Posts Tagged Scar

[NEWS] New study sheds light on why seizures happen after TBI

BY  ON JANUARY 22ND, 2019

New study sheds light on why seizures happen after TBI

An astrocyte cell grown in tissue culture stained with antibodies 
Image Source: Gerry Shaw/Wikimedia Common

Researchers have known that severe or repeated brain injuries may trigger seizures in individuals for years, but why this is has remained a mystery. However, a new animal study published in the journal JNeurosci may provide some much-needed insight into the relationship between traumatic brain injury and epilepsy.

The study, conducted by Stefanie Robel, Oleksii Shandra, and colleagues, identified a unique cellular response to repeated brain injuries in mice that appears to contribute to the development of seizures similar to those experienced by humans after traumatic brain injury.

For the study, the team induced brain injuries in mice that are analogous to traumatic brain injury or concussions in humans. While observing the mice, the researchers also noticed that a unique group of astrocytes in the brain responded atypically to these injuries. The mice that showed this response also developed spontaneous recurrent seizures within one month.

In the case of severe traumatic brain injury, astrocytes may change to form a scar. This is important for allowing the brain, but these “scars” have also been linked to epilepsy. However, this scarification does not happen as a result of more mild traumatic brain injuries or concussions.

Instead, the researchers observed that the astrocytes responded in different ways almost immediately after the injury which were linked to later seizures.

At first, the team assumed the astrocytes were “dead” because they were no longer producing the proteins that characterize astrocytes. However, the team noticed they were in fact still working, but not responding to the injury in a unique way.

“Our experiments show a strong relationship between changes in astrocytes and the eventual occurrence of a seizure,” says Robel, an assistant professor with the Fralin Biomedical Research Institute and the School of Neuroscience in Virginia Tech’s College of Science.

“The findings point to a unique population of astrocytes that respond within 30 minutes of an injury being at the root of a problem where seizures may occur after a latency period of weeks or months, suggesting a therapeutic window to prevent seizure disorders after concussive injuries.”

via New study sheds light on why seizures happen after TBI – Neurologic Rehabilitation Institute

, , , ,

Leave a comment

[WEB SITE] Study uncovers genetic trigger that may help the brain to recover from stroke, other injuries

Scientists have found a genetic trigger that may improve the brain’s ability to heal from a range of debilitating conditions, from strokes to concussions and spinal cord injuries.

A new study in mice from UT Southwestern’s O’Donnell Brain Institute shows that turning on a gene inside cells called astrocytes results in a smaller scar and – potentially – a more effective recovery from injury.

The research examined spinal injuries but likely has implications for treating a number of brain conditions through gene therapy targeting astrocytes, said Dr. Mark Goldberg, Chairman of Neurology & Neurotherapeutics at UT Southwestern.

“We’ve known that astrocytes can help the brain and spinal cord recover from injury, but we didn’t fully understand the trigger that activates these cells,” Dr. Goldberg said. “Now we’ll be able to look at whether turning on the switch we identified can help in the healing process.”

The study published in Cell Reports found that the LZK gene of astrocytes can be turned on to prompt a recovery response called astrogliosis, in which these star-shaped cells proliferate around injured neurons and form a scar.

Scientists deleted the LZK gene in astrocytes of one group of injured mice, which decreased the cells’ injury response and resulted in a larger wound on the spinal cord. They overexpressed the gene in other injured mice, which stimulated the cells’ injury response and resulted in a smaller scar. Overexpressing the gene in uninjured mice also activated the astrocytes, confirming LZK as a trigger for astrogliosis.

Dr. Goldberg said a smaller scar likely aids the healing process by isolating the injured neurons, similar to how isolating a spreading infection can improve recovery. “But we don’t know under what circumstances this hypothesis is true because until now we didn’t have an easy way to turn the astrocyte reactivity on and off,” he said.

Further study is needed to analyze whether a compact scar tissue indeed improves recovery and how this process affects the neurons’ ability to reform connections with each other.

Dr. Goldberg’s lab will conduct more research to examine the effects of astrogliosis in stroke and spinal cord injuries. The researchers will determine whether turning up LZK in mice in advance of an injury affects its severity. They will then measure how the formation of the compact scar helps or hinders recovery.

“It has been a big mystery whether increasing astrocyte reactivity would be beneficial,” said Dr. Meifan Amy Chen, the study’s lead author and Instructor of Neurology at the Peter O’Donnell Jr. Brain Institute. “The discovery of LZK as an on switch now offers a molecular tool to answer this question.”

 

via Study uncovers genetic trigger that may help the brain to recover from stroke, other injuries

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] Brain surgery helps remove scar tissue causing seizures in epilepsy patients

By the time epilepsy patient Erika Fleck came to Loyola Medicine for a second opinion, she was having three or four seizures a week and hadn’t been able to drive her two young children for five years.

“It was no way to live,” she said.

Loyola epileptologist Jorge Asconapé, MD, recommended surgery to remove scar tissue in her brain that was triggering the seizures. Neurosurgeon Douglas Anderson, MD, performed the surgery, called an amygdalohippocampectomy. Ms. Fleck hasn’t had a single seizure in the more than three years since her surgery.

“I’ve got my life back,” she said. “I left my seizures at Loyola.”

Surgery can be an option for a minority of patients who do not respond to medications or other treatments and have epileptic scar tissue that can be removed safely. In 60 to 70 percent of surgery patients, seizures are completely eliminated, and the success rate likely will improve as imaging and surgical techniques improve, Dr. Anderson said.

Traditionally, patients would have to try several medications with poor results for years or decades before being considered for surgery, according to the Epilepsy Foundation. “More recently, surgery is being considered sooner,” the foundation said. “Studies have shown that the earlier surgery is performed, the better the outcome.” (Ms. Fleck is a service coordinator for the Epilepsy Foundation North/Central Illinois Iowa and Nebraska.)

Dr. Asconapé said Ms. Fleck was a perfect candidate for surgery because the scar tissue causing her seizures was located in an area of the brain that could be removed without damaging critical structures.

Ms. Fleck experienced complex partial seizures, characterized by a deep stare, unresponsiveness and loss of control for a minute or two. An MRI found the cause: A small area of scar tissue in a structure of the brain called the hippocampus. The subtle lesion had been overlooked at another center.

Epilepsy surgery takes about three hours, and patients typically are in the hospital for two or three days. Like all surgery, epilepsy surgery entails risks, including infection, hemorrhage, injury to other parts of the brain and slight personality changes. But such complications are rare, and they pose less risk to patients than the risk of being injured during seizures, Dr. Asconapé said.

Loyola has been designated a Level Four Epilepsy Center by the National Association of Epilepsy Centers. Level Four is the highest level of specialized epilepsy care available. Level Four centers have the professional expertise and facilities to provide the highest level of medical and surgical evaluation and treatment for patients with complex epilepsy.

Loyola’s comprehensive, multidisciplinary Epilepsy Center offers a comprehensive multidisciplinary approach to epilepsy and seizure disorders for adults and children as young as two years old. Pediatric and adult epileptologist consultation and state-of-the-art neuroimaging and electrodiagnostic technology are used to identify and assess complex seizure disorders by short- and long-term monitoring.

Source: Loyola University Health System

Source: Brain surgery helps remove scar tissue causing seizures in epilepsy patients

, , , , , , , , , ,

Leave a comment

%d bloggers like this: