Posts Tagged seizures

[WEB PAGE] Seizures and epilepsy

Author(s): Rani Haley Lindberg, Devin Wells MDOriginally published: August 7, 2012 Last updated: April 5, 2016

Jump to:



Seizure is the transient onset of paroxysmal events due to abnormal electrical activity within the brain as a result of excessive or synchronous neuronal activity.1

  • Acute symptomatic seizures: seizures resulting from acute central nervous system (CNS) insult including but not limited to metabolic, toxic, structural, infectious, or inflammatory insults.2
  • Unprovoked seizures: seizures that occur in the absence of active CNS insult or beyond the time interval estimated for acute seizures.2
  • Seizures can be focal (with or without dyscognitive features) or generalized. Generalized seizures include absence, tonic-clonic, atonic, and myotonic seizures.
  • Status epilepticus denotes that the seizure is prolonged or immediately recurrent without return of consciousness.

Epilepsy is a brain disorder in which there is a chronic underlying CNS disorder resulting in unprovoked, recurring seizures


Seizure precipitants include but are not limited to the following:

  • Traumatic brain injury
  • Hypoxic-ischemic events in the brain
  • Intracranial hemorrhage
  • Infection of the central nervous system
  • Metabolic disorder
  • Congenital abnormalities of the brain
  • Neurodegenerative disorders
  • Drug withdrawal or intoxication
  • Brain tumors/mass lesions
  • Fever
  • Primary or idiopathic epilepsy (unknown cause)

While seizures can be unprovoked, in some cases they may be triggered by factors such as fatigue, sleep deprivation, or flickering lights.

Epidemiology including risk factors and primary prevention

According to the World Health Organization 2015 update, there are approximately 50 million people world-wide who are living with epilepsy: a prevalence of 4 to 10 per 1000 people. Around 5% of the population will have at least 1 seizure within their lifespan.3 Incidence of neonatal seizures is 1-1.2% of live births. Younger children are at a higher risk if they have congenital, genetic, or developmental conditions; in adults, neoplastic, vascular, and degenerative etiologies are more common. The highest incidence of epilepsy occurs at the extremes of life. Men are at higher risk than women for epilepsy.

Focal seizures are the most common seizure type, yet generalized seizures are more common in children. Seizures developing 1 week post-TBI occurs in 14-53% of the moderate to severe TBI survivors. 50% of TBI survivors with penetrating brain injuries develop epilepsy. In individuals aged 15 to 24, TBI is the leading cause of epilepsy.


An impairment of the biochemical processes at the neurotransmitter and ion channel level causes hyperexcitability and neuronal hypersynchrony. Seizures are a result of this abnormal and excessive neuronal activity because of an imbalance between excitatory and inhibitory forces within the brain.

The primary excitatory neurotransmitter in the brain is glutamate, and the primary inhibitory neurotransmitter is gamma-aminobutyric acid (GABA). Antiepileptic drugs (AEDs) facilitate neuronal inhibition and/or reduce excitation.

Disease progression including natural history, disease phases or stages, disease trajectory (clinical features and presentation over time)

Individuals in whom the sole cause of a seizure is a correctable condition, for example a metabolic disturbance without an underlying structural lesion, are rarely at risk for future epilepsy or recurrent seizures in the absence of recurrence of the condition.

The risk of seizure recurrence in someone with an unprovoked or idiopathic initial seizure is estimated to be 30-70% in the first 12 months, depending on seizure type and etiology. Abnormal neurologic exam, postictal paralysis, abnormal electroencephalogram (EEG), and strong family history of seizures increase the risk of seizure recurrence.

Approximately 60-70% of individuals whose seizures are completely controlled can eventually discontinue antiepileptic therapy.

Specific secondary or associated conditions and complications

Consequences and complications associated with seizures and epilepsy include but are not limited to:

  • Impairment of consciousness
  • Physical injuries during the event
  • Anoxic injury to the brain
  • Learning disabilities
  • Memory loss
  • Language deficits
  • Impaired self-esteem
  • Fatigue
  • Mood disorders (e.g., anxiety, depression, adjustment disorders)
  • Loss of independence and limitations in participation, including specific work activities and driving.

Side effects of AEDs are common and include osteoporosis, weight gain, negative cognitive impairments, nausea, sedation, and/or ataxia.

2. essentials of assessment


A comprehensive history is necessary to confirm seizure activity, to characterize the seizure, and to identify risk factors for seizure. An accurate description of surrounding events, including witness interview, helps identify sources that elicit seizures, the presence of any aura, and ictal and postictal behaviors.

  • Aura may include abnormal smell or taste, deja vu feeling, or an intense feeling that a seizure is imminent.
  • Patients or witnesses may report: generalized convulsions, repetitive movements, staring spells, visual or auditory disturbances, or dysesthesias

History should also include a comprehensive review of medications, alcohol or drug use/abuse, family history, and thorough medical history, including history of head trauma, stroke, neurodegenerative diseases, and intracranial infections. In patients with confirmed epilepsy, history should assess seizure control and the functional/social impact of seizures.

Differential diagnosis includes but is not limited to transient ischemic attacks, vaso-vagal/syncopal episodes, delirium, migraine headaches, movement disorders, and psychological factors.

Physical examination

A careful neurologic examination in the interictal period, including assessment of cortical function and mental status, is essential. Presence of TBI or other premorbid neurological disorder can mask signs and symptoms of seizure.  Thus, observation for subtle clues and symptoms is essential to seizure diagnosis.

The physical manifestation of a seizure is dependent on its classification:

  • Generalized tonic-clonic seizures: Abrupt onset with loss of consciousness; generalized muscle rigidity, followed by jerking/twitching movements. Often followed by a postictal phase characterized by deep sleep with deep respirations and gradual awakening accompanied by a headache.
  • Focal seizures with dyscognitive features (complex partial seizures): altered consciousness without loss of consciousness often associated with repetitive behaviors or automatisms (lip smacking, snapping fingers, facial grimacing). The postictal phase includes confusion, somnolence, and headaches.
  • Absence seizures (typically occurs during childhood): staring spell with impaired consciousness; during is typically 5-10 seconds.
  • Subclinical seizures: abnormal electroencephalographic activity without physically symptoms or signs.

The physical exam should be comprehensive to assist in searching for an underlying cause of seizure, such as infection or a systemic disorder.

Functional assessment

Depending on the cause and duration of the seizure, there can be subsequent impairments in mobility, self-care, behavior, cognition, mood, self-esteem, learning abilities, and speech/language. In mesial temporal sclerosis, the most commonly diagnosed focal structural abnormality in patients with epilepsy, associated neuropsychiatric impairments may include decreased memory, cognition, depression, anxiety, and psychiatric comorbidities.

Laboratory studies

Laboratory tests include:

  • Comprehensive metabolic panel including sodium, glucose, calcium, magnesium, renal and liver function levels
  • Hematology studies
  • Toxicology screens
  • Serum prolactin level (elevated post seizure, must be drawn within 1 hour of the event)
  • Lumbar puncture is indicated if there is suspicion of a central neurologic infectious process


Neuroimaging studies are typically indicated for evaluation of the brain structure. Magnetic resonance imaging (MRI) is preferred over computerized tomography (CT)11, given that it facilitates better identification of structural causes of epilepsy, such as mesial temporal sclerosis, cortical dysplasia, brain tumors, vascular malformations, TBI, cerebral infarction/hemorrhages, and infectious process.

An epilepsy protocol for the MRI should be performed, which would ideally include the following:

  • Standard T1-weighted images.
  • T2-weighted fast spin-echo sequences.
  • Gradient echo (T2) sequences.
  • Fluid-attenuated inversion recovery sequences.
  • Three-dimensional (3D) volume acquisition sequences with high definition of the gray-white junction; 3D fast spoiled gradient recalled echo acquisition at the steady state.

Functional imaging techniques such as positron emission tomography (PET), single-photon emission computerized tomography (SPECT), functional magnetic resonance imaging (fMRI), and magnetic resonance spectroscopy (MRS) are helpful in localizing/mapping epileptic foci and can aide in surgical management of epilepsy.

Supplemental assessment tools

EEG is an essential diagnostic tool when evaluating seizures. Epileptiform abnormalities usually increase the likelihood that the patient will experience another seizure over the next 2 years. EEG abnormalities can be nonspecific and a normal EEG does not rule out epilepsy. Long-term video EEGs are helpful in recording multiple seizures. Epileptiform discharges are associated with epilepsy, while nonepileptiform abnormalities are nonspecific EEG abnormalities that do not support the diagnosis of epilepsy.

Neuropsychological testing can be used in nonoperative or postoperative epilepsy patients to assess level of cognitive functioning. Results can assist with recommendations for vocational and cognitive rehabilitation.

Early predictions of outcomes

In individuals with TBI resulting in loss of consciousness or amnesia lasting less than thirty minutes (mild injury), there is a 0.5% cumulative five-year probability of seizures. In moderate injury, or loss of consciousness for 30 minutes to 24 hours or skull fracture, there is a 1.2% probability and for severe injuries (loss of consciousness or amnesia >24hours, cerebral contusion, SDH) there is a 10% probability.13

In hospitalized TBI patients with initial GCS of 13 to 15, the 2 year incidence of epilepsy is 8%. For GCS 3 to 8, the 2 year incidence is 16.8%.12

Refractory epilepsy requiring multiple medications is more likely in those with focal seizures due to underlying structural abnormalities, multiple seizure types, or comorbid developmental delays.


Seizures can be triggered by environmental factors such as loud noises and flashing lights.

Environmental safety considerations include avoiding heights/climbing activities, scuba diving, and swimming alone.

Social role and social support system

Seizures and epilepsy can significantly impact functional independence, learning abilities, employability, insurability/financial resources, self-esteem, mood, ability to drive or operate heavy equipment, and vocational skills.

Support systems should provide resources within the home and the community to provide these patients, families, and support network with education, and counseling about seizure triggers, physical and psychosocial consequences of seizures, and coping with seizure/epilepsy diagnosis.

Professional Issues

States differ in their requirements for reporting seizure/epilepsy diagnoses to the Office of Driver Services. Physicians should be knowledgeable of their local state law and regulations regarding drivers with an active history of epilepsy.4

3. rehabilitation management and treatments

Available or current treatment guidelines

The following are recommendations for seizure prophylaxis with antiepileptic drugs (AEDs) in patients with TBI:5

  • Immediate seizures (within first 24 hours) post-TBI do not require any additional prophylaxis after 7 days.
  • Early seizures (between days 1 and 7) post-TBI should be treated for at least 24 months with AEDs, unless there was a casual time-limited intracranial abnormality (hydrocephalus, active hemorrhage, or infectious process). Early seizures are associated with a higher incidence of intracranial bleeding. Incidence of early seizures post-TBI decreases significantly with seizure prophylaxis the first 7 days post-TBI.
  • Late seizures (after 7 days) post TBI should be treated for at least 24 months.
  • Any seizure post-TBI that is considered status epilepticus, requires treatment with AEDs for at least 12-24 months.6
  • Individuals with frequent seizures during the first year post-trauma are less likely to have seizure remission.7

Recommendations for seizure prophylaxis for newly diagnosed brain tumors:8

  • Anticonvulsant medications are not proven effective in preventing initial seizures. Because of a lack of efficacy and potential side effects, prophylactic anticonvulsants should not be routinely used in patients with newly diagnosed brain tumors.
  • In patients with brain tumors who have not had a seizure, tapering and discontinuing anticonvulsants after the first postoperative week is appropriate, particularly in those patients who are medically stable and who are experiencing anticonvulsant-related side effects.

At different disease stages

New onset/acute:

  • Initial seizure: Treat acute underlying cause (metabolic derangements, alcohol and drug withdrawal, intracranial hemorrhages, infectious process, hypoxic events, drug toxicity). If there is strong evidence of an epileptogenic focus, then AED treatment should be initiated.
  • Initiate an AED after 2 or more unprovoked seizures.
  • Choice of AED should take into consideration drug effectiveness for the seizure type, potential adverse effects including neurological/cognitive impairments, medication interactions, comorbid medical conditions, age and sex (pregnancy risk), lifestyle, cost, and patient preferences.
  • Monotherapy is preferred. 10-15%of people need two AEDs to control seizure activity. Up to 80% of patients can become seizure free on AED treatment.
  • First-line antiepileptic drugs include:
    • Generalized tonic-clonic seizures: valproic acid or lamotrigine
    • Focal seizures: carbamazepine, lamotrigine, or phenytoin
    • Absence seizures: valproic acid or ethosuximide for absence seizures
  • Routine follow up of patients on AEDs should include AED serum level, blood counts, albumin level (for phenytoin), and hepatic and renal function monitoring.
  • After a seizure-free period of 2-4 years, it is reasonable to consider discontinuation of AEDs. Tapering should be performed slowly; there is no well-defined accepted tapering schedule. It should be done over a 2-3 month period at minimum.
  • Treatment for seizures resistant to AEDs include: Vagal nerve stimulators or surgical procedures9 such as anteromedial temporal resection, corpus callosotomy, functional hemispherectomy (hemispherotomy), and multiple subpial transection.
  • Status epilepticus: Benzodiazepines are the first line of treatment followed by phenytoin, barbiturates, and propofol.

Coordination of care

Medical care should be coordinated with measures to address psychosocial consequences. Treatment team should include primary care physician, neurologist, physiatrist, neurosurgeon, psychiatry/psychology, physical therapy, occupation therapy, speech therapy, and vocational therapist.

Emerging/unique Interventions

Emerging and unique interventions include transcranial magnetic stimulation and deep brain stimulation and are discussed below.

4. cutting edge/emerging and unique concepts and practice

Cutting edge concepts and practice

Up to one third of patients do not have a response to current AED’s and therapies. 19

Clobazam is a benzodiazepine which is used for treatment of various types of epilepsy, though only approved for Lennox-Gastuat syndrome in the United States. It has less sedating effects that other benzodiazepines and has high safety profile and efficacy in refractory epilepsy. 17

Deep brain stimulation (DBS) is a newer area of study that is useful in treating pharmacologically refractory epilepsy.10 Stimulation of the anterior nuclei of the thalamus (ANT) has been shown to be useful in adjunctive treatment of refractory epilepsy; the FDA approved DBS in the ANT as treatment for severe and refractory partial-onset seizures. Other deep brain areas, such as the subthalamic nucleus, caudate nucleus, cerebellum, are being studies as it relates to DBS. More well-controlled, larger studies are needed for other deep brain structures.

Transcranial magnetic stimulation (TMS) is another area being studies for improvement in refractory cases of epilepsy. Low-frequency high intensity repetitive TMS has a significant antiepileptic effect when delivered to epileptogenic areas of the brain and can also reduce interictal epileptic discharge improving psychological conditions in patients.15

Responsive neurostimulator (RNS) is a device that when implanted in the cortical or subcortical epileptogenic areas of the brain detects abnormal activity and delivers electrical stimulation to inhibit seizures prior to the onset of symptoms. Clinical trials are ongoing currently, but data supports the RNS device as a therapy option for refractory partial seizures.16

Other treatment options that are being explored include Synchrotron radiation and lactate dehydrogenase inhibition.18,19

5. gaps in the evidence-based knowledge

Gaps in the evidence-based knowledge

Although there are multiple resources providing recommendations regarding prophylaxis for seizures/epilepsy in high risk populations such as patients with CNS pathology, there are limited references providing a consensus to develop evidence-based guidelines for prevention and treatment.


  1. Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005 Apr. 46(4):470-2.
  2. Beghi E, Carpio A, Forsgren L, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51:671-675.
  3. Moran NF, Poole K, Bell G, et al. Epilepsy in the United Kingdom: seizure frequency and severity, anti-epileptic drug utilization and impact on life in 1652 people with epilepsy. Seizure. 2004;13:425-433.
  4. Shareef YS, McKinnon JH, Gauthier SM, Noe KH, Sirven JI, Drazkowski JF. Counseling for driving restrictions in epilepsy and other causes of temporary impairment of consciousness: how are we doing? Epilepsy Behav. 2009;14:550-552.
  5. Temkin NR. Risk factors for posttraumatic seizures in adults. Epilepsia. 2003;44 Suppl 10:18-20.
  6. Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet. 2009;373:1105-1110.
  7. Emanuelson I, Uvebrant P. Occurence of epilepsy during first 10 years after traumatic brain injury acquired in childhood up to the age of 18 years in the south western Swedish population-based series. Brain Inj. 2009;23:612-616.1. 64p.
  8. Kerrigan S, Grant R. Antiepileptic drugs for treating seizures in adults with brain tumors. Cochrane Database Syst Rev. 2011 Aug 10;(8):CD008586.
  9. Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P. Seizure outcome after epilepsy surgery in children and adolescents. Ann Neurol. 1998;44:740-748.
  10. Wakerley B, Schweder P, Green A, Aziz T. Possible seizure suppression via deep brain stimulation of the thalamic ventralis oralis posterior nucleus. J Clin Neurosci. 2011;18:972-973.
  11. Salmenpera TM, Duncan JS. Imaging in epilepsy. Journal of Neurol Neurosurg Psychiatry. 2005(76): iii2-iii10.
  12. EnglanderJ, Bushnik T, et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil. 2003; 84 (3): 365
  13. Annegers JF, Hauser WA, et al. A population-based study of seizures after traumatic brain injuries. N Engl J Med. 1998;338 (1): 20
  14. SANTE Trial of Deep Brain Stimulation in Epilepsy Published; FDA Panel Recommends Approval in Close Vote. Medscape. Mar 19, 2010
  15. Sun W, Mao W, et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: A controlled clinical Study. Epilepsia 2012; 53: 1782-1789
  16. Bergey G, Morrell M, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015; 84: 810-817
  17. Gauthier A, Mattson R. Clobazan: A safe, efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neuroscience & Therapeutics; 2015; 21: 543-548.
  18. Romanelli P, Bravin A, et al. New radiosurgical paradigms to treat epilepsy using synchrotron radiation. Epilepsy Toward the Next Decade. 2014; 231-236
  19. Rho J, Inhibition of Lactate Dehydrogenase to Treat Epilepsy. N Engl J Med. 2015; 373:187-189
  20. Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Epilepsy treatment: targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 2015;347:1362-1367


, , , ,

Leave a comment

[BLOG POST] Ketogenic Diet and Epilepsy – MyEpilepsyTeam

The ketogenic diet is a popular topic among the epilepsy community. Some MyEpilepsyTeam members have been able to reduce the number of seizures they have by maintaining this rigorous diet. The ketogenic diet requires eating minimal to no carbohydrates and increasing healthy fats.

On MyEpilepsyTeam, the social network and online support group for those living with epilepsy, members talk about a range of personal experiences and struggles. The ketogenic diet is one of the top 10 topics most discussed.

Here are some conversations about the ketogenic diet:

• There is one main ingredient of the diet that nobody talks about… exercise!

• When my doctor added the ketogenic diet to my treatment plan everything changed! I haven’t had a seizure in 5 months.

• Has anyone ever tried the “Ketogenic Diet” to help stop having seizures?

Here are some question and answer threads about the ketogenic diet:

• Was anyone else nervous about gaining weight when they started Keto?

• How much does the keto diet help?

• Have you asked your doctor about the Keto/MAD diet for drug-resistant epilepsy?

Can you relate?

Have another topic you’d like to discuss or explore? Go to MyEpilepsyTeam today and start the conversation. You’ll be surprised just how many others may share similar stories.

Feel free to ask a question here.


, ,

Leave a comment

[Review] Diet in the Treatment of Epilepsy: What We Know So Far – Full Text


Epilepsy is a chronic and debilitating neurological disorder, with a worldwide prevalence of
0.5–1% and a lifetime incidence of 1–3%. An estimated 30% of epileptic patients continue to experience
seizures throughout life, despite adequate drug therapy or surgery, with a major impact on society
and global health. In recent decades, dietary regimens have been used effectively in the treatment of
drug-resistant epilepsy, following the path of a non-pharmacological approach. The ketogenic diet
and its variants (e.g., the modified Atkins diet) have an established role in contrasting epileptogenesis
through the production of a series of cascading events induced by physiological ketosis. Other dietary
regimens, such as caloric restriction and a gluten free diet, can also exert beneficial effects on
neuroprotection and, therefore, on refractory epilepsy. The purpose of this review was to analyze
the evidence from the literature about the possible efficacy of different dietary regimens on epilepsy,
focusing on the underlying pathophysiological mechanisms, safety, and tolerability both in pediatric
and adult population. We believe that a better knowledge of the cellular and molecular biochemical
processes behind the anticonvulsant effects of alimentary therapies may lead to the development of
personalized dietary intervention protocols.

Full Text PDF

, , , , , ,

Leave a comment

[Abstract] Predictors of early, recurrent and intractable seizures in low-grade glioma



Seizures are common among patients with low grade glioma (LGG) and can significantly impact morbidity. We sought to determine the association between the clinical and molecular factors with seizure incidence and refractoriness in LGG patients


We conducted a retrospective review at University of Virginia in patients with LGG (WHO Grade II) evaluated between 2002-2015. Descriptive statistics were calculated for variables of interest and the Kaplan-Meier method was used to estimate survival curves, which were compared with the log-rank test


291 patients were included; 254 had molecular testing performed for presence of an IDH mutation and/or 1p/19q co-deletion. Sixty-eight percent of patients developed seizures prior to LGG diagnosis; 41% of all patients had intractable seizures. Utilizing WHO 2016 integrated classification, there was no significant difference in seizure frequency at pre- and post-operative periods or in developing intractable seizures, though a trend toward increased pre-operative seizure incidence among patients with IDH mutation was identified (p=0.09). Male gender was significantly associated with higher seizure incidence on pre-operative (p&0.001) and post-operative periods (p&0.001); men were also more likely to develop intractable seizures (p=0.01)


Seizures are common among patients with LGG. Differences in pre- or post-operative and intractable seizure rates by WHO 2016 classification were not detected. Our data showed a trend toward higher seizure incidence pre-operatively in patients with IDH mutant LGG. We describe a unique association between male gender and seizure incidence and intractability that warrants further studyTopic: 


, , , , , , , , , , ,

Leave a comment

[WEB PAGE] Epilepsy: A Neurological Disorder


Epilepsy is a group of neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures are episodes that can vary from brief and nearly undetectable periods to long periods of vigorous shaking. These episodes can result in physical injuries, including occasionally broken bones. In epilepsy, seizures have a tendency to recur and, as a rule, have no immediate underlying cause.

Isolated seizures that are provoked by a specific cause such as poisoning are not deemed to represent epilepsy. People with epilepsy may be treated differently in various areas of the world and experience varying degrees of social stigma due to their condition.

The underlying mechanism of epileptic seizures is excessive and abnormal neuronal activity in the cortex of the brain. The reason this occurs in most cases of epilepsy is unknown. Some cases occur as the result of brain injury, stroke, brain tumors, infections of the brain, or birth defects through a process known as epileptogenesis. Known genetic mutations are directly linked to a small proportion of cases. The diagnosis involves ruling out other conditions that might cause similar symptoms, such as fainting, and determining if another cause of seizures is present, such as alcohol withdrawal or electrolyte problems. This may be partly done by imaging the brain and performing blood tests. Epilepsy can often be confirmed with an electroencephalogram (EEG), but a normal test does not rule out the condition. Epilepsy that occurs as a result of other issues may be preventable.

Seizures are controllable with medication in about 70% of cases; inexpensive anti-seizure medications are often available. In those whose seizures do not respond to medication, surgery, neurostimulation or dietary changes may then be considered. Not all cases of epilepsy are lifelong, and many people improve to the point that treatment is no longer needed. As of 2015, about 39 million people have epilepsy.

Nearly 80% of cases occur in the developing world. In 2015, it resulted in 125,000 deaths, an increase from 112,000 in 1990. Epilepsy is more common in older people. In the developed world, onset of new cases occurs most frequently in babies and the elderly. In the developing world, onset is more common in older children and young adults due to differences in the frequency of the underlying causes. About 5–10% of people will have an unprovoked seizure by the age of 80, and the chance of experiencing a second seizure is between 40 and 50%. In many areas of the world, those with epilepsy either have restrictions placed on their ability to drive or are not permitted to drive until they are free of seizures for a specific length of time.

The word epilepsy is from Ancient Greek ἐπιλαμβάνειν, ‘to seize, possess, or afflict’. Seizures Main article: Epileptic seizure The most common type (60%) of seizures are convulsive. Of these, one-third begin as generalized seizures from the start, affecting both hemispheres of the brain. Two-thirds begin as focal seizures (which affect one hemisphere of the brain) which may then progress to generalized seizures. The remaining 40% of seizures are non-convulsive. An example of this type is the absence seizure, which presents as a decreased level of consciousness and usually lasts about 10 seconds.

Focal seizures are often preceded by certain experiences, known as auras. They include sensory (visual, hearing, or smell), psychic, autonomic, and motor phenomena. Jerking activity may start in a specific muscle group and spread to surrounding muscle groups in which case it is known as a Jacksonian march. Automatisms may occur, which are non-consciously-generated activities and mostly simple repetitive movements like smacking of the lips or more complex activities such as attempts to pick up something. There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence and atonic seizures. They all involve loss of consciousness and typically happen without warning.




, , ,

Leave a comment

[WEB SITE] Seizure Types and Symptoms of Epilepsy

Article written by Kelly Crumrin

Symptoms of epilepsy

Since epilepsy is a spectrum of neurological disorders and seizures that can affect any region of the brain, symptoms vary widely depending on the type of seizure. Most people will experience the same type of seizure each time, so symptoms should be similar from one seizure to the next. However, it is possible for a person to have multiple seizure types.

Seizure types

There are many different kinds of seizures, but they can be classified into three main types:

  • Focal onset seizure
  • Generalized onset seizure
  • Unknown onset seizure

These seizure types describe where in the brain the seizure starts, the level of awareness during the seizure, and whether or not the seizure involves movement. The wording in this article is based on a new classification system developed in 2017 by the International League Against Epilepsy. You may also encounter older classification systems.

Generalized onset seizures

Generalized onset seizures affect both sides of the brain – or the same groups of cells on both sides of the brain – at the same time, leading to a loss of consciousness and postictal (after the seizure) fatigue.

Generalized tonic-clonic (GTC) seizures were previously known as grand mal seizures. There are five distinct phases to this type of seizure, though not everyone will experience all five. During the tonic phase, the body, arms, and legs will flex, then straighten, then shake. In the clonic period, contraction and relaxation of the muscles follow. The seizure ends with the postictal period, during which fatigue, vision and speech problems, and head and body aches are common. GTC seizures may be proceeded by an aura, which is sometimes actually a focal onset aware seizure (see below). Tonic-clonic seizures may also cause vomiting and loss of bladder control.

Absence seizures, formerly referred to as petit mal, typically last less than 30 seconds. Absence seizures cause a short period of staring and altered consciousness. Most likely, the person will remain standing or sitting upright. The eyes may blink rapidly, or the face or mouth may twitch. After the seizure, they may not remember what just happened. Absence seizures may happen multiple times a day.

Atonic or akinetic seizures, also called drop attacks, cause a sudden loss of muscle tone. A person may suddenly drop their head or fall from a standing position. During the seizure, the body will be limp and unresponsive.

Myoclonic seizures often occur in clusters. Myoclonic seizures cause quick movements or the sudden jerking of muscles. Myoclonic seizures may happen multiple times a day or for multiple days in a row.

Clonic seizures cause jerking, rhythmic motions of the arms and legs, sometimes affecting the face and neck. Clonic seizures can occur on both sides of the body.

Tonic seizures cause the muscles to stiffen suddenly. Tonic seizures can last as long as 20 seconds. If a person is standing when a tonic seizure begins, they usually fall.

Focal onset seizures

Focal seizures affect only one part of the brain. In the past, focal onset seizures were referred to as partial seizures.

Focal onset aware seizures, previously called simple partial seizures, begin in one part or one group of cells of the brain. If a person is awake and aware during the seizure, it is called a focal onset aware seizure. Symptoms of a focal onset seizure vary depending on which part of the brain it affects, but may include visual disturbances, isolated muscle twitching, sweating, nausea, intense emotions, or unusual sensations. Focal onset aware seizures can sometimes precede a tonic-clonic seizure, leading some people to regard them as auras, warning signs, or premonitions of an oncoming generalized seizure.

During focal onset impaired awareness seizures, formerly referred to as complex partial seizures, a person may be confused, appear awake but be unresponsive, or become unconscious. Other behaviors during focal onset impaired awareness seizures may include chewing, gagging, laughing, crying, screaming, or running. Seizures last between 30 seconds to one minute. After the seizure, extreme fatigue is common.

Secondary generalized seizures begin in one part of the brain but then spread to both sides. A secondary generalized seizure is actually two seizures: a focal seizure followed by a generalized seizure.

Unknown onset seizures

In some cases, it is not known how or where the seizure begins. Seizures are considered unknown onset seizures if the seizure happens when a person is alone, when no one is present to witness the seizure. A doctor may be able to diagnose the seizure later as a focal or generalized seizure if more information is learned.


In some people with epilepsy, certain circumstances can trigger a seizure. Triggers vary from person to person, but among the most common are:

  • Stress
  • Missing a dose of medication
  • Lack of sleep
  • Flashing lights
  • Alcohol
  • Hormonal changes related to menstruation in women
  • Fever or infection
  • Hypoglycemia (low blood sugar)
  • Caffeine and other stimulants
  • Pain
  • Certain medications

Identifying seizure triggers allows a person with epilepsy to avoid their triggers and hopefully to have fewer seizures. Keeping a seizure diary is a good way to identify triggers. When a seizure occurs, note the date and time, any special situations surrounding the seizure, and how it felt. There are many apps and websites that can help you track seizures and triggers.


External resources

MyEpilepsyTeam resources


Is it possible to have more than one seizure type?

Yes, a person with epilepsy can experience different types of seizures.

What are febrile seizures?

Febrile seizures are those triggered by high fevers. As many as 5 percent of children under the age of 6 experience febrile seizures. Febrile seizures are usually connected to viral or bacterial infection such as the flu, roseola, or tonsillitis. A child who has febrile seizures does not have epilepsy; however, children who experience febrile seizures do have an increased risk of developing epilepsy later in life.

If I have a seizure, do I have epilepsy?

It is possible to have seizures that are not caused by epilepsy. Nonepileptic seizures can look and feel like epileptic seizures, but they do not involve abnormal electrical activity in the brain. Nonepileptic seizures can have several different causes. Febrile seizures are one common example. Another type of nonepileptic seizure is the psychogenic seizure. Psychogenic seizures are caused by psychological stress, sometimes related to an anxiety disorder. Nonepileptic seizures can also be caused by heart problems and metabolic conditions such as diabetes. Women are at a higher risk for nonepileptic seizures. It is possible for someone who has epilepsy to experience one or more nonepileptic seizures.

What is status epilepticus?

Status epilepticus describes a prolonged seizure or a series of multiple seizures that occur too rapidly for recovery between each one. Most doctors today consider a seizure or seizure series of at least five minutes in duration to qualify as status epilepticus. In previous years, status epilepticus was pronounced at 20 minutes in duration. The longer a seizure lasts, the less likely it will end without medication. Prolonged seizures are dangerous and can raise the risk of death.

What is an aura?

Some people with epilepsy experience an unusual emotion or sensation, called an aura or warning, immediately before a seizure occurs. An aura may be a visual disturbance, such as colorful lights; an emotion, such as joy or fear; a physical sensation, such as tingling, twitching, or stiffness in a body part, or a sensation that is harder to describe, such as one arm feeling larger than the other, a wave going through the head, or déjà vu. An aura is actually a focal aware seizure, which in some people spreads into a generalized seizure. When a focal aware seizure spreads into a generalized seizure, it may be referred to as a secondary generalized seizure.

What are reflex epilepsies?

For some people with epilepsy, seizures consistently occur as a result of exposure to a certain situation or stimulus, as if the seizures are a reflex. This variety of epilepsy is known as reflex epilepsy, which is found in 4 to 7 percent of people with epilepsy.

via Seizure Types and Symptoms of Epilepsy | MyEpilepsyTeam

, , , , , , , , , ,

Leave a comment

[ARTICLE] Principles of Epilepsy Management for Women in Their Reproductive Years – Full Text

In the United States, there are over one million women with epilepsy (WWE) in their childbearing years. Pregnancy can be challenging for this population. A number of international registries have documented that children born to these women are at increased risk for major congenital malformations (MCM), lower intelligence quotient scores and neurodevelopmental disorders, when the mother is managed on antiseizure medications (ASMs). To prevent poor neonatal outcomes for this population, safe and thoughtful management strategies are necessary. We propose to divide these management strategies into five principles. These include (I) choosing suitable ASMs for the patient’s seizure type, (II) choosing an ASM with the least teratogenic and cognitive side effects, (III) dosing at the lowest possible effective dosage, (IV) selecting the best ASM regimen as promptly as possible, even before a woman has her first menses, and (V) supplementing these patients with folic acid in order to try to enhance cognition and reduce neural tube defects.


In the United States, there are over one million WWE in their childbearing years (1). Because of the reproductive potential of these women their management can often differ from males and post-menopausal women.

Management of seizures is traditionally guided by the classification of seizures as focal or generalized in onset. Thankfully, there are ASMs that can treat seizures in each classification. That selection is then narrowed down further in WWE based on the teratogenicity potential of these ASMs that is available from the various pregnancy registries. These registries include the North American Pregnancy Registry, The UK & Ireland Epilepsy and Pregnancy Register, EURAP Registry (includes 44 countries all around the world) and the Australian Registry.

Along with an increase of MCM some ASMs can also lead to lower intelligence quotient scores, and neurodevelopmental disorders (1). Unintended pregnancies further complicate this risk as they often lead to inadequate or delayed initiation of prenatal care and an increased risk for fetal exposure teratogenic substances such as alcohol and nicotine (2). In 2011, there were 45 unintended pregnancies for every 1,000 women aged 15–44 years (3). Similar rates are reflected worldwide in other developed countries, but are substantially higher in developing countries at 65 unintended pregnancies for every 1,000 women age 15–44 years (4). It is thus evident that WWE in their reproductive years require different management strategies to improve their healthcare outcomes as well as the health of their potential offspring.[…]

Continue —-> Frontiers | Principles of Epilepsy Management for Women in Their Reproductive Years | Neurology

, , , , , , , , ,

Leave a comment

[BLOG POST]What is epilepsy? A neurological disorder that causes seizures. – NARIC

According to the Mayo Clinicepilepsy is a “central nervous system (neurological) disorder in which brain activity becomes abnormal causing seizures or periods of unusual behavior, sensations, and sometimes loss of awareness.” Anyone can develop epilepsy and it affects all genders, races, ethnic backgrounds, and ages. Symptoms can vary widely, from staring blankly for a few seconds during a seizure to twitching of arms or legs, and may include temporary confusion, loss of consciousness or awareness, and psychiatric symptoms such as fear or anxiety. Epilepsy has no identifiable cause in about half the people with the condition. For the other half of the population with epilepsy, the condition may be traced to various factors, including genetic influence, head trauma, brain conditions, infectious diseases, prenatal injury, or developmental disorders. There are certain risk factors that may increase a person’s risk of epilepsy, which include age, family history, head injuries, dementia, and stroke and other vascular diseases.

To diagnose a person with epilepsy, a doctor will review their symptoms and medical history, along with ordering a neurological exam and blood tests. They may also suggest other tests to detect brain abnormalities, such as electroencephalograms (EEG), computerized tomography (CT) scans, a magnetic resonance imaging (MRI) scan, and/or a functional MRI. An accurate diagnosis of a person’s seizure type and where seizures begin gives the best chance for finding an effective treatment. Doctors may begin treatment of epilepsy with medications, which may help people become seizure-free. For some people, medications may not treat their epilepsy and their doctor may suggest surgery or different types of therapies, such as vagus nerve stimulation, a ketogenic diet, or deep brain stimulation.

Researchers continue to study epilepsy and are studying many potential new interventions for epilepsy, including responsive neurostimulation and minimally invasive surgery. During the last 28 years, NIDILRR has funded several projects to study the impact of epilepsy and develop and test interventions, including a currently funded project that is studying a home-based self-management and cognitive training program to improve the quality of life for people with refractory epilepsy.  NARIC’s information specialists searched REHABDATA and found over 1,500 research articles, book chapters, and factsheets related to epilepsy from the NIDILRR community and beyond. If you have any questions about epilepsy or would like assistance in conducting your own search in NARIC’s databases, contact NARIC’s information specialists for more information.

Please note: This article provides basic information and is not intended to diagnose or recommend interventions for epilepsy. If you believe you have experienced a seizure, seek medical advice from a qualified primary care provider or specialist.

via What is epilepsy? A neurological disorder that causes seizures. | Collection Spotlight from the National Rehabilitation Information Center

, , , , , ,

Leave a comment

[ARTICLE] Basic and clinical role of vitamins in epilepsy – Full Text PDF


Background & Aims: Epilepsy is a brain disorder which affects about 50 million people worldwide. Good diet is an essential measure to controlling seizure attacks. Since some combination therapy can reduce epileptogenesis, therefore this review summarizes the available evidences about the application of vitamins in animal models and humans for understanding what specific combinations of antiepileptic drugs and vitamins are likely to be effective for epilepsy therapy.

Material and methods: In this review, electronic databases including PubMed and Google Scholar were searched for monotherapy and polytherapy by vitamins.

Results: Administration of vit A inhibits development of seizures and lethality in animal models. Also vitamins B1, B6 and B12 pretreatment might lead to a protective effect against degenerative cellular in mice. In addition use of low dose of sodium valproate with vitamins C or E increase the anticonvulsant activity of the drug in mice. Moreover, Vitamin D enhances antiepileptic effects of lamotrigine, phenytoin and valproate in animal’s models. Vitamin E has an anticonvulsant effect in ferrous chloride seizures, hyperbaric oxygen seizures as well as penicillin-induced seizures in contrast kindling, maximal electroshock and kainite models. Some researches demonstrated that vitamins D and B as adjunctive therapy in epileptic patient can relieve seizures. A clinical data have shown beneficial effects of vitamin E in raising total antioxidant capacity, catalase, and glutathione in patients with uncontrolled epilepsy. Only few clinical studies exist to support the efficacy of the vitamin A and K in epilepsy.

Conclusion: However vitamin therapy is not a substitute for antiepileptic drugs but add on therapy by them may relieve drugs-induced deficiencies as well as more researches are needed to evaluate the effectiveness of vitamins in epileptic humans.


Full Text PDF

, , ,

Leave a comment

[WEB PAGE] The ABCs of CBD: Separating fact from fiction – NIH MedlinePlus Magazine

CBD. Cannabidiol. No matter what you call it, you may have heard health claims about this little-known part of the marijuana plant, which comes from the plant’s flowers. Some say it treats muscle aches, anxiety, sleeping troubles, chronic pain, and more.

But what does the science say?

We spoke to NIH expert Susan Weiss, Ph.D., to learn more and find out why consumers should be careful. Dr. Weiss is the director of the division of extramural research at the National Institute on Drug Abuse (NIDA).

What is CBD?

CBD (or cannabidiol) comes from the cannabis (or marijuana) plant.

The chemical compound THC [tetrahydrocannabinol] is the part of the cannabis plant that most people are familiar with because that is the part that makes people “high.” Most effects of marijuana that people think of are caused by THC.

Most recreational marijuana has very little CBD in it. CBD products are available through dispensaries, health food and convenience stores, and the internet. It’s a widely used product that’s not regulated—and is not legal to sell for its largely unproven health benefits.

How does CBD work?

Nobody really knows what is responsible for the mental and physical health benefits that have been attributed to it. CBD affects the body’s serotonin system, which controls our moods. It also affects several other signaling pathways, but we really don’t understand its mechanisms of action yet.

How much do we know about CBD as a potential treatment?

There are over 50 conditions that CBD is claimed to treat.

We do know that CBD can help control serious seizure disorders in some children (e.g., Dravet and Lennox-Gastaut syndromes) that don’t respond well to other treatments. Epidiolex is an FDA [Food and Drug Administration] approved medication containing CBD that can be used for this purpose.

There’s also data to suggest the potential of CBD as a treatment for schizophrenia and for substance use disorders. But these potential uses are in extremely early stages of development.

Are there side effects?

We don’t know of any severe side effects at this time. But there were mild side effects reported in the epilepsy studies, mostly gastrointestinal issues like diarrhea. There were also some reported drug-to-drug interactions. That’s why, for safety reasons, it’s important that CBD or any cannabis product go through the FDA review process.

Are there any specific CBD studies that you are focused on?

We are interested in CBD as a potential treatment of substance use disorders.

There is some research looking at it for opioid, tobacco, and alcohol use disorders. If CBD can help prevent relapse in those areas, that would be really interesting. We’re also interested in it for pain management. Trying to find less addictive medications for pain would help a lot of people.

What else would you like people to know?

Buyer beware.

We are concerned about the health claims being exaggerated or incorrect. The FDA issued warning letters to several companies because of untested health claims. And the CBD products themselves didn’t always contain the amount of CBD that they were reported to have—some actually had THC in them.

Another concern is that people are using CBD to treat ailments for which we have FDA-approved medications. Thus, they may be missing out on better treatments. And when they’re using CBD or other cannabis products for conditions we don’t know very much about, that’s worrisome.

via The ABCs of CBD: Separating fact from fiction | NIH MedlinePlus Magazine

, , , , ,

Leave a comment

%d bloggers like this: