Posts Tagged sensorimotor cortex

[Abstract] Brain–machine interfaces for rehabilitation of poststroke hemiplegia

Abstract

Noninvasive brain–machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis.

However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma.

In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback.

Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization.

Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.

 

Source: Brain–machine interfaces for rehabilitation of poststroke hemiplegia

, , , , , , , ,

Leave a comment

[Abstract] Brain–machine interfaces for rehabilitation of poststroke hemiplegia

Abstract

Noninvasive brain–machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.

 

Source: Brain–machine interfaces for rehabilitation of poststroke hemiplegia

, , , , , , , , ,

Leave a comment

[Abstract] Brain–machine interfaces for rehabilitation of poststroke hemiplegia

Abstract

Noninvasive brain–machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.

Keywords

 

Source: Brain–machine interfaces for rehabilitation of poststroke hemiplegia

, , , , , , , ,

Leave a comment

[ARTICLE] Activation changes in sensorimotor cortex during improvement due to CIMT in chronic stroke.

Abstract

Purpose: The integrity of the pyramidal tract (PT) does not seem to influence clinical improvement after two weeks of Constraint-Induced Movement Therapy (CIMT). However, when PT is intact, improvement is associated with a decrease of fMRI-activation in primary sensorimotor cortex (SMC) and when affected, with an increase of activation in SMC. The aim was to observe the long-term effect of CIMT, depending on the integrity of the PT, and to correlate improvement with changes in fMRI-activation.

Subjects and methods: Twelve new chronic stroke patients were treated with CIMT and integrity of PT was measured with transcranial magnetic stimulation. Before therapy, after therapy, and after 6 months, changes in motor function were correlated with differential and percent fMRI signal changes.

Results: All patients improved after two weeks of therapy, but only those with intact PT maintained improvement after 6 months. When PT was intact, improvement correlated with first a decrease of activation in SMC and after 6 months with an increase. When PT was affected, improvement consistently correlated with an increase in a lateral extension of SMC. Percent changes of activation were surrounded by differential changes.

Conclusions: An intact PT might be advantageous for lasting improvement after CIMT and subregions in the SMC seem to behave differently during recovery.

via Activation changes in sensorimotor cortex during improvement due to CIMT in chronic stroke – Restorative Neurology and Neuroscience – Volume 29, Number 5 / 2011 – IOS Press.

, , , , , , , ,

Leave a comment

%d bloggers like this: