 (2014).CrossRef | Google Scholar
28.StroppaF.LoconsoleC.MarcheschiS. and FrisoliA., “A Robot-Assisted Neuro-Rehabilitation System for Post-Stroke Patients’ Motor Skill Evaluation with ALEx Exoskeleton,” In: Converging Clinical and Engineering Research on Neurorehabilitation II (IbáñezJ.González-VargasJ.AzornJ. M.AkayM. and PonsJ. L., eds.) (Springer International PublishingCham2017) pp. 501505.Google Scholar
29.SutapunA. and SangveraphunsiriV., “A 4-DOF upper limb exoskeleton for stroke rehabilitation: Kinematics mechanics and control,” Int. J. Mech. Eng. Rob. Res. 4(3), 269272 (2015).Google Scholar
30.TangZ.ZhangK.SunS.GaoZ.ZhangL. and YangZ., “An upper-limb power-assist exoskeleton using proportional myoelectric control,” Sens. (Basel, Switzerland) 14(4), 66776694 (2014).CrossRef | Google Scholar | PubMed
31.XiaoF.GaoY.WangY.ZhuY. and ZhaoJ., “Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure,” Technol. Health Care. 25(S1), 311 (2017).CrossRef | Google Scholar | PubMed
32.GopuraR. A. R. C.BandaraD. S. V.KiguchiK. and MannG. K. I., “Developments in hardware systems of active upper-limb exoskeleton robots: A review,” Rob. Auton. Syst. 75203220 (2016).CrossRef | Google Scholar
33.IslamM.SpiewakC.RahmanM. and FarehR., “A brief review on robotic exoskeletons for upper extremity rehabilitation to find the gap between research porotype and commercial type,” Adv. Robot Autom. 6(3), (2017) pp. 112.CrossRef | Google Scholar
34.JarrasséN.ProiettiT.CrocherV.RobertsonJ.SahbaniA.MorelG. and Roby-BramiA., “Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients,” Front. Hum. Neurosci. 8(947), (2014) pp. 113.Google Scholar | PubMed
35.MaciejaszP.EschweilerJ.Gerlach-HahnK.Jansen-TroyA. and LeonhardtS., “A survey on robotic devices for upper limb rehabilitation,” J. NeuroEng. Rehabil. 11(1), 3 (2014).CrossRef | Google Scholar | PubMed
36.ChenY.LiG.ZhuY.ZhaoJ. and CaiH., “Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints,” Bio-Med. Mater. Eng. 24(6), 25272535 (2014).CrossRef | Google Scholar | PubMed
37.MadaniT.DaachiB. and DjouaniK., “Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems,” IEEE Trans. Control Syst. Technol. 25(3), 11331140 (2017).CrossRef | Google Scholar
38.RahmanM. H.SaadM.KennéJ.-P. and ArchambaultP. S., “Control of an exoskeleton robot arm with sliding mode exponential reaching law,” Int. J. Control Autom. Syst. 11(1), 92104 (2013).CrossRef | Google Scholar
39.GopuraR. A. R. C.KiguchiK. and LiY., “SUEFUL-7: A 7DOF Upper-limb Exoskeleton Robot with Muscle-model-oriented EMG-based Control,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 11261131.Google Scholar
40.ZeiaeeA.Soltani-ZarrinR.LangariR. and TafreshiR., “Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients,” 2017 International Conference on Rehabilitation Robotics (ICORR) (2017) pp. 759764.Google Scholar
41.FellagR.BenyahiaT.DriasM.GuiatniM. and HamerlainM., “Sliding Mode Control of a 5 Dofs Upper Limb Exoskeleton Robot,” 2017 5th International Conference on Electrical Engineering – Boumerdes (ICEE-B) (2017) pp. 16.Google Scholar
42.BabaiaslM.GoldarS. N.BarhaghtalabM. H. and MeigoliV., “Sliding Mode Control of an Exoskeleton Robot for use in Upper-limb Rehabilitation,” 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM) (2015) pp. 694701.Google Scholar
43.BrahmiB.SaadM.LunaC. O.ArchambaultP. S. and RahmanM. H., “Sliding Mode Control of an Exoskeleton Robot Based on Time Delay Estimation,” 2017 International Conference on Virtual Rehabilitation (ICVR) (2017) pp. 12.Google Scholar
44.ZhuS.JinX.YaoB.ChenQ.PeiX. and PanZ., “Non-linear sliding mode control of the lower extremity exoskeleton based on human–robot cooperation,” Int. J. Adv. Rob. Syst. 13(5), 1729881416662788 (2016).Google Scholar
45.ChenH.ChenH. and YangF., “Fractional-order Sliding-mode Stabilization of Nonholonomic Mobile Robots Based on Dynamic Feedback Linearization,” 2016 35th Chinese Control Conference (CCC) (2016) pp. 58745878.Google Scholar
46.ChengZ.MaZ.SunG. and DongH., “Fractional Order Sliding Mode Control for Attitude and Altitude Stabilization of a Quadrotor UAV,” 2017 Chinese Automation Congress (CAC) (2017) pp. 26512656.Google Scholar
47.TianyiZ.XuemeiR. and YaoZ., “A Fractional Order Sliding Mode Controller Design for Spacecraft Attitude Control System,” 2015 34th Chinese Control Conference (CCC) (2015) pp. 33793382.Google Scholar
48.TianJ.ChenN.YangJ. and WangL., “Fractional Order Sliding Model Control of Active Four-wheel Steering Vehicles,” ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014 (2014) pp. 15.Google Scholar
49.BouroubaB. and LadaciS., “Stabilization of Class of Fractional-order Chaotic System Via New Sliding Mode Control,” 2017 6th International Conference on Systems and Control (ICSC) (2017) pp. 470475.Google Scholar
50.KangJ.ZhuZ. H.WangW.LiA. and WangC., “Fractional order sliding mode control for tethered satellite deployment with disturbances,” Adv. Space Res. 59(1), 263273 (2017).CrossRef | Google Scholar
51.IslamM. R.Assad-Uz-ZamanM. and RahmanM. H., “Design and control of an ergonomic robotic shoulder for wearable exoskeleton robot for rehabilitation,” Int. J. Dyn. Control (2019) pp. 114.Google Scholar
52.CraboluM.PaniD.RaffoL.ContiM.CrivelliP. and CereattiA., “In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment,” Biomed. Eng. Online 16(1), 3434 (2017).CrossRef | Google Scholar | PubMed
53.HalderA. M.ItoiE. and AnK.-N., “Anatomy and biomechanics of the shoulder,” Orthop. Clinic. 31(2), 159176 (2000).Google Scholar
54.Soltani-ZarrinR.ZeiaeeA.LangariR. and TafreshiR., “A Computational Approach for Human-like Motion Generation in Upper Limb Exoskeletons Supporting Scapulohumeral Rhythms,” IEEE International Symposium on Wearable & Rehabilitation Robotics (WeRob2017) (Houston, Texas, USA, 2017) pp. 12.CrossRef | Google Scholar
55.CraigJ. J.Introduction to Robotics: Mechanics and Control (PearsonUpper saddle river, New Jersy2017) p. 448.Google Scholar
56.DenavitJ. and HartenbergR. S., “A kinematic notation for lower-pair mechanisms based on matrices,” Trans. of the ASME. J. Appl. Mech. 22215221 (1955).Google Scholar
57.RahmaniM. and RahmanM. H., “Novel robust control of a 7-DOF exoskeleton robot,” PLoS One 13(9), e0203440 (2018).CrossRef | Google Scholar | PubMed
58.RahmaniM.RahmanM. H. and GhommamJ., “A 7-DoF upper limb exoskeleton robot control using a new robust hybrid controller,” Int. J. Control Autom. Syst. 17(4), 986994 (2019).CrossRef | Google Scholar
59.WinterD. A., “Anthropometry,” In: Biomechanics and Motor Control of Human Movement (WinterD.A., eds.) (John Wiley & SonsNew York2009) p. 370.CrossRef | Google Scholar

via A Novel Exoskeleton with Fractional Sliding Mode Control for Upper Limb Rehabilitation | Robotica | Cambridge Core

, , , , , , , , ,

Leave a comment

%d bloggers like this: