Posts Tagged Sensory function

[ARTICLE] Multi-sensory feedback therapy combined with task-oriented training on the hemiparetic upper limb in chronic stroke: study protocol for a pilot randomized controlled trial – Full Text

Abstract

Background An important reason for the difficulty in recovering sensorimotor dysfunction of the upper extremity in chronic stroke survivors, is the lack of sensory function, such as tactile and proprioception feedback. In clinical practice, single sensory training is only for the restoration of sensory function. Increasing evidence suggests that use of task-oriented training (TOT) is a useful approach to hand motor rehabilitation. However, neither approach is optimal since both methods are trained only for specific functional recovery. Our hypothesis is that multi-sensory feedback therapy (MSFT) combined with TOT has the potential to provide stimulating tasks to restore both sensory and motor functions. The objective of the trial is to investigate whether novel MSFT is more effective in improving arm sensorimotor function in chronic stroke phase than single TOT.

Methods/Design: The study will be conducted as a multicenter, randomized, double blind controlled trial. Participants (n = 90) will be randomised into three groups to compare the effect of the multi-sensory feedback therapy group against task-oriented training group and conventional group. Participants will receive treatment at the same intensity (60 min, 5 days a week, 4 weeks, 20 hours total). Primary outcome measures for assessment of sensory function are the Semmes Weinstein monofilaments examination (SWME),two-point discrimination test (2PD) test. Secondary measures are the Action Research Arm Test (ARAT)༌Nine-Hole Peg Test (NHPT), Wolf Motor Function Test (WMFT), Box and Blocks Test (BBT), Modified Barthel Index (MBI), Instrumental activities of daily living (IADL) and Generalized Anxiety Disorder 7-Item Scale (GAD-7). Outcome mearsures will be evaluated at baseline, post treatment, and two months follow-up. All assessments will be conducted by trained assessors blinded to treatment allocation.

Discussion This study will determine the acceptability and efficacy of the intervention on the hemiparetic upper limb, it may be promising tools for sensorimotor functional recovery after stroke.

Figure 2

Figure 2. The multi-sensory feedback therapy system used in the present study. Step 1:Patients will undergo multi-sensory training under a visual feedback device, including (A) Tactile training for patients with different materials, textures, objects; (B) Proprioceptive control of hand gestures; (C) 2-point discrimination with tools. Step 2:All sensory stimuli will be visually blocked and visually exposed in all patients. Step 3:The multi-sensory feedback therapy combined with task-oriented training will increase motivation for sensorimotor tasks.

Background

Stroke is a major cause of serious long-term disability in chronic stroke [12]. In China alone, the age-standardized prevalence, incidence, and mortality rates were approximately 1114.8/100 000 people, 246.8 and 114.8/100 000 person-years, respectively [3]. More than two thirds of all patients experience impaired function in the upper extremity [45], and many of chronic stroke patients require continued rehabilitation for hand disability from hospitals. Sensory impairments of all modalities are thought to be common during the chronic stage of stroke [6].

Although tactile loss is more frequent than proprioceptive dysfunction, especially in the hand. Approximately 80% of chronic stroke patients experience tactile loss, over 69% without proprioceptive discriminations [7]. Somatosensory deficits are associated with the degree of weakness and stroke severity, and they are also related to mobility, mental health, independence in activities of daily living, and recovery [8]. Sensory function is an important composition of widely used physiotherapy approaches such as Bobath (known as Neurodevelopment Therapy in the United States) and Brunnstrom, and it is considered a precursor to the recovery of movement and functional activities of daily living in patients with stroke [9]. Poor motor function is associated with reduced sensory experience and processing after stroke [1011]. Joint position sensation of the upper extremity is closely related to motor ability due to stroke-related reduced discrimination in proprioception [9], it causes disturbances in the arm movement trajectory. The relation between sensory and motor dysfunction is unsurprising since biomechanics and motor control of human movement require bidirectional interaction between cortex and periphery [12].

Sensory disorders include light touch, temperature, joint position, two-point discrimination, object discrimination, spatial orientation [5]. Different types of sensory disorders have different inefficiencies to perform daily activities and social participation [12]. Thermohypesthesia is the reason leading to scalding and freezing injury [6]. Scalding injuries often occur as the result of spilled food or beverages. They are also unable to feel pain, which means that they can’t retract arms and hands actively. In addition, bleeding often happens after touching acupuncture or sharp objects. Stroke is also a major global mental health problem. The sensory impairment has negative implications to explore environment, and lower the effect of rehabilitation outcomes. Anxiety, depressive symptoms, general psychological distress and social isolation are prevalent if chronic patients have sensory disorders [13]. Psychosocial difficulties may impact significantly on long-term functioning and quality of life [1415], and it reduces the effects of rehabilitation services and bring about higher mortality rates [16].

The purpose of this study is to determine whether multi-sensory feedback therapy (MSFT) can promote upper limb motor function, daily life activities, social participation and help to relieve anxiety in patients with chronic stroke.[…]

Continue —->  Multi-sensory feedback therapy combined with task-oriented training on the hemiparetic upper limb in chronic stroke: study protocol for a pilot randomized controlled trial | Research Square

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Robot-Assisted Stair Climbing Training on Postural Control and Sensory Integration Processes in Chronic Post-stroke Patients: A Randomized Controlled Clinical Trial – Full Text

Background: Postural control disturbances are one of the important causes of disability in stroke patients affecting balance and mobility. The impairment of sensory input integration from visual, somatosensory and vestibular systems contributes to postural control disorders in post-stroke patients. Robot-assisted gait training may be considered a valuable tool in improving gait and postural control abnormalities.

Objective: The primary aim of the study was to compare the effects of robot-assisted stair climbing training against sensory integration balance training on static and dynamic balance in chronic stroke patients. The secondary aims were to compare the training effects on sensory integration processes and mobility.

Methods: This single-blind, randomized, controlled trial involved 32 chronic stroke outpatients with postural instability. The experimental group (EG, n = 16) received robot-assisted stair climbing training. The control group (n = 16) received sensory integration balance training. Training protocols lasted for 5 weeks (50 min/session, two sessions/week). Before, after, and at 1-month follow-up, a blinded rater evaluated patients using a comprehensive test battery. Primary outcome: Berg Balance Scale (BBS). Secondary outcomes:10-meter walking test, 6-min walking test, Dynamic gait index (DGI), stair climbing test (SCT) up and down, the Time Up and Go, and length of sway and sway area of the Center of Pressure (CoP) assessed using the stabilometric assessment.

Results: There was a non-significant main effect of group on primary and secondary outcomes. A significant Time × Group interaction was measured on 6-min walking test (p = 0.013) and on posturographic outcomes (p = 0.005). Post hoc within-group analysis showed only in the EG a significant reduction of sway area and the CoP length on compliant surface in the eyes-closed and dome conditions.

Conclusion: Postural control disorders in patients with chronic stroke may be ameliorated by robot-assisted stair climbing training and sensory integration balance training. The robot-assisted stair climbing training contributed to improving sensorimotor integration processes on compliant surfaces. Clinical trial registration (NCT03566901).

Introduction

Postural control disturbances are one of the leading causes of disability in stroke patients, leading to problems with transferring, maintaining body position, mobility, and walking (Bruni et al., 2018). Therefore, the recovery of postural control is one of the main goals of post-stroke patients. Various and mixed components (i.e., weakness, joint limitation, alteration of tone, loss of movement coordination and sensory organization components) can affect postural control. Indeed, the challenge is to determine the relative weight placed on each of these factors and their interaction to plan specific rehabilitation programs (Bonan et al., 2004).

The two functional goals of postural control are postural orientation and equilibrium. The former involves the active alignment of the trunk and head to gravity, the base of support, visual surround and an internal reference. The latter involves the coordination of movement strategies to stabilize the center of body mass during self-initiated and externally triggered stability perturbations. Postural control during static and dynamic conditions requires a complex interaction between musculoskeletal and neural systems (Horak, 2006). Musculoskeletal components include biomechanical constraints such as the joint range of motion, muscle properties and limits of stability (Horak, 2006). Neural components include sensory and perceptual processes, motor processes involved in organizing muscles into neuromuscular synergies, and higher-level processes essential to plan and execute actions requiring postural control (Shumway-Cook and Woollacott, 2012). A disorder in any of these systems may affect postural control during static (in quite stance) and dynamic (gait) tasks and increase the risk of falling (Horak, 2006).

Literature emphasized the role of impairments of sensory input integration from visual, somatosensory and vestibular systems in leading to postural control disorders in post-stroke patients (Bonan et al., 2004Smania et al., 2008). Healthy persons rely on somatosensory (70%), vision (10%) and vestibular (20%) information when standing on a firm base of support in a well-lit environment (Peterka, 2002). Conversely, in quite stance on an unstable surface, they increase sensory weighting to vestibular and vision information as they decrease their dependence on surface somatosensory inputs for postural orientation (Peterka, 2002). Bonan et al. (2004) investigate whether post-stroke postural control disturbances may be caused by the inability to select the pertinent somatosensory, vestibular or visual information. Forty patients with hemiplegia after a single hemisphere chronic stroke (at least 12 months) performed computerized dynamic posturography to assess the patient’s ability to use sensory inputs separately and to suppress inaccurate inputs in case of sensory conflict. Six sensory conditions were assessed by an equilibrium score, as a measure of body stability. Results show that patients with hemiplegia seem to rely mostly on visual input. In conditions of altered somatosensory information, with visual deprivation or visuo-vestibular conflict, the patient’s performance was significantly lower than healthy subjects. The mechanism of this excessive visual reliance remains unclear. However, higher-level inability to select the appropriate sensory input rather than to elementary sensory impairment has been advocated as a potential mechanism of action (Bonan et al., 2004).

Sensory strategies and sensory reweighting processes are essential to generate effective movement strategies (ankle, hip, and stepping strategies) which can be resolved through feed-back or feed-forward postural adjustments. The cerebral cortex shapes these postural responses both directly via corticospinal loops and indirectly via the brainstem centers (Jacobs and Horak, 2007). Moreover, the cerebellar- and basal ganglia-cortical loop is responsible for adapting postural responses according to prior experience and for optimizing postural responses, respectively (Jacobs and Horak, 2007).

Rehabilitation is the cornerstone in the management of postural control disorders in post-stroke patients (Pollock et al., 2014). To date, no one physical rehabilitation approach can be considered more effective than any other approach (Pollock et al., 2014). Specific treatments should be chosen according to the individual requirements and the evidence available for that specific treatment. Moreover, it appears to be most beneficial a mixture of different treatment for an individual patient (Pollock et al., 2014). Considering that, rehabilitation involving repetitive, high intensity, task-specific exercises is the pathway for restoring motor function after stroke (Mehrholz et al., 2013Lo et al., 2017) robotic assistive devices for gait training have been progressively being used in neurorehabilitation to Sung et al. (2017). In the current literature, three primary evidence have been reported.

Firstly, a recent literature review highlights that robot-assisted gait training is advantageous as add-on therapy in stroke rehabilitation, as it adds special therapeutic effects that could not be afforded by conventional therapy alone (Morone et al., 2017Sung et al., 2017). Specifically, robot-assisted gait training was beneficial for improving motor recovery, gait function, and postural control in post-stroke patients (Morone et al., 2017Sung et al., 2017). Stroke patients who received physiotherapy treatment in combination with robotic devices were more likely to reach better outcomes compared to patients who received conventional training alone (Bruni et al., 2018).

Second, the systematic review by Swinnen et al. (2014) supported the use of robot-assisted gait therapy to improve postural control in subacute and chronic stroke patients. A wide variability among studies was reported about the robotic-device system and the therapy doses (3–5 times per week, 3–10 weeks, 12–25 sessions). However, significant improvements (Cohen’s d = 0.01 to 3.01) in postural control scores measured with the Berg Balance Scale (BBS), the Tinetti test, postural sway tests, and the Timed Up and Go (TUG) test were found after robot-assisted gait training. Interestingly, in five studies an end-effector device (gait trainer) was used (Peurala et al., 2005Tong et al., 2006Dias et al., 2007Ng et al., 2008Conesa et al., 2012). In two study, the exoskeleton was used (Hidler et al., 2009Westlake and Patten, 2009). In one study, a single joint wearable knee orthosis was used (Wong et al., 2012). Because the limited number of studies available and methodological differences among them, more specific randomized controlled trial in specific populations are necessary to draw stronger conclusions (Swinnen et al., 2014).

Finally, technological and scientific development has led to the implementation of robotic devices specifically designed to overcome the motor limitation in different tasks. With this perspective, the robot-assisted end-effector-based stair climbing (RASC) is a promising approach to facilitate task-specific activity and cardiovascular stress (Hesse et al., 20102012Tomelleri et al., 2011Stoller et al., 20142016Mazzoleni et al., 2017).

To date, no studies have been performed on the effects of RASC training in improving postural control and sensory integration processes in chronic post-stroke patients.

The primary aim of the study was to compare the effects of robot-assisted stair climbing training against sensory integration balance training on static and dynamic balance in chronic stroke patients. The secondary aims were to compare the training effects on sensory integration processes and mobility. The hypothesis was that the task-specific and repetitive robot-assisted stairs climbing training might act as sensory integration balance training, improving postural control because sensorimotor integration processes are essential for balance and walking.[…]

 

Continue —->  Frontiers | Robot-Assisted Stair Climbing Training on Postural Control and Sensory Integration Processes in Chronic Post-stroke Patients: A Randomized Controlled Clinical Trial | Neuroscience

Figure 1. The G-EO system used in the Robot-Assisted Stair-Climbing Training (Written informed consent was obtained from the individual pictured, for the publication of this image).

 

, , , , , , , , , ,

Leave a comment

[Abstract+References] Greater Cortical Thickness Is Associated With Enhanced Sensory Function After Arm Rehabilitation in Chronic Stroke

Objective. Somatosensory function is critical to normal motor control. After stroke, dysfunction of the sensory systems prevents normal motor function and degrades quality of life. Structural neuroplasticity underpinnings of sensory recovery after stroke are not fully understood. The objective of this study was to identify changes in bilateral cortical thickness (CT) that may drive recovery of sensory acuity. Methods. Chronic stroke survivors (n = 20) were treated with 12 weeks of rehabilitation. Measures were sensory acuity (monofilament), Fugl-Meyer upper limb and CT change. Permutation-based general linear regression modeling identified cortical regions in which change in CT was associated with change in sensory acuity. Results. For the ipsilesional hemisphere in response to treatment, CT increase was significantly associated with sensory improvement in the area encompassing the occipital pole, lateral occipital cortex (inferior and superior divisions), intracalcarine cortex, cuneal cortex, precuneus cortex, inferior temporal gyrus, occipital fusiform gyrus, supracalcarine cortex, and temporal occipital fusiform cortex. For the contralesional hemisphere, increased CT was associated with improved sensory acuity within the posterior parietal cortex that included supramarginal and angular gyri. Following upper limb therapy, monofilament test score changed from 45.0 ± 13.3 to 42.6 ± 12.9 mm (P = .063) and Fugl-Meyer score changed from 22.1 ± 7.8 to 32.3 ± 10.1 (P < .001). Conclusions. Rehabilitation in the chronic stage after stroke produced structural brain changes that were strongly associated with enhanced sensory acuity. Improved sensory perception was associated with increased CT in bilateral high-order association sensory cortices reflecting the complex nature of sensory function and recovery in response to rehabilitation.

Keywords 

1. Wolf, SL, Winstein, CJ, Miller, JP; EXCITE Investigators. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:20952104. doi:10.1001/jama.296.17.2095. Google ScholarCrossrefMedlineISI
2. Lo, AC, Guarino, PD, Richards, LG. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362:17721783. doi:10.1056/NEJMoa0911341.Google ScholarCrossrefMedlineISI
3. McCabe, J, Monkiewicz, M, Holcomb, J, Pundik, S, Daly, JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:981990. doi:10.1016/j.apmr.2014.10.022. Google ScholarCrossrefMedlineISI
4. Johansen-Berg, H, Dawes, H, Guy, C, Smith, SM, Wade, DT, Matthews, PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002;125(pt 12):27312742Google ScholarCrossrefMedline
5. Luft, AR, McCombe-Waller, S, Whitall, J. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292:18531861. doi:10.1001/jama.292.15.1853. Google ScholarCrossrefMedlineISI
6. Pundik, S, McCabe, JP, Hrovat, K. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity. Front Hum Neurosci. 2015;9:394. doi:10.3389/fnhum.2015.00394. Google ScholarCrossrefMedline
7. Desrosiers, J, Noreau, L, Rochette, A, Bourbonnais, D, Bravo, G, Bourget, A. Predictors of long-term participation after stroke. Disabil Rehabil. 2006;28:221230. doi:10.1080/09638280500158372. Google ScholarCrossrefMedlineISI
8. Carey, L, Macdonell, R, Matyas, TA. SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: a randomized controlled trial. Neurorehabil Neural Repair. 2011;25:304313. doi:10.1177/1545968310397705. Google ScholarSAGE JournalsISI
9. Cramer, SC, Nelles, G, Benson, RR. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28:25182527Google ScholarCrossrefMedlineISI
10. Carey, JR, Kimberley, TJ, Lewis, SM. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002;125(pt 4):773788Google ScholarCrossrefMedline
11. Carey, LM, Abbott, DF, Lamp, G, Puce, A, Seitz, RJ, Donnan, GA. Same intervention-different reorganization: the impact of lesion location on training-facilitated somatosensory recovery after stroke. Neurorehabil Neural Repair. 2016;30:9881000. doi:10.1177/1545968316653836.Google ScholarSAGE JournalsISI
12. Carey, LM, Matyas, TA. Frequency of discriminative sensory loss in the hand after stroke in a rehabilitation setting. J Rehabil Med. 2011;43:257263. doi:10.2340/16501977-0662. Google ScholarCrossrefMedlineISI
13. Borstad, AL, Bird, T, Choi, S, Goodman, L, Schmalbrock, P, Nichols-Larsen, DS. Sensorimotor training and neural reorganization after stroke: a case series. J Neurol Phys Ther. 2013;37:2736. doi:10.1097/NPT.0b013e318283de0d. Google ScholarCrossrefMedlineISI
14. Gauthier, LV, Taub, E, Perkins, C, Ortmann, M, Mark, VW, Uswatte, G. Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke. Stroke. 2008;39:15201525. doi:10.1161/STROKEAHA.107.502229. Google ScholarCrossrefMedlineISI
15. Zheng, X, Schlaug, G. Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy. Front Hum Neurosci. 2015;9:229. doi:10.3389/fnhum.2015.00229. Google ScholarCrossrefMedlineISI
16. Bailey, CH, Kandel, ER. Structural changes accompanying memory storage. Annu Rev Physiol. 1993;55:397426. doi:10.1146/annurev.ph.55.030193.002145. Google ScholarCrossrefMedlineISI
17. Jones, TA, Chu, CJ, Grande, LA, Gregory, AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci. 1999;19:1015310163Google ScholarCrossrefMedlineISI
18. Wang, L, Conner, JM, Rickert, J, Tuszynski, MH. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A. 2011;108:25452550. doi:10.1073/pnas.1014335108. Google ScholarCrossrefMedline
19. Maguire, EA, Gadian, DG, Johnsrude, IS. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A. 2000;97:43984403. doi:10.1073/pnas.070039597. Google ScholarCrossrefMedlineISI
20. Draganski, B, Gaser, C, Busch, V, Schuierer, G, Bogdahn, U, May, A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427:311312. doi:10.1038/427311a. Google ScholarCrossrefMedlineISI
21. Sampaio-Baptista, C, Scholz, J, Jenkinson, M. Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention. Neuroimage. 2014;96:158166. doi:10.1016/j.neuroimage.2014.03.056. Google ScholarCrossrefMedline
22. Nouri, S, Cramer, SC. Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology. 2011;77:10761083. doi:10.1212/WNL.0b013e31822e1482. Google ScholarCrossrefMedlineISI
23. Gauthier, LV, Taub, E, Mark, VW, Barghi, A, Uswatte, G. Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke. Stroke. 2012;43:453457. doi:10.1161/STROKEAHA.111.633255. Google ScholarCrossrefMedlineISI
24. Sterr, A, Dean, PJ, Vieira, G, Conforto, AB, Shen, S, Sato, JR. Cortical thickness changes in the non-lesioned hemisphere associated with non-paretic arm immobilization in modified CI therapy. Neuroimage Clin. 2013;2:797803. doi:10.1016/j.nicl.2013.05.005. Google ScholarCrossrefMedline
25. Schaechter, JD, Moore, CI, Connell, BD, Rosen, BR, Dijkhuizen, RM. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain. 2006;129(pt 10):27222733. doi:10.1093/brain/awl214. Google ScholarCrossrefMedline
26. Kopp, B, Kunkel, A, Flor, H. The Arm Motor Ability Test: reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Arch Phys Med Rehabil. 1997;78:615620Google ScholarCrossrefMedlineISI
27. Duncan, PW, Lai, SM, Keighley, J. Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology. 2000;39:835841Google ScholarCrossrefMedlineISI
28. Fischl, B. FreeSurfer. Neuroimage. 2012;62:774781. doi:10.1016/j.neuroimage.2012.01.021.Google ScholarCrossrefMedlineISI
29. Reuter, M, Rosas, HD, Fischl, B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53:11811196. doi:10.1016/j.neuroimage.2010.07.020. Google ScholarCrossrefMedlineISI
30. Greve, DN, Van der Haegen, L, Cai, Q. A surface-based analysis of language lateralization and cortical asymmetry. J Cogn Neurosci. 2013;25:14771492. doi:10.1162/jocn_a_00405. Google ScholarCrossrefMedlineISI
31. Winkler, AM, Ridgway, GR, Webster, MA, Smith, SM, Nichols, TE. Permutation inference for the general linear model. Neuro-image. 2014;92:381397. doi:10.1016/j.neuroimage.2014.01.060. Google ScholarCrossrefMedlineISI
32. Smith, SM, Nichols, TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:8398. doi:10.1016/j.neuroimage.2008.03.061. Google ScholarCrossrefMedlineISI
33. Nichols, T, Holmes, A. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:125. doi:10.1016/B978-012264841-0/50048-2.Google ScholarCrossrefMedlineISI
34. Winkler, AM, Ridgway, GR, Douaud, G, Nichols, TE, Smith, SM. Faster permutation inference in brain imaging. Neuroimage. 2016;141:502516. doi:10.1016/j.neuroimage.2016.05.068.Google ScholarCrossrefMedline
35. Desikan, RS, Ségonne, F, Fischl, B. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968980. doi:10.1016/j.neuroimage.2006.01.021. Google ScholarCrossrefMedlineISI
36. Thut, G, Théoret, H, Pfennig, A. Differential effects of low-frequency rTMS at the occipital pole on visual-induced alpha desynchronization and visual-evoked potentials. Neuroimage. 2003;18:334347Google ScholarCrossrefMedline
37. Amedi, A, Floel, A, Knecht, S, Zohary, E, Cohen, LG. Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat Neurosci. 2004;7:12661270. doi:10.1038/nn1328. Google ScholarCrossrefMedlineISI
38. Merabet, LB, Swisher, JD, McMains, SA. Combined activation and deactivation of visual cortex during tactile sensory processing. J Neurophysiol. 2006;97:16331641. doi:10.1152/jn.00806.2006. Google ScholarCrossrefMedline
39. Amedi, A, Malach, R, Hendler, T, Peled, S, Zohary, E. Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci. 2001;4:324330. doi:10.1038/85201. Google ScholarCrossrefMedlineISI
40. Stoesz, MR, Zhang, M, Weisser, VD, Prather, SC, Mao, H, Sathian, K. Neural networks active during tactile form perception: common and differential activity during macrospatial and microspatial tasks. Int J Psychophysiol. 2003;50:4149Google ScholarCrossrefMedline
41. Lacey, S, Tal, N, Amedi, A, Sathian, K. A putative model of multisensory object representation. Brain Topogr. 2009;21:269274. doi:10.1007/s10548-009-0087-4. Google ScholarCrossrefMedline
42. Kim, JK, Zatorre, RJ. Tactile-auditory shape learning engages the lateral occipital complex. J Neurosci. 2011;31:78487856. doi:10.1523/JNEUROSCI.3399-10.2011. Google ScholarCrossrefMedline
43. Botvinick, M, Cohen, J. Rubber hands “feel” touch that eyes see. Nature. 1998;391:756. doi:10.1038/35784. Google ScholarCrossrefMedlineISI
44. Zangaladze, A, Epstein, CM, Grafton, ST, Sathian, K. Involvement of visual cortex in tactile discrimination of orientation. Nature. 1999;401:587590. doi:10.1038/44139. Google ScholarCrossrefMedlineISI
45. Sathian, K. Analysis of haptic information in the cerebral cortex. J Neurophysiol. 2016;116:17951806. doi:10.1152/jn.00546.2015. Google ScholarCrossrefMedline
46. Hsiao, S, Gomez-Ramirez, M. Touch. In: Gottfried, JA ed. Neurobiology of Sensation and Reward. Frontiers in Neuroscience. Boca Raton, FLCRC Press/Taylor & Francis2011Google ScholarCrossref
47. Vincent, JL, Snyder, AZ, Fox, MD. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol. 2006;96:35173531. doi:10.1152/jn.00048.2006.Google ScholarCrossrefMedlineISI
48. Roland, PE, O’Sullivan, B, Kawashima, R. Shape and roughness activate different somatosensory areas in the human brain. Proc Natl Acad Sci U S A. 1998;95:32953300Google ScholarCrossrefMedlineISI
49. Bodegård, A, Geyer, S, Grefkes, C, Zilles, K, Roland, PE. Hierarchical processing of tactile shape in the human brain. Neuron. 2001;31:317328Google ScholarCrossrefMedline
50. Karhu, J, Tesche, CD. Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J Neurophysiol. 1999;81:20172025Google ScholarCrossrefMedline
51. Fabri, M, Polonara, G, Pesce, MD, Quattrini, A, Salvolini, U, Manzoni, T. Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci. 2001;13:10711079. doi:10.1162/089892901753294365. Google ScholarCrossrefMedlineISI
52. Chung, Y, Han, S, Kim, HS. Intra- and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. BMC Neurosci. 2014;15:43. doi:10.1186/1471-2202-15-43. Google ScholarCrossrefMedline
53. Mohajerani, MH, Aminoltejari, K, Murphy, TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 2011;108:E183E191. doi:10.1073/pnas.1101914108. Google ScholarCrossrefMedlineISI
54. Blankenburg, F, Ruff, CC, Bestmann, S. Interhemispheric effect of parietal TMS on somatosensory response confirmed directly with concurrent TMS-fMRI. J Neurosci. 2008;28:1320213208. doi:10.1523/JNEUROSCI.3043-08.2008. Google ScholarCrossrefMedline
55. Inoue, K, Kawashima, R, Sugiura, M. Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. Neuroimage. 2001;14:14691475. doi:10.1006/nimg.2001.0942. Google ScholarCrossrefMedlineISI
56. Takatsuru, Y, Fukumoto, D, Yoshitomo, M, Nemoto, T, Tsukada, H, Nabekura, J. Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci. 2009;29:1008110086. doi:10.1523/JNEUROSCI.1638-09.2009.Google ScholarCrossrefMedlineISI
57. Nelles, G, Spiekermann, G, Jueptner, M. Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke. 1999;30:15101516Google ScholarCrossrefMedlineISI
58. Jang, SH, Lee, MY. Correlation between somatosensory function and cortical activation induced by touch stimulation in patients with intracerebral hemorrhage. Int J Neurosci. 2013;123:248252. doi:10.3109/00207454.2012.755968. Google ScholarCrossrefMedlineISI
59. Bannister, LC, Crewther, SG, Gavrilescu, M, Carey, LM. Improvement in touch sensation after stroke is associated with resting functional connectivity changes. Front Neurol. 2015;6:165. doi:10.3389/fneur.2015.00165. Google ScholarCrossrefMedline
60. Kang, X, Herron, TJ, Cate, AD, Yund, EW, Woods, DL. Hemispherically-unified surface maps of human cerebral cortex: reliability and hemispheric asymmetries. PloS One. 2012;7:e45582. doi:10.1371/journal.pone.0045582. Google ScholarCrossrefMedline
61. Maingault, S, Tzourio-Mazoyer, N, Mazoyer, B, Crivello, F. Regional correlations between cortical thickness and surface area asymmetries: a surface-based morphometry study of 250 adults. Neuropsychologia. 2016;93(pt B):350364. doi:10.1016/j.neuropsychologia.2016.03.025. Google ScholarCrossrefMedline
62. Van de Winckel, A, Wenderoth, N, De Weerdt, W. Frontoparietal involvement in passively guided shape and length discrimination: a comparison between subcortical stroke patients and healthy controls. Exp Brain Res. 2012;220:179189. doi:10.1007/s00221-012-3128-2. Google ScholarCrossrefMedline
63. Borstad, A, Schmalbrock, P, Choi, S, Nichols-Larsen, DS. Neural correlates supporting sensory discrimination after left hemisphere stroke. Brain Res. 2012;1460:7887. doi:10.1016/j.brainres.2012.03.060. Google ScholarCrossrefMedlineISI
64. Lindberg, PG, Schmitz, C, Engardt, M, Forssberg, H, Borg, J. Use-dependent up- and down-regulation of sensorimotor brain circuits in stroke patients. Neurorehabil Neural Repair. 2007;21:315326. doi:10.1177/1545968306296965. Google ScholarSAGE JournalsISI
65. Dechaumont-Palacin, S, Marque, P, De Boissezon, X. Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study. Neurorehabil Neural Repair. 2008;22:154165. doi:10.1177/1545968307307118. Google ScholarSAGE JournalsISI
66. Zatorre, RJ, Fields, RD, Johansen-Berg, H. Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15:528536. doi:10.1038/nn.3045.Google ScholarCrossrefMedlineISI
67. Fields, RD. Changes in brain structure during learning: fact or artifact? Reply to Thomas and Baker. Neuroimage. 2013;73:260267. doi:10.1016/j.neuroimage.2012.08.085. Google ScholarCrossrefMedline
68. Xu, T, Yu, X, Perlik, AJ. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009;462:915919. doi:10.1038/nature08389. Google ScholarCrossrefMedlineISI
69. Kleim, JA, Hogg, TM, VandenBerg, PM, Cooper, NR, Bruneau, R, Remple, M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci. 2004;24:628633. doi:10.1523/JNEUROSCI.3440-03.2004. Google ScholarCrossrefMedlineISI
70. Sampaio-Baptista, C, Khrapitchev, AA, Foxley, S. Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci. 2013;33:1949919503. doi:10.1523/JNEUROSCI.3048-13.2013. Google ScholarCrossrefMedlineISI
71. Erickson, KI. Evidence for structural plasticity in humans: comment on Thomas and Baker (2012). Neuroimage. 2013;73:237238. doi:10.1016/j.neuroimage.2012.07.003. Google ScholarCrossrefMedline
72. Feydy, A, Carlier, R, Roby-Brami, A. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. 2002;33:16101617Google ScholarCrossrefMedlineISI
73. Hamzei, F, Liepert, J, Dettmers, C, Weiller, C, Rijntjes, M. Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. Neuroimage. 2006;31:710720. doi:10.1016/j.neuroimage.2005.12.035. Google ScholarCrossrefMedlineISI

via Greater Cortical Thickness Is Associated With Enhanced Sensory Function After Arm Rehabilitation in Chronic Stroke – Svetlana Pundik, Aleka Scoco, Margaret Skelly, Jessica P. McCabe, Janis J. Daly, 2018

, , , , , , , , , ,

Leave a comment

[WEB SITE] Improve your function. Improve your life.

Impaired function from a neurological injury such as stroke may result in both sensory and motor deficits.

Limited use of the hand or arm can typically lead to impaired sensory communication to the brain (touch, feel, aware of joint movement). Research shows that sensory electrical stimulation (SES) can be an effective treatment strategy for improving sensory and motor function.

With SES, the main goal is to maximize input by providing stimulation at very low-level (i.e., without producing a muscle contraction). Studies show that providing SES to an impaired nervous system can prime the cortex ultimately leading to improve neuroplasticity, motor recovery and function. 

Which means you’re one step closer to improving your function, independence, life

Watch SaeboStim Micro in action

See it in action

Read more about Saebo’s success stories. 

Learn more from our research

Not sure this is the right solution, but you’re interested in other Saebo solutions?  
Learn which product is right for me?

Source: Improve your function. Improve your life.

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot

Abstract (provisional)

Background

Selecting and maintaining an engaging and challenging training difficulty level in robot-assisted stroke rehabilitation remains an open challenge. Despite the ability of robotic systems to provide objective and accurate measures of function and performance, the selection and adaptation of exercise difficulty levels is typically left to the experience of the supervising therapist.

Methods

We introduce a patient-tailored and adaptive robot-assisted therapy concept to optimally challenge patients from the very first session and throughout therapy progress. The concept is evaluated within a four-week pilot study in six subacute stroke patients performing robot-assisted rehabilitation of hand function. Robotic assessments of both motor and sensory impairments of hand function conducted prior to the therapy are used to adjust exercise parameters and customize difficulty levels. During therapy progression, an automated routine adapts difficulty levels from session to session to maintain patients? performance around a target level of 70%, to optimally balance motivation and challenge.

Results

Robotic assessments suggested large differences in patients? sensorimotor abilities that are not captured by clinical assessments. Exercise customization based on these assessments resulted in an average initial exercise performance around 70% (62%?20%, mean?std), which was maintained throughout the course of the therapy (64%?21%). Patients showed reduction in both motor and sensory impairments compared to baseline as measured by clinical and robotic assessments. The progress in difficulty levels correlated with improvements in a clinical impairment scale (Fugl-Meyer Assessment) (rs = 0.70), suggesting that the proposed therapy was effective at reducing sensorimotor impairment.

Conclusions

Initial robotic assessments combined with progressive difficulty adaptation have the potential to automatically tailor robot-assisted rehabilitation to the individual patient. This results in optimal challenge and engagement of the patient, may facilitate sensorimotor recovery after neurological injury, and has implications for unsupervised robot-assisted therapy in the clinic and home environment.

The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.

via JNER | Abstract | Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot.

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot

Abstract (provisional)

Background

Selecting and maintaining an engaging and challenging training difficulty level in robot-assisted stroke rehabilitation remains an open challenge. Despite the ability of robotic systems to provide objective and accurate measures of function and performance, the selection and adaptation of exercise difficulty levels is typically left to the experience of the supervising therapist.

Methods

We introduce a patient-tailored and adaptive robot-assisted therapy concept to optimally challenge patients from the very first session and throughout therapy progress. The concept is evaluated within a four-week pilot study in six subacute stroke patients performing robot-assisted rehabilitation of hand function. Robotic assessments of both motor and sensory impairments of hand function conducted prior to the therapy are used to adjust exercise parameters and customize difficulty levels. During therapy progression, an automated routine adapts difficulty levels from session to session to maintain patients? performance around a target level of 70%, to optimally balance motivation and challenge.

Results

Robotic assessments suggested large differences in patients? sensorimotor abilities that are not captured by clinical assessments. Exercise customization based on these assessments resulted in an average initial exercise performance around 70% (62%?20%, mean?std), which was maintained throughout the course of the therapy (64%?21%). Patients showed reduction in both motor and sensory impairments compared to baseline as measured by clinical and robotic assessments. The progress in difficulty levels correlated with improvements in a clinical impairment scale (Fugl-Meyer Assessment) (rs = 0.70), suggesting that the proposed therapy was effective at reducing sensorimotor impairment.

Conclusions

Initial robotic assessments combined with progressive difficulty adaptation have the potential to automatically tailor robot-assisted rehabilitation to the individual patient. This results in optimal challenge and engagement of the patient, may facilitate sensorimotor recovery after neurological injury, and has implications for unsupervised robot-assisted therapy in the clinic and home environment.

The complete article is available as aprovisional PDF . The fully formatted PDF and HTML versions are in production.

via JNER | Abstract | Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot.

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: