Posts Tagged Serious game

[Abstract] Dynamic Difficulty Adjustment in Virtual Reality Applications for Upper Limb Rehabilitation – IEEE Conference Publication


The objective of this paper was to compare the incidence of a rehabilitation game in motor ability with dynamic difficulty adjustment (ADD) in comparison to a manual configuration. To achieve that, a virtual tool called “Bug catcher” was developed, which is focused in upper limb rehabilitation. This tool uses a dynamic difficulty adjustment based in fuzzy logic. The population involved for the present study were made by 2 users, a 18-year-old patient with a hemiparesis that limits her motor ability in her left upper limb, and a 37-year-old patient with motor monoparesis in his right upper limb. This tool was used in both users, each one with a different configuration (automatic or manual), and the motor ability from both participants was objectively measured using Box and Blocks Test, applied before, during and after each session; additionally, a performance index (percentage of success) was defined in order to determine the progress of the participants in the virtual tool. As a result, it was obtained that user number one using the game with ADD, managed to obtain not only a better performance in the sessions but also an important advance in her motor skill in comparison to the user 2 with the manual configuration.

via Dynamic Difficulty Adjustment in Virtual Reality Applications for Upper Limb Rehabilitation – IEEE Conference Publication

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Children’s Response About Virtual Reality Rehab is Positive

Published on 



The virtual reality (VR) system Serious Game may help children with cerebral palsy and other neurological impairments rehabilitate their upper limbs, suggests a study conducted by a team of Italian researchers who developed the system.

The study, published recently in IEEE Transactions on Neural Systems and Rehabilitation Engineering, examined Serious Game, which is composed of a virtual reality camera mounted to the head and two wearable haptic devices placed on two fingers.

In their study, the team investigated the usability of this rehabilitation system in three patients with cerebral palsy and five patients with developmental dyspraxia—a disorder characterized by the impairment of the ability to plan and carry out sensory and motor tasks. The mean age of participants in this group was 10.13 years, according to a news story from Cerebral Palsy News Today.

Typically developing children, with a mean age of 13.38 years, and adults, with a mean age of 26.75 years, also were included in the study.

The participants were divided into two groups: one assisted by the Serious Game technology and another undergoing conventional neurocognitive rehabilitation therapy. Both conditions required movements involving similar motor functions, such as reaching, grasping, and rotating both forearms and hands, but with different tasks and goals in various contexts.

The children attended 16 training sessions of two sessions per week for 4 weeks, over two separate periods. Between the two interventions, a washout period of 4 weeks was added in which children followed only cognitive therapy with no physical sessions.

The children’s exercise capacity was measured using validated clinical scales and motion analysis, the news story continues.

Typically developing children were eager to complete the assigned task even though they were instructed to execute the session with attention and without rushing, while the adults, cerebral palsy, and developmental dyspraxia groups seemed to pay greater attention to precisely performing motor tasks.

The accuracy and velocity of movement were only different between typically developing children and neuromotor patients in the reach-to-grasp exercise, in which children were asked to flip a card protruding from a horizontal support. No significant differences were observed in the path-tracking task, in which children were seated in front of a desk and asked to reach a target by moving the hand along a straight path, the story explains.

Children with neurological disorders completed the game without exceeding the maximum time threshold imposed. Also, these children reported positive feedback after participating in the Serious Game.

The results of virtual reality were consistent with the participants’ motor skills. Overall, the cerebral palsy and developmental dyspraxia group had lower performance than typically developing children and adults, while in turn, the typically developing children had lower performance than adults.

“Results show the system was compliant with different levels of motor skills and allowed patients to complete the experimental rehabilitation session, with performance varying according to the expected motor abilities of the different groups,” researchers wrote, in the study.

“The ability both to customize the modalities of interaction with the virtual environment and, in the same time, to arise motivation in young participants have revealed virtual reality as a potentially important rehabilitation tool in these children,” they add, per the news story.

In the future, the team plans to study this approach in a larger population.

[Source: Cerebral Palsy News Today]


via Children’s Response About Virtual Reality Rehab is Positive – Rehab Managment

, , , , , , ,

Leave a comment

[Abstract + Related Articles] Adaptive gameplay and difficulty adjustment in a gamified upper-limb rehabilitation – IEEE Conference Publication



Lack of motivation during physical rehabilitation is a very common problem that worsens the efficacy of rehabilitation, decreasing the recovery rates of the patient. We suggest a gamified upper-limb rehabilitation that incorporates adaptive gameplay and difficulty so as to overcome that issue, emerging as a support tool for physical therapy professionals. The presence of difficulty adjustment in the game allows a higher motivation level for the patients by preserving the trade off between keeping the difficulty low enough to avoid frustration, but high enough to promote motivation and engagement. This rehabilitation game is a home-based system that allows the patient to exercise at home, due to its Kinect-based portable setup. The game aims to increase the motivation of the patients and thus the speed of their recovery. To accomplish that goal, it is key to potentiate a full immersion into the therapeutic activity. Thus gamification elements, gameplay design and adaptive difficulty are explored and incorporated into the concept.

Related Articles

via Adaptive gameplay and difficulty adjustment in a gamified upper-limb rehabilitation – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[Abstract] Feasibility study of a serious game based on Kinect system for functional rehabilitation of the lower limbs



Conventional functional rehabilitation costs time, money and effort for the patients and for the medical staff. Serious games have been used as a new approach to improve the performance as well as to possibly reduce medical cost in the future for cognitive rehabilitation and body balance control. The objective of this present work was to perform a feasibility study on the use of a new real-time serious game system for improving the musculoskeletal rehabilitation of the lower limbs.

Materials and methods

A basic functional rehabilitation exercise database was established with different levels of difficulties. A 3D virtual avatar was created and scaled to represent each subject-specific body. A portable and affordable Kinect sensor was used to capture real-time kinematics during each exercise. A specific data coupling process was developed. An evaluation campaign was established to assess the developed system.


The squats exercise was the hardest challenge. Moreover, the performance of each functional rehabilitation exercise depended on the physiological profile of each participant. Our game system was clear and attractive for all functional rehabilitation exercises. All testing subjects felt motivated and secure when playing the rehabilitation game.


The comparison with other systems showed that our system was the first one focusing on the functional rehabilitation exercises of the lower limbs.


Our system showed useful functionalities for a large range of applications (rehabilitation at home, sports training). Looking forward, new in-situation exercises will be investigated for specific musculoskeletal disorders.

via Feasibility study of a serious game based on Kinect system for functional rehabilitation of the lower limbs – ScienceDirect

, , , , , , ,

Leave a comment

[Technical note] Serious game and functional rehabilitation for the lower limbs



Conventional functional rehabilitation consists of a therapeutic consultation, a motor exercise assignment, and an execution task with or without assistance of the therapist. The objective of this technical note was to present a new real-time 3D serious game system concept for musculoskeletal rehabilitation of the lower limbs.

Materials and method

A generic development workflow of real-time 3D serious game systems for functional rehabilitation of the lower limbs was proposed. A user-friendly system flowchart was also established for a better interaction between end-users and the game system.

Result and discussion

Different system components like avatar modeling, subject registration, rehabilitation game and feedback visualization and control were detailed and their advantages and limitations were discussed.


3D serious game technologies open new perspectives for a large range of rehabilitation applications (at home or in clinic environment, sports training).

via Serious game and functional rehabilitation for the lower limbs – ScienceDirect

, , , , ,

Leave a comment

[Abstract & References] A human–computer interface for wrist rehabilitation: a pilot study using commercial sensors to detect wrist movements


Health conditions might cause muscle weakness and immobility in some body parts; hence, physiotherapy exercises play a key role in the rehabilitation. To improve the engagement during the rehabilitation process, we therefore propose a human–computer interface (serious game) in which five wrist movements (extension, flexion, pronation, supination and neutral) are detected via two commercial sensors (Leap motion controller and Myo armband). Leap motion provides data regarding positions of user’s finger phalanges through two infrared cameras, while Myo armband facilitates electromyography signal and inertial motion of user’s arm through its electrodes and inertial measurement unit. The main aim of this study is to explore the performance of these sensors on wrist movement recognition in terms of accuracy, sensitivity and specificity. Eight healthy participants played 5 times a proposed game with each sensor in one session. Both sensors reported over 85% average recognition accuracy in the five wrist movements. Based on t test and Wilcoxon signed-rank test, early results show that there were significant differences between Leap motion controller and Myo armband recognitions in terms of average sensitivities on extension (p=0.0356p=0.0356), flexion (p=0.0356p=0.0356) and pronation (p=0.0440p=0.0440) movements, and average specificities on extension (p=0.0276p=0.0276) and pronation (p=0.0249p=0.0249) movements.


Gunasekera, W.L., Bendall, J.: Rehabilitation of neurologically injured patients in neurosurgery. Part of the series Springer Specialist Surgery Series. In: Moore, A.J., Newell, D.W. (eds.) Springer, London, pp. 407–421 (2005)Google Scholar
Rego, P., Moreira, P.M., Reis, L.P.: Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: Proceedings of the 5th Iberian Conference on Information Systems and Technologies, pp. 1–6. IEEE (2010)Google Scholar
Granic, I., Lobel, A., Engels, R.C.: The benefits of playing video games. Am. Psychol. 69(1), 66–78 (2014)CrossRefGoogle Scholar
Russoniello, C.V., O’Brien, K., Parks, J.M.: EEG, HRV and psychological correlates while playing Bejeweled II: a randomized controlled study. In: Wiederhold, B.K., Riva, G. (eds.) Annual Review of Cybertherapy and Telemedicine. Advanced Technologies in the Behavioral, Social and Neurosciences, pp. 189–192. IOS Press, Amsterdam (2009)Google Scholar
Zyda, M.: From visual simulation to virtual reality to games. Computer 38(9), 25–32 (2005)CrossRefGoogle Scholar
Ma, M., Bechkoum, K.: Serious games for movement therapy after stroke. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1872–1877. IEEE (2008)Google Scholar
Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G., Adamovich, S., Poizner, H.: Virtual reality-based post-stroke hand rehabilitation. In: Proceedings of the Medicine Meets Virtual Reality Conference, pp. 64–70. IOS Press (2002)Google Scholar
Asadipour, A., Debattista, K., Chalmers, A.: Visuohaptic augmented feedback for enhancing motor skills acquisition. Vis. Comput. 33(4), 401–411 (2017)CrossRefGoogle Scholar
Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085–1099 (2009)CrossRefGoogle Scholar
Burke, J.W., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Serious games for upper limb rehabilitation following stroke. In: Proceedings of the Games and Virtual Worlds for Serious Applications, pp. 103–110. IEEE (2009)Google Scholar
Aristidou, A.: Hand tracking with physiological constraints. Vis. Comput. (2016). doi:10.1007/s00371-016-1327-8
Chang, Y.J., Han, W.Y., Tsai, Y.C.A.: Kinect-based upper limb rehabilitation system to assist people with cerebral palsy. Res. Dev. Disabil. 34(11), 3654–3659 (2013)CrossRefGoogle Scholar
Roy, A.K., Soni, Y., Dubey, S.: Enhancing effectiveness of motor rehabilitation using Kinect motion sensing technology. In: Proceedings of the Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), pp. 298–304. IEEE (2013)Google Scholar
Pedersoli, F., Benini, S., Adami, N., Leonardi, R.: XKin: an open source framework for hand pose and gesture recognition using kinect. Vis. Comput. 30(10), 1107–1122 (2014)CrossRefGoogle Scholar
Da Gama, A., Fallavollita, P., Teichrieb, V., Navab, N.: Motor rehabilitation using Kinect: a systematic review. Games Health J. 4(2), 123–135 (2015)CrossRefGoogle Scholar
Chuan, C.H., Regina, E., Guardino, C.: American Sign Language recognition using Leap motion sensor. In: Proceedings of the 13th International Conference on Machine Learning and Applications (ICMLA), pp. 541–544. IEEE (2014)Google Scholar
Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with Leap motion and Kinect devices. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 1565–1569. IEEE (2014)Google Scholar
Funasaka, M., Ishikawa, Y., Takata, M., Joe, K.: Sign language recognition using leap motion controller. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pp. 263–269 (2015)Google Scholar
Bizzotto, N., Costanzo, A., Bizzotto, L.: Leap motion gesture control with OsiriX in the operating room to control imaging: first experiences during live surgery. Surg. Innov. 21(6), 655–656 (2014)CrossRefGoogle Scholar
Mewes, A., Saalfeld, P., Riabikin, O., Skalej, M., Hansen, C.A.: Gesture-controlled projection display for CT-guided interventions. Int. J. Comput. Assist. Radiol. Surg. 11(1), 157–164 (2016)CrossRefGoogle Scholar
Bassily, D., Georgoulas, C., Guettler, J., Linner, T., Bock, T.: Intuitive and adaptive robotic arm manipulation using the Leap motion controller. In: Proceedings of the International Symposium on Robotics ISR/Robotik, pp. 1–7. IEEE (2014)Google Scholar
dos Reis Alves, S.F., Uribe-Quevedo, A.J., Nunes da Silva, I., Ferasoli Filho, H.: Pomodoro, a mobile robot platform for hand motion exercising. In: Proceedings of the International Conference on Biomedical Robotics and Biomechatronics, pp. 970–974. IEEE (2014)Google Scholar
Yu, N., Xu, C., Wang, K., Yang, Z., Liu, J.: Gesture-based telemanipulation of a humanoid robot for home service tasks. In: Proceedings of the International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1923–1927. IEEE (2015)Google Scholar
Sonntag, D., Orlosky, J., Weber, M., Gu, Y., Sosnovsky, S., Toyama, T., Toosi, E.N.: Cognitive monitoring via eye tracking in virtual reality pedestrian environments. In: Proceedings of the 4th International Symposium on Pervasive Displays, pp. 269–270. ACM (2015)Google Scholar
Khademi, M., Mousavi Hondori, H., McKenzie, A., Dodakian, L., Lopes, C.V., Cramer, S.C.: Free-hand interaction with Leap motion controller for stroke rehabilitation. In: Proceedings of the CHI’14 Extended Abstracts on Human Factors in Computing Systems, pp. 1663–1668. ACM (2014)Google Scholar
Charles, D., Pedlow, K., McDonough, S., Shek, K., Charles, T.: Close range depth sensing cameras for virtual reality based hand rehabilitation. J. Assist. Technol. 8(3), 138–149 (2014)CrossRefGoogle Scholar
Grubišić, I., Skala Kavanagh, H.A.N.A., Grazio, S.: Novel approaches in hand rehabilitation. Period. Biol. 117(1), 139–145 (2015)Google Scholar
Qamar, A., Rahman, M.A., Basalamah, S.: Adding inverse kinematics for providing live feedback in a serious game-based rehabilitation system. In: Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 215–220. IEEE (2014)Google Scholar
Liang, H., Chang, J., Kazmi, I.K., Zhang, J.J., Jiao, P.: Hand gesture-based interactive puppetry system to assist storytelling for children. Vis. Comput. 33(4), 517–531 (2017)CrossRefGoogle Scholar
Shen, J., Luo, Y., Wu, Z., Tian, Y., Deng, Q.: CUDAbased real-time hand gesture interaction and visualization for CT volume dataset using leap motion. Vis. Comput. 32(3), 359–370 (2016)CrossRefGoogle Scholar
Hettig, J., Mewes, A., Riabikin, O., Skalej, M., Preim, B., Hansen, C.: Exploration of 3D medical image data for interventional radiology using myoelectric gesture control. In: Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 177–185. ACM (2015)Google Scholar
Gándara, C.V., Bauza, C.G.: IntelliHome: A framework for the development of ambient assisted living applications based in low-cost technology. In: Proceedings of the Latin American Conference on Human Computer Interaction, p. 18. ACM (2015)Google Scholar
Qamar, A.M., Khan, A.R., Husain, S.O., Rahman, M.A., Baslamah, S.A.: Multi-sensory gesture-based occupational therapy environment for controlling home appliances. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 671–674. ACM (2015)Google Scholar
McCullough, M., Xu, H., Michelson, J., Jackoski, M., Pease, W., Cobb, W., Williams, B.: Myo arm: swinging to explore a VE. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, pp. 107–113. ACM (2015)Google Scholar
Rondinelli, R.D., Genovese, E., Brigham, C.R.: Guides to the Evaluation of Permanent Impairment. American Medical Association, Chicago (2008)Google Scholar
Norkin, C.C., White, D.J.: Measurement of Joint Motion: A Guide to Goniometry, 5th edn. FA Davis Company, Philadelphia (2016)Google Scholar
O’brien, A.V., Jones, P., Mullis, R., Mulherin, D., Dziedzic, K.: Conservative hand therapy treatments in rheumatoid arthritisa randomized controlled trial. Rheumatology 45(5), 577–583 (2006)CrossRefGoogle Scholar
Wakefield, A.E., McQueen, M.M.: The role of physiotherapy and clinical predictors of outcome after fracture of the distal radius. J. Bone Joint Surg. 82(7), 972–976 (2000)CrossRefGoogle Scholar

Source: A human–computer interface for wrist rehabilitation: a pilot study using commercial sensors to detect wrist movements | SpringerLink

, , , ,

Leave a comment

[Abstract] Motion Rehab AVE 3D: A VR-based exergame for post-stroke rehabilitation


Background and objective

Recent researches about games for post-stroke rehabilitation have been increasing, focusing in upper limb, lower limb and balance situations, and showing good experiences and results. With this in mind, this paper presents Motion Rehab AVE 3D, a serious game for post-stroke rehabilitation of patients with mild stroke. The aim is offer a new technology in order to assist the traditional therapy and motivate the patient to execute his/her rehabilitation program, under health professional supervision.


The game was developed with Unity game engine, supporting Kinect motion sensing input device and display devices like Smart TV 3D and Oculus Rift. It contemplates six activities considering exercises in a tridimensional space: flexion, abduction, shoulder adduction, horizontal shoulder adduction and abduction, elbow extension, wrist extension, knee flexion, and hip flexion and abduction. Motion Rehab AVE 3D also report about hits and errors to the physiotherapist evaluate the patient’s progress.


A pilot study with 10 healthy participants (61–75 years old) tested one of the game levels. They experienced the 3D user interface in third-person. Our initial goal was to map a basic and comfortable setup of equipment in order to adopt later. All the participants (100%) classified the interaction process as interesting and amazing for the age, presenting a good acceptance.


Our evaluation showed that the game could be used as a useful tool to motivate the patients during rehabilitation sessions. Next step is to evaluate its effectiveness for stroke patients, in order to verify if the interface and game exercises contribute into the motor rehabilitation treatment progress.

Source: Motion Rehab AVE 3D: A VR-based exergame for post-stroke rehabilitation – ScienceDirect

, , , , , ,

Leave a comment

[ARTICLE] Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation – Full Text PDF



Stroke is a major cause of long-term disability that can cause motor and cognitive impairments. New technologies such as robotic devices and serious games are increasingly being developed to improve post-stroke rehabilitation. The aim of the present project was to develop a ROBiGAME serious game to simultaneously improve motor and cognitive deficits (in particular hemiparesis and hemineglect). In this context, the difficulty level of the game was adapted to each patient’s performance, and this individualized adaptation was addressed as the main challenge of the game development. The game was implemented on the REAplan end-effector rehabilitation robot, which was used in continuous interaction with the game. A preliminary feasibility study of a target pointing game was run in order to validate the game features and parameters. Results showed that the game was perceived as enjoyable, and that patients reported a desire to play the game again. Most of the targets included in the game design were realistic, and they were well perceived by the patients. Results also suggested that the cognitive help strategy could include one visual prompting cue, possibly combined with an auditory cue. It was observed that the motor assistance provided by the robot was well adapted for each patient’s impairments, but the study results led to a suggestion that the triggering conditions should be reviewed. Patients and therapists reported the desire to receive more feedback on the patient’s performances. Nevertheless, more patients and therapists are needed to play the game in order to give further and more comprehensive feedback that will allow for improvements of the serious game. Future steps also include the validation of the motivation assessment module that is currently under development.

Full Text PDF


, , , , , , , , , , ,

Leave a comment

[Abstract] Play seriously: Effectiveness of serious games and their features in motor rehabilitation. A meta-analysis.



Evidence for the effectiveness of serious games (SGs) and their various features is inconsistent in the motor rehabilitation field, which makes evidence based development of SGs a rare practice.


To investigate the effectiveness of SGs in motor rehabilitation for upper limb and movement/balance and to test the potential moderating role of SGs features like feedback, activities, characters and background.


We ran a meta-analysis including 61 studies reporting randomized controlled trials (RCTs), controlled trials (CTs) or case series designs in which at least one intervention for motor rehabilitation included the use of SGs as standalone or in combination.


There was an overall moderate effect of SGs on motor indices, d = 0.59, [95% CI, 0.48, 0.71], p <  0.001. Regarding the game features, only two out of 17 moderators were statistically different in terms of effect sizes: type of activity (combination of group with individual activities had the highest effects), and realism of the scenario (fantasy scenarios had the highest effects).


While we showed that SGs are more effective in improving motor upper limb and movement/balance functions compared to conventional rehabilitation, there were no consistent differences between various game features in their contribution to effects. Further research should systematically investigate SGs features that might have added value in improving effectiveness.

Source: Play seriously: Effectiveness of serious games and their features in motor rehabilitation. A meta-analysis. – PubMed – NCBI

, , , , , , , ,

Leave a comment

[ARTICLE] Development of Device and Serious Game Contents for the Multi-finger Rehabilitation – Full Text

In modern society, with the increasing use of such compact devices as smart phones and computers, finger and hand mobility is very important for daily living. Generally, in the case where there is impaired motor function of the hands or fingers, rehabilitation involves boring repetitive exercises. In this study, serious games were implemented using a dynamometer which made it possible to measure grip width and finger grip strength according to the size of the hand. The game was developed based on rhythm games, and, by selectively training the fingers that need rehabilitation, it is possible to improve a variety of functions such as finger agility, power and endurance. In addition, by analyzing data changes during the training process, the intensity of the rehabilitation can be quantitatively assessed. Furthermore, it provided users with an active and fun rehabilitation environment because they could choose and use their own desired music files during their rehabilitation.

Download Full Text PDF

, , , , ,

Leave a comment

%d bloggers like this: