Posts Tagged self-management

[Abstract] Examining the feasibility and effectiveness of a culturally adapted participation-focused stroke self-management program in a day-rehabilitation setting: A randomized pilot study


Background: Stroke survivors find it difficult to participate in daily activities, despite their improvement throughout the rehabilitation process. Thus, it has been questioned whether day-rehabilitation services provide adequate preparation for participation and reintegration into the community. Self-management programs can improve survivors’ self-efficacy to manage their condition and participation. Improving Participation After Stroke Self-Management program (IPASS) is an occupational therapy-based group intervention developed in the United States, which has been effective in improving participation outcomes.

Objective: To evaluate the feasibility and effectiveness of the IPASS adapted for an Israeli population of individuals admitted to a day-rehabilitation center after stroke.

Methods: A single-center, randomized, assessor-blind study was conducted. Eligible participants were randomized to receive the IPASS (intervention group), in addition to standard individual therapy or standard care only (control group). Feasibility was based on attendance rate and a feedback questionnaire. Effectiveness was evaluated with the Functional Independence Measure (FIM), the Reintegration to Normal Living Index (RNLI) and self-efficacy questionnaires.

Results: Sixty participants were included, of which 39 completed baseline and post-intervention evaluations. The intervention group improved significantly in the FIM scores (p < .01), as compared to the control group (p > .05). Moderate effect sizes (≥0.35) were found for the FIM and RNLI, and large effect sizes (≥0.65) for two subcategories in the participation self-efficacy questionnaire.

Conclusions: The results support the feasibility of the adapted IPASS, and show a trend for positive effects in improving participation and self-efficacy in managing participation in home and community activities, for an Israeli post-stroke population.


, , , , ,

Leave a comment

[ARTICLE] ZMILE, a multicomponent self-management intervention for adults with epilepsy: Rationale and description of the intervention – Full Text



In this paper, we aim to provide a comprehensive description of the multicomponent self-management intervention for adults with epilepsy, ZMILE.

Rationale or theory:

Acquiring self-management skills has been shown to play a vital role in enabling patients with epilepsy overcoming (health-related) struggles in daily life and coping with limitations their condition poses on them. ZMILE is a course consisting of education (to increase concordance to treatment), goal-setting (proactive coping), and self-monitoring.

Resources needed:

The course is guided by two nurse practitioners and each patient is allowed to bring one family member or friend. Self-monitoring plays an important role and can be done through e-Health tools or written diaries.

Processes involved:

During and after the course, patients are required to work toward a personally defined goal using a five-step approach by means of pro-active coping. Moreover, patients are expected to use self-monitoring tools to reflect on their own behavior and identify ways to optimize medication intake when required.


ZMILE is provided in an outpatient setting over five weekly group sessions and one booster session. From the start, patients are encouraged to set individual goals. Each group session will have a different theme but part of every session is reflecting on personal goals and to learn from eachother.


The ZMILE-intervention has been evaluated and may be a promising intervention in terms of effectiveness and feasibility for adults with epilepsy, relatives, and professionals. We present the adapted version which can be implemented in clinical practice.


The extent to which people with epilepsy are able to manage their condition plays a vital role in coping with the condition and overall quality of life. For example, antiepileptic drugs are prescribed as standard treatment for people with epilepsy but are only moderately effective in achieving and maintaining positive seizure control.13 One of the reasons for poorly controlled epilepsy is shown to be poor concordance, which refers to the consensual agreement about taking antiepileptic drugs that has been established between patient and practitioner.4 In addition, many people with epilepsy “seem to be unaware of missed drug intake.”5

People living with chronic disorders such as epilepsy share challenges that include obtaining appropriate care, adhering to complex medication regimens, and making lifestyle adjustments while coping with symptoms, disabilities, and emotional impact.6 Self-management programs are developed to support patients in coping with their chronic condition.7 In fact, studies have shown that self-management programs are useful for individuals with chronic conditions such as asthma, heart disease, and diabetes.717 However, as poor epilepsy management cannot directly be linked to poor seizure control, these results cannot be generalized to people with epilepsy. Hence, there is a scarcity of evidence to prove the effectiveness of self-management programs for people with epilepsy.6 Moreover, previously existing programs designed for epilepsy focused mainly on psycho-education (i.e. educating patients about their condition).

We therefore developed and evaluated the multicomponent self-management intervention for adults with epilepsy, ZMILE. In the randomized controlled trial, we compared ZMILE to the standard treatment for the evaluation of its clinical- and cost-effectiveness.18,19 After completion of the randomized controlled trial, a process evaluation was performed and minor changes were made to the intervention.20

One of the main changes concerns the use of e-health tools which was an important element of our multicomponent intervention. The specifically selected tools are, however, no longer available. Here we present a description, rationale, and justification of the final version which is currently being implemented in Dutch health care using the template for intervention description and replication (TIDieR) checklist and guide (Hoffmann et al.21 see Supplementary Appendix 1). To illustrate ZMILE, an example case will be used throughout the paper (see Box 1).[…]


, , , , ,

Leave a comment

[Abstract] Experiences of augmented arm rehabilitation including supported self-management after stroke: a qualitative investigation



To explore the experiences of stroke survivors and their carers of augmented arm rehabilitation including supported self-management in terms of its acceptability, appropriateness and relevance.


A qualitative design, nested within a larger, multi-centre randomized controlled feasibility trial that compared augmented arm rehabilitation starting at three or nine weeks after stroke, with usual care. Semi-structured interviews were conducted with participants in both augmented arm rehabilitation groups. Normalization Process Theory was used to inform the topic guide and map the findings. Framework analysis was applied.


Interviews were conducted in stroke survivors’ homes, at Glasgow Caledonian University and in hospital.


17 stroke survivors and five carers were interviewed after completion of augmented arm rehabilitation.


Evidence-based augmented arm rehabilitation (27 additional hours over six weeks), including therapist-led sessions and supported self-management.


Three main themes were identified: (1) acceptability of the intervention (2) supported self-management and (3) coping with the intervention. All stroke survivors coped well with the intensity of the augmented arm rehabilitation programme. The majority of stroke survivors engaged in supported self-management and implemented activities into their daily routine. However, the findings suggest that some stroke survivors (male >70 years) had difficulties with self-management, needing a higher level of support.


Augmented arm rehabilitation commencing within nine weeks post stroke was reported to be well tolerated. The findings suggested that supported self-management seemed acceptable and appropriate to those who saw the relevance of the rehabilitation activities for their daily lives, and embedded them into their daily routines.


, , , , , , ,

Leave a comment

[Abstract] Effectiveness of a self-rehabilitation program to improve upper-extremity function after stroke in developing countries: a randomized controlled trial


Background: About two-thirds of stroke patients present long-term upper-limb impairment and limitations of activity, which constitutes a challenge in rehabilitation. This situation is particularly true in developing countries, where there is a need for inexpensive rehabilitation solutions.

Objective: This study assessed the effectiveness of a self-rehabilitation program including uni- or bimanual functional exercises for improving upper-limb function after stroke with respect to the context in Benin, West Africa.

Methods: In this single-blind randomized controlled trial, chronic stroke individuals (> 6 months post-stroke) performed a supervised home-based self-rehabilitation program for 8 weeks (intervention group); the control group did not receive any treatment. Participants were assessed before treatment (T0), at the end of treatment (T1) and 8 weeks after the end of treatment (T2). The primary outcome was the manual ability of the upper limb, assessed with ABILHAND Stroke Benin. Secondary outcomes were grip force, motor impairment (Fugl-Meyer Assessment-Upper Extremity), gross manual ability (Box and Block test, Wolf Motor Function test) and quality of life (WHOQOL-26).

Results: We included 28 individuals in the intervention group and 31 in the control group. Adherence to the program was 83%. After 8 weeks of self-rehabilitation, individuals in the intervention group showed significantly improved manual ability and grip force as compared with the control group (p < 0.001), with effect size 0.75 and 0.24, respectively. In the intervention group, the difference in average scores was 10% between T0 and T1 and between T0 and T2. Subscores of physical and psychological quality of life were also significantly improved in the intervention group. The other variables remained unchanged.

Conclusions: A self-rehabilitation program was effective in improving manual ability, grip force and quality of life in individuals with stroke in Benin. More studies are needed to confirm these results in different contexts.


Similar articles

via Effectiveness of a self-rehabilitation program to improve upper-extremity function after stroke in developing countries: a randomized controlled trial – PubMed

, , , , , , , , , ,

Leave a comment

[ARTICLE] Enhancing epilepsy self-management and quality of life for adults with epilepsy with varying social and educational backgrounds using PAUSE to Learn Your Epilepsy – Full Text


•PAUSE is a personalized epilepsy self-management (SM) education program.

•PAUSE was implemented in diverse and mostly underserved adults with epilepsy.

•Self-efficacy, frequency of SM behaviors, and QOL significantly improved over time.

•Personal negative impact of epilepsy significantly reduced over time.

•Greater improvement was seen in those with lower scores at baseline.



People with epilepsy (PWE) come from a wide variety of social backgrounds and educational skillsets, making self-management (SM) education for improving their condition challenging. Here, we evaluated whether a mobile technology-based personalized epilepsy SM education intervention, PAUSE to Learn Your Epilepsy (PAUSE), improves SM measures such as self-efficacy, epilepsy SM behaviors, epilepsy outcome expectations, quality of life (QOL), and personal impact of epilepsy in adults with epilepsy.


Recruitment for the PAUSE study occurred from October 2015 to March 2019. Ninety-one PWE were educated using an Internet-enabled computer tablet application that downloads custom, patient-specific educational programs from Validated self-reported questionnaires were used for outcome measures. Participants were assessed at baseline (T0), the first follow-up at completion of the PWE-paced 8–12-week SM education intervention (T1), and the second follow-up at least 3 months after the first follow-up (T2). Multiple linear regression was used to assess within-subject significant changes in outcome measures between these time points.


The study population was diverse and included individuals with a wide variety of SM educational needs and abilities. The median time for the first follow-up assessment (T1) was approximately 4 months following the baseline (T0) and 8 months following baseline for the second follow-up assessment (T2). Participants showed significant improvement in all SM behaviors, self-efficacy, outcome expectancy, QOL, and personal impact of epilepsy measures from T0 to T1. Participants who scored lower at baseline tended to show greater improvement at T1. Similarly, results showed that participant improvement was sustained in the majority of SM measures from T1 to T2.


This study demonstrated that a mobile technology-based personalized SM intervention is feasible to implement. The results provide evidence that epilepsy SM behavior and practices, QOL, outcome expectation for epilepsy treatment and management, self-efficacy, and outcome expectation and impact of epilepsy significantly improve following a personalized SM education intervention. This underscores a greater need for a pragmatic trial to test the effectiveness of personalized SM education, such as PAUSE to Learn Your Epilepsy, in broader settings specifically for the unique needs of the hard-to-reach and hard-to-treat population of PWE.

1. Introduction

Epilepsy, characterized by spontaneous recurrent seizures with unpredictable frequency, is a common and complex neurological disorder that affects the health and quality of life (QOL) of people with epilepsy (PWE) [1]. It is the fourth most common chronic neurological disorder after migraines, Alzheimer’s disease, and Parkinson’s disease in terms of 1-year prevalence per 1000 in the general population [2]. In 2015, approximately 1.2% of American adults reported living with epilepsy; 68.5% had seen a neurologist or epilepsy specialist; 93% were taking antiseizure medication (ASM), and, among those taking medication to control seizures, only 42.4% were seizure-free in the past year [3]. Epilepsy, especially with uncontrolled seizures, poses an immense burden to the people who have it, caregivers, and the society due to a number of factors including associated developmental, cognitive, and psychiatric comorbidities; ASM side effects; higher injury and mortality rates; poorer QOL; and increased financial burden. An estimated 3.0% of global disability-adjusted life years (DALYs) were from neurological disorders in 2010, a quarter of which were from epilepsy; epilepsy was the second-most burdensome chronic neurologic disorder worldwide in terms of DALYs [4].

Self-management (SM) education has shown to improve SM skills & behaviors and QOL in many chronic diseases including heart disease, diabetes, asthma, and arthritis [5,6]. Barlow defines self-management as an individual’s ability to manage the symptoms, treatments, physical and psychological consequences, and life style changes inherent in living with a chronic condition [7]. However, successful SM requires sufficient knowledge of the condition, its treatment, and necessary skills to perform SM activities. Like other chronic conditions, day-to-day management of epilepsy shifts from healthcare professionals to PWE. Epilepsy care demands active involvement of PWE in keeping up with the health effects of epilepsy and coping with social (e.g., family/friends, stigma, hobbies), health (e.g., seizure response/tracking, comorbidities such as depression/anxiety, sleep, safety, health literacy), employment (e.g., transportation, disability, absenteeism), and economic (e.g., cost of healthcare and medication) challenges. One can only self-manage their disease if they have the tools to do so, including knowledge, access to information relevant to their specific healthcare needs, and the ability to carry out the SM tasks needed for their condition. Evidence shows that many PWE are not knowledgeable about their disorder or often not educated about the risks of epilepsy, injury, and mortality [1,8]. Education needs also vary between individuals and subgroups of PWE. Women, in particular, may seek information on bone health and the effect of ASM on pregnancy or contraception, while older adults’ priorities may relate to fall safety and interactions of ASM with other medications. Existing evidence also reveals that, while patients with chronic diseases are willing to receive SM education materials, perceived information overload (i.e., too much or complex information) negatively influences their usage willingness [9]. Patients with low health literacy are even more susceptible to information overload [10]. The Institute of Medicine recognized SM education gaps for PWE and recommended (Recommendation 9) in its 2012 report, “Epilepsy Across the Spectrum: Promoting Health and Understanding,” to improve and expand educational opportunities for PWE and their families, as well as to ensure that all PWE and their families have access to accurate, clearly communicated educational materials and information [1].

Several studies have reported contradictory results after examining the efficacy of SM education interventions in improving PWE’s knowledge and understanding of epilepsy and QOL. The Modular Service Package Epilepsy study (MOSES) reported significant improvements in ASM tolerability, epilepsy knowledge, coping with epilepsy, and seizure frequency after 6 months following a 2-day SM education program [11]. Self-management education for people with poorly controlled epilepsy [SMILE (UK)] adapted MOSES for use in the United Kingdom and did not find the 2-day course to be effective in improving QOL or secondary outcome measures (anxiety and depression), after 12 months [12]. Though both MOSES and SMILE were randomized control trials (RCTs), MOSES included all adults with epilepsy whereas SMILE included only adults with chronic epilepsy who had two or more seizures in the prior 12 months. Another RCT compared the effectiveness of a multicomponent SM intervention consisting of five weekly, 2-hour group sessions each followed by a 2-hour group session after three weeks with usual care; they found no difference in measures of self-efficacy, though did find improvements in some epilepsy QOL domains and decreases in measures of ASM side effects [13]. Other studies examining the efficacy of in-person, group-based, online or phone/internet SM interventions, including the Centers for Disease Control and Prevention-supported Managing Epilepsy Well (MEW) network programs, did show improvement in epilepsy SM and QOL [[14][15][16][17][18]].

In addition to existing group-based programs, which require permission to use and specialized training, there is a greater need for patient-centered and patient-specific individualized education interventions for epilepsy SM that are publicly available, cost-effective, and easily disseminated to clinics or in community. The PAUSE to Learn Your Epilepsy (hereafter referred to as “PAUSE”), a MEW network collaboration center, was developed and implemented to address the needs of all PWE, especially those in underserved populations. This program uses publicly available education information from the Epilepsy Foundation (EF) website,, linked to a mobile technology-based PAUSE application to provide patient-centered personalized epilepsy SM lesson plan to PWE. Detailed information about PAUSE including study design, recruitment, intervention, and assessments has been published previously [19,20]. We reported significantly lower epilepsy SM practices and behaviors among PWE from an underserved population as compared to all PWE. In this paper, we sought to determine whether the PAUSE intervention significantly improves self-efficacy, SM behavior & skills, QOL, personal impact of epilepsy, and epilepsy outcome expectancies over time in adults with epilepsy. We also assessed whether perceived depression symptoms influence longitudinal changes in SM measures following the PAUSE intervention.[…]


, , , , , , ,

Leave a comment

[Training Package] Person-Centred Rehabilitation. A Learning & Development Package for Rehabilitation Teams – The Hopkins Centre

❖ Person-centred rehabilitation (PCR) means treating each service user undergoing rehabilitation as an individual.
❖ There is a strong and committed drive to provide this type of rehabilitation both nationally and internationally.
❖ To help rehabilitation teams improve their ability to deliver person-centred rehabilitation a training package was developed.

❖ The package is designed to be undertaken in teams.
❖ The sessions will be delivered by a trained facilitator.
❖ Some examples of package content appear below.

Download Full Text PDF

, , , ,

Leave a comment

[ARTICLE] A comprehensive person-centered approach to adult spastic paresis: a consensus-based framework – Full Text PDF

Spastic paresis is a common feature of an upper motor neuron impairment caused by stroke, brain injury, multiple sclerosis and other central nervous system (CNS) disorders. Existing national and international guidelines for the treatment of adult spastic paresis tend to focus on the treatment of muscle overactivity rather than the comprehensive approach to care, which may require life-long management. Person-centered care is increasingly adopted by healthcare systems in a shift of focus from “disease-oriented” towards “person-centered” medicine. The challenge is to apply this principle to the complex management of spastic paresis and to include an educative process that engages care providers and patients and encourages them to participate actively in the long-term management of their own disease. To address this issue, a group of 13 international clinicians and researchers used a pragmatic top-down methodology to evaluate the evidence and to formulate and grade the strength of recommendations for applying the principles of person-centered care to the management of spastic paresis. There is a distinct lack of clinical trial evidence regarding the application of person-centered medicine to the rehabilitation setting. However, the current evidence base supports the need to ensure that treatment interventions for spastic paresis should be centered on as far as reasonable on the patient’s own priorities for treatment. Goal setting, negotiation and formal recording of agreed SMART goals should be an integral part of all spasticity management programs, and goal attainment scaling should be recorded alongside other standardized measures in the evaluation of outcome. When planning interventions for spastic paresis, the team should consider the patient and their family’s capacity for self-rehabilitation, as well as ways to enhance this approach. Finally, the proposed intervention and treatment goals should consider the impact of any neuropsychological, cognitive and behavioral deficits on rehabilitation. These recommendations support a person-centric focus in the management of spastic paresis.

Full Text PDF

via A comprehensive person-centered approach to adult spastic paresis: a consensus-based framework – European Journal of Physical and Rehabilitation Medicine 2018 August;54(4):605-17 – Minerva Medica – Journals

, , , , , ,

Leave a comment

[Abstract+References] Self-directed therapy programmes for arm rehabilitation after stroke: a systematic review

To investigate the effectiveness of self-directed arm interventions in adult stroke survivors.

A systematic review of Medline, EMBASE, CINAHL, SCOPUS and IEEE Xplore up to February 2018 was carried out. Studies of stroke arm interventions were included where more than 50% of the time spent in therapy was initiated and carried out by the participant. Quality of the evidence was assessed using the Cochrane risk of bias tool.

A total of 40 studies (n = 1172 participants) were included (19 randomized controlled trials (RCTs) and 21 before–after studies). Studies were grouped according to no technology or the main additional technology used (no technology n = 5; interactive gaming n = 6; electrical stimulation n= 11; constraint-induced movement therapy n = 6; robotic and dynamic orthotic devices n = 8; mirror therapy n = 1; telerehabilitation n = 2; wearable devices n = 1). A beneficial effect on arm function was found for self-directed interventions using constraint-induced movement therapy (n = 105; standardized mean difference (SMD) 0.39, 95% confidence interval (CI) −0.00 to 0.78) and electrical stimulation (n = 94; SMD 0.50, 95% CI 0.08–0.91). Constraint-induced movement therapy and therapy programmes without technology improved independence in activities of daily living. Sensitivity analysis demonstrated arm function benefit for patients >12 months poststroke (n = 145; SMD 0.52, 95% CI 0.21–0.82) but not at 0–3, 3–6 or 6–12 months.

Self-directed interventions can enhance arm recovery after stroke but the effect varies according to the approach used and timing. There were benefits identified from self-directed delivery of constraint-induced movement therapy, electrical stimulation and therapy programmes that increase practice without using additional technology.


1. Han, C, Wang, Q, Meng, PP. Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clin Rehabil 2013; 27: 7581Google ScholarSAGE JournalsISI
2. Hayward, KS, Brauer, SG. Dose of arm activity training during acute and subacute rehabilitation post stroke: a systematic review of the literature. Clin Rehabil 2015; 29: 12341243Google ScholarSAGE JournalsISI
3. Pollock, A, Farmer, SE, Brady, MC. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev 2014; 11: CD010820Google Scholar
4. Bernhardt, J, Chan, J, Nicola, I. Little therapy, little physical activity: rehabilitation within the first 14 days of organized stroke unit care. J Rehabil Med 2007; 39: 4348Google ScholarCrossrefMedlineISI
5. Clarke, DJ, Burton, LJ, Tyson, SF. Why do stroke survivors not receive recommended amounts of active therapy? Findings from the ReAcT study, a mixed-methods case-study evaluation in eight stroke units. Clin Rehabil. Epub ahead of print 27 March 2018. DOI: 10.1177/0269215518765329. Google ScholarSAGE Journals
6. Demain, S, Burridge, J, Ellis-Hill, C. Assistive technologies after stroke: self-management or fending for yourself? A focus group study. BMC Health Serv Res 2013; 13: 334Google ScholarCrossrefMedlineISI
7. Higgins, JPT, Green, S. Cochrane handbook for systematic reviews of interventions. Hoboken, NJJohn Wiley & Sons2011Google Scholar
8. Da-Silva, R, Price, CI, Moore, S. A systematic review of self-directed therapy interventions with and without technology for upper limb rehabilitation after stroke2016 Google Scholar
9. Review manager (Rev Man) version 5.3. CopenhagenThe Nordic Cochrane Centre, The Cochrane Collaboration2014Google Scholar
10. Moher, D, Liberati, A, Tetzlaff, J. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 10061012Google ScholarCrossrefMedlineISI
11. Adie, K, Schofield, C, Berrow, M. Does the use of Nintendo Wii sportsTM improve arm function? Trial of WiiTM in stroke: a randomized controlled trial and economics analysis. Clin Rehabil 2017; 31: 173185Google ScholarSAGE JournalsISI
12. Brkic, L, Shaw, L, van Wijck, F. Repetitive arm functional tasks after stroke (RAFTAS): a pilot randomised controlled trial. Pilot Feasibil Stud 2016; 2: 50Google ScholarCrossrefMedline
13. Brunner, IC, Skouen, JS, Strand, LI. Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial. Clin Rehabil 2012; 26: 10781086Google ScholarSAGE JournalsISI
14. Dos Santos-Fontes, RL, De Andrade, KN, Sterr, A. Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: a proof-of-principle study. Neurorehabil Neural Repair 2013; 27: 483490Google ScholarSAGE JournalsISI
15. Gabr, U, Levine, P, Page, SJ. Home-based electromyography-triggered stimulation in chronic stroke. Clin Rehabil 2005; 19: 737745Google ScholarSAGE JournalsISI
16. Hara, Y, Ogawa, S, Tsujiuchi, K. A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation. Disabil Rehabil 2008; 30: 296304Google ScholarCrossrefMedlineISI
17. Harris, JE, Eng, JJ, Miller, WC. A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke 2009; 40: 21232128Google ScholarCrossrefMedlineISI
18. Kimberley, TJ, Lewis, SM, Auerbach, EJ. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res 2004; 154: 450460Google ScholarCrossrefMedlineISI
19. Michielsen, ME, Selles, RW, Van Der Geest, JN. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair 2011; 25: 223233Google ScholarSAGE JournalsISI
20. Nijenhuis, SM, Prange-Lasonder, GB, Stienen, AH. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clin Rehabil 2017; 31: 207216Google ScholarSAGE JournalsISI
21. Smania, N, Gandolfi, M, Paolucci, S. Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke: a multicenter trial. Neurorehabil Neural Repair 2012; 26: 10351045Google ScholarSAGE JournalsISI
22. Standen, PJ, Threapleton, K, Richardson, A. A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clin Rehabil 2017; 31: 340350Google ScholarSAGE JournalsISI
23. Stinear, CM, Barber, PA, Coxon, JP. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain 2008; 131: 13811390Google ScholarCrossrefMedlineISI
24. Sullivan, JE, Hurley, D, Hedman, LD. Afferent stimulation provided by glove electrode during task-specific arm exercise following stroke. Clin Rehabil 2012; 26: 10101020Google ScholarSAGE JournalsISI
25. Tariah, HA, Almalty, A, Sbeih, Z. Constraint induced movement therapy for stroke survivors in Jordon: a home-based model. Int J Ther Rehabil 2010; 17: 638646Google ScholarCrossref
26. Turton, AJ, Cunningham, P, van Wijck, F. Home-based reach-to-grasp training for people after stroke is feasible: a pilot randomised controlled trial. Clin Rehabil 2017; 31: 891903Google ScholarSAGE JournalsISI
27. Wolf, SL, Sahu, K, Bay, RC. The HAAPI (Home Arm Assistance Progression Initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair 2015; 29: 958968Google ScholarSAGE JournalsISI
28. Zondervan, DK, Augsburger, R, Bodenhoefer, B. Machine-based, self-guided home therapy for individuals with severe arm impairment after stroke: a randomized controlled trial. Neurorehabil Neural Repair 2015; 29: 395406Google ScholarSAGE JournalsISI
29. Burridge, JH, Lee, ACW, Turk, R. Telehealth, wearable sensors, and the internet: will they improve stroke outcomes through increased intensity of therapy, motivation, and adherence to rehabilitation programs? J Neurol Phys Ther 2017; 41(suppl. 3): S32S38Google ScholarCrossrefMedline
30. Alon, G, McBride, K, Ring, H. Improving selected hand functions using a noninvasive neuroprosthesis in persons with chronic stroke. J Stroke Cerebrovas Dis 2002; 11: 99106Google ScholarCrossrefMedline
31. Alon, G, Sunnerhagen, KS, Geurts, ACH. A home-based, self-administered stimulation program to improve selected hand functions of chronic stroke. Neurorehabilitation 2003; 18: 215225Google ScholarMedlineISI
32. Burridge, JH, Turk, R, Merrill, D. A personalized sensor-controlled microstimulator system for arm rehabilitation poststroke. Part 2: objective outcomes and patients’ perspectives. Neuromodulation 2011; 14: 8088Google ScholarCrossrefMedline
33. Brown, EV, McCoy, SW, Fechko, AS. Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery. Arch Phys Med Rehabil 2014; 95: 14611469Google ScholarCrossrefMedline
34. Langan, J, Delave, K, Phillips, L. Home-based telerehabilitation shows improved upper limb function in adults with chronic stroke: a pilot study. J Rehabil Med 2013; 45: 217220Google ScholarCrossrefMedlineISI
35. Lee, HS, Kim, JU. The effect of self-directed exercise using a task board on pain and function in the upper extremities of stroke patients. J Phys Ther Sci 2013; 25: 963967Google ScholarCrossrefMedline
36. Mawson, S. The SMART rehabilitation system for stroke self-management: issues and challenges for evidence-based health technology research. J Phys Ther Educ 2011; 25: 4853Google ScholarCrossref
37. Mouawad, MR, Doust, CG, Max, MD. Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. J Rehabil Med 2011; 43: 527533Google ScholarCrossrefMedlineISI
38. Niama Natta, DD, Alagnide, E, Kpadonou, GT. Feasibility of a self-rehabilitation program for the upper limb for stroke patients in Benin. Ann Phys Rehabil Med 2015; 58: 322325Google ScholarCrossrefMedline
39. Nijenhuis, SM, Prange, GB, Amirabdollahian, F. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke. J Neuroeng Rehabil 2015; 12: 89Google ScholarCrossrefMedlineISI
40. Page, SJ, Levine, P. Modified constraint-induced therapy extension: using remote technologies to improve function. Arch Phys Med Rehabil 2007; 88: 922927Google ScholarCrossrefMedlineISI
41. Page, SJ, Levine, P, Hill, V. Mental practice–triggered electrical stimulation in chronic, moderate, upper-extremity hemiparesis after stroke. Am J Occup Ther 2015; 69: 188Google Scholar
42. Pickett, TC, Fritz, SL, Ketterson, TU. Telehealth and constraint-induced movement therapy (CIMT): an intensive case study approach. Clin Gerontol 2007; 31: 520Google ScholarCrossref
43. Sivan, M, Gallagher, J, Makower, S. Home-based computer assisted arm rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. J Neuroeng Rehabil 2014; 11: 163Google ScholarCrossrefMedlineISI
44. Sullivan, JE, Hedman, LD. Effects of home-based sensory and motor amplitude electrical stimulation on arm dysfunction in chronic stroke. Clin Rehabil 2007; 21: 142150Google ScholarSAGE JournalsISI
45. Turk, R, Burridge, JH, Davis, R. Therapeutic effectiveness of electric stimulation of the upper-limb poststroke using implanted microstimulators. Arch Phys Med Rehabil 2008; 89: 19131922Google ScholarCrossrefMedline
46. Wittmann, F, Held, JP, Lambercy, O. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J Neuroeng Rehabil 2016; 13: 75Google ScholarCrossrefMedline
47. Wittmann, F, Lambercy, O, Gonzenbach, RR. Assessment-driven arm therapy at home using an IMU-based virtual reality system. In: Proceedings of the 2015 IEEE international conference on rehabilitation robotics (ICORR)Singapore11–14 August 2015, pp.707712New YorkIEEEGoogle Scholar
48. Zhang, H, Austin, H, Buchanan, S. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT. In: Proceedings of the IEEE international conference on rehabilitation roboticsZurich29 June–1 July 2011Google ScholarCrossref
49. Da-Silva, RH, Frederike van, W, Shaw, F. Prompting arm activity after stroke: a clinical proof of concept study of wrist-worn accelerometers with a vibrating alert function. J Rehabil Assis Technol Eng 2018; 5: 18Google Scholar
50. Chen, J, Nichols, D, Brokaw, EB. Home-based therapy after stroke using the hand spring operated movement enhancer (HandSOME). IEEE Trans Neural Syst Rehabil Eng 2017; 25: 23052312Google ScholarCrossrefMedline
51. Fryer, CE, Luker, JA, McDonnell, MN. Self management programmes for quality of life in people with stroke. Cochrane Database Syst Rev 2016; 8: CD010442Google Scholar
52. Wray, F, Clarke, D, Forster, A. Post-stroke self-management interventions: a systematic review of effectiveness and investigation of the inclusion of stroke survivors with aphasia. Disabil Rehabil 2018; 40: 12371251Google ScholarCrossrefMedline
53. Krakauer, JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol 2006; 19: 8490Google ScholarCrossrefMedlineISI
54. Korpershoek, C, van der Bijl, J, Hafsteinsdottir, TB. Self-efficacy and its influence on recovery of patients with stroke: a systematic review. J Adv Nurs 2011; 67: 18761894Google ScholarCrossrefMedlineISI
55. Jones, F, Riazi, A. Self-efficacy and self-management after stroke: a systematic review. Disabil Rehabil 2011; 33: 797810Google ScholarCrossrefMedlineISI
56. Brown, E, Cairns, P. A grounded investigation of game immersion. In: Proceedings of the extended abstracts of the 2004 conference on human factors in computer systemsVienna24–29 April 2004, pp.12971300New YorkACM PressGoogle Scholar
57. Wade, D. Rehabilitation – a new approach. Part four: a new paradigm, and its implications. Clin Rehabil 2016; 30: 109118Google ScholarSAGE JournalsISI
58. Farmer, SE, Durairaj, V, Swain, I. Assistive technologies: can they contribute to rehabilitation of the upper limb after stroke? Arch Phys Med Rehabil 2014; 95: 968985Google ScholarCrossrefMedlineISI
59. Hibbard, JH, Stockard, J, Mahoney, ER. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv Res 2004; 39: 10051026Google ScholarCrossrefMedlineISI

via Self-directed therapy programmes for arm rehabilitation after stroke: a systematic review – Ruth H Da-Silva, Sarah A Moore, Christopher I Price, 2018

, , , , , , ,

Leave a comment

[REVIEW] A review of mobile apps for epilepsy self-management. – Abstract


Mobile health app developers increasingly are interested in supporting the daily self-care of people with chronic conditions. The purpose of this study was to review mobile applications (apps) to promote epilepsy self-management. It investigates the following:

  1. the available mobile apps for epilepsy,
  2. how these apps support patient education and self-management (SM), and
  3. their usefulness in supporting management of epilepsy.

We conducted the review in Fall 2017 and assessed apps on the Apple App Store that related to the terms “epilepsy” and “seizure”. Inclusion criteria included apps (adult and pediatric) that, as follows, were:

  1. developed for patients or the community;
  2. made available in English, and
  3. less than $5.00.

Exclusion criteria included apps that were designed for dissemination of publications, focused on healthcare providers, or were available in other languages. The search resulted in 149 apps, of which 20 met the selection criteria. A team reviewed each app in terms of three sets of criteria:

  1. epilepsy-specific descriptions and SM categories employed by the apps and
  2. Mobile App Rating Scale (MARS) subdomain scores for reviewing engagement, functionality, esthetics, and information; and
  3. behavioral change techniques.

Most apps were for adults and free. Common SM domains for the apps were treatment, seizure tracking, response, and safety. A number of epilepsy apps existed, but many offered similar functionalities and incorporated few SM domains. The findings underline the need for mobile apps to cover broader domains of SM and behavioral change techniques and to be evaluated for outcomes.


via A review of mobile apps for epilepsy self-management. – PubMed – NCBI

, , , , ,

Leave a comment

[REVIEW] Care delivery and self-management strategies for children with epilepsy – Abstract



In response to criticism that epilepsy care for children has little impact, healthcare professionals and administrators have developed various service models and strategies to address perceived inadequacies.


To assess the effects of any specialised or dedicated intervention for epilepsy versus usual care in children with epilepsy and in their families.

Search methods

We searched the Cochrane Epilepsy Group Specialized Register (27 September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 9) in the Cochrane Library, MEDLINE (1946 to 27 September 2016), Embase (1974 to 27 September 2016), PsycINFO (1887 to 27 September 2016) and CINAHL Plus (1937 to 27 September 2016). In addition, we also searched clinical trials registries for ongoing or recently completed trials, contacted experts in the field to seek information on unpublished and ongoing studies, checked the websites of epilepsy organisations and checked the reference lists of included studies.

Selection criteria

We included randomised controlled trials (RCTs), cohort studies or other prospective studies with a (matched or unmatched) control group (controlled before-and-after studies), or time series studies.

Data collection and analysis

We used standard methodological procedures expected by Cochrane.

Main results

Our review included six interventions reported through seven studies (of which five studies were designed as RCTs). They reported on different education and counselling programmes for children and parents; teenagers and parents; or children, adolescents and their parents. Each programme showed some benefits for the well-being of children with epilepsy, but all had methodological flaws (e.g. in one of the studies designed as an RCT, randomisation failed), no single programme was independently evaluated with different study samples and no interventions were sufficiently homogeneous enough to be included in a meta-analysis,.

Authors’ conclusions

While each of the programmes in this review showed some benefit to children with epilepsy, their impacts were extremely variable. No programme showed benefits across the full range of outcomes, and all studies had major methodological problems. At present there is insufficient evidence in favour of any single programme.

Plain language summary

Care delivery and self-management strategies for children with epilepsy


Epilepsy is spectrum of disorders in which a person may have seizures (fits) that are unpredictable in frequency. Most seizures are well controlled with medicines and other types of treatments, but epilepsy can cause problems in social, school and work situations, making independent living difficult. People with seizures tend to have physical problems (e.g. fractures, bruising and a slightly increased risk of sudden death) as well as social problems because of the stigma attached to the illness. People with epilepsy and their families may lack social support or experience social isolation, embarrassment, fear and discrimination, and some parents may also feel guilty. Self-management of epilepsy refers to a wide range of health behaviours and activities that a person can learn and adapt to control their seizures and improve their well-being. This approach needs a partnership between the person and the providers of services (e.g. specialist epilepsy outpatient clinics, nurse-based liaison services between family doctors and specialist hospital doctors, specialist epilepsy community teams), as well as targeted services for specific groups (e.g. children, teenagers and families).

Study characteristics

We searched scientific databases for studies in children and adolescents with epilepsy that looked at the effects of self-management of epilepsy. The results are current to September 2016. We wanted to look at several outcomes to see how well people and their families generally cope with epilepsy.

Key results

This review compared six education- or counselling-based self-management interventions for children with epilepsy. Four interventions were aimed at children and their parents; one was aimed at teenagers and their parents; and one was aimed at children, adolescents and their parents. Each of the interventions appeared to improve some of the outcomes studied, but no intervention improved all of the outcomes that were measured. The studies also had problems with their methods, which makes their results less reliable. While none of the interventions caused any harm, their impact was limited, and we cannot recommend any single intervention as being the best one for children with epilepsy.

Evidence for the best ways to care for children with epilepsy is still unclear.

Quality of the evidence

The quality of the evidence is poor because all of the studies had major problems in how they were run.


via Care delivery and self-management strategies for children with epilepsy – Fleeman – 2018 – The Cochrane Library – Wiley Online Library

, , , , , , , ,

Leave a comment

%d bloggers like this: