Posts Tagged Serious games

[PhD Thesis] The Design Of Exergaming Systems For Autonomous Rehabilitation

A PhD thesis by Michele Pirovano (Politecnico di Milano, Italy), studying the feasibility of at-home rehabilitation using exergames for stroke patients. It includes the results of a 3-months pilot test using an original exergaming system developed by the author.

Download the thesis for free at http://www.michelepirovano.com/pdf/MichelePirovano_Thesis_Final_2015_01_09.pdf

via PhD Thesis: The Design Of Exergaming Systems For Autonomous Rehabilitation – Gabriele Ferri’s research blog

, , , , , ,

Leave a comment

[ARTICLE] An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games – Full Text

Highlights

  • Generation of customizable 3D immersive serious games.
  • An interactive and low-cost full body rehabilitation framework.
  • Integration of a Head Mounted Display, a Time-of-Flight and an infrared camera.
  • A Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) reference model.

Abstract

Strokes, surgeries, or degenerative diseases can impair motor abilities and balance. Long-term rehabilitation is often the only way to recover, as completely as possible, these lost skills. To be effective, this type of rehabilitation should follow three main rules. First, rehabilitation exercises should be able to keep patient’s motivation high. Second, each exercise should be customizable depending on patient’s needs. Third, patient’s performance should be evaluated objectively, i.e., by measuring patient’s movements with respect to an optimal reference model. To meet the just reported requirements, in this paper, an interactive and low-cost full body rehabilitation framework for the generation of 3D immersive serious games is proposed. The framework combines two Natural User Interfaces (NUIs), for hand and body modeling, respectively, and a Head Mounted Display (HMD) to provide the patient with an interactive and highly defined Virtual Environment (VE) for playing with stimulating rehabilitation exercises. The paper presents the overall architecture of the framework, including the environment for the generation of the pilot serious games and the main features of the used hand and body models. The effectiveness of the proposed system is shown on a group of ninety-two patients. In a first stage, a pool of seven rehabilitation therapists has evaluated the results of the patients on the basis of three reference rehabilitation exercises, confirming a significant gradual recovery of the patients’ skills. Moreover, the feedbacks received by the therapists and patients, who have used the system, have pointed out remarkable results in terms of motivation, usability, and customization. In a second stage, by comparing the current state-of-the-art in rehabilitation area with the proposed system, we have observed that the latter can be considered a concrete contribution in terms of versatility, immersivity, and novelty. In a final stage, by training a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) with healthy subjects (i.e., baseline), we have also provided a reference model to objectively evaluate the degree of the patients’ performance. To estimate the effectiveness of this last aspect of the proposed approach, we have used the NTU RGB + D Action Recognition dataset obtaining comparable results with the current literature in action recognition.[…]

 

Continue —-> An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games – ScienceDirect

, , , , ,

Leave a comment

[Abstract] GAMEREHAB@HOME: a new engineering system using serious game and multi-sensor fusion for functional rehabilitation at home

Abstract

Biomedical connected objects like kinematic sensors have been commonly used for patient monitoring in many clinical applications. Moreover, serious games have become widely used to improve patients‘ motivation during functional rehabilitation.
In this work, we developed and evaluated a new engineering system as a solution for functional rehabilitation at home. A multi-sensor fusion between Kinect camera and inertial sensors was developed to animate a 3D avatar during rehabilitation and to estimate kinematic data of different joints for clinical monitoring.
Two serious game scenarios were designed for upper and lower limb rehabilitation. The developed system was evaluated through patient kinematic data and a questionnaire-based approach with a panel of eight post-stroke patients and four clinical experts. The evaluation of the system showed that multi-sensor fusion provides useful data for clinical follow-up. The virtual game scenarios lead to a high level of immersion for patients. Feedbacks from clinical experts concerning the system’s GUIs and the clinical relevance of the acquired data for each rehabilitation session are positive. The developed system paves the way to deploy recent technologies, such as multi-sensor fusion and serious games, as a solution for home-based rehabilitation, which can optimize the benefit of the involved patients and medical experts.

via GAMEREHAB@HOME: a new engineering system using serious game and multi-sensor fusion for functional rehabilitation at home – IEEE Journals & Magazine

, , , , , , , , ,

Leave a comment

[Abstract] Design and Implementation of a Wearable Device for Motivating Patients With Upper and/or Lower Limb Disability Via Gaming and Home Rehabilitation

Abstract

Stroke survivors often suffer from a permanent or partial disability that restricts the movement of the hands, arms and/or legs. To help patients recover, rehabilitation should be at an earlier stage of the injury. Without motivation, it would be challenging for patients to successfully engage in the recovery process which can sometimes be painful of inconvenient. The application of wearable devices, games and Internet-of-Things (IoT) can create a motivating atmosphere to facilitate the rehabilitation process of patients while enabling remote monitoring of their health and progress. This paper presents the design and implementation of a rehabilitation system for aimed at helping stroke patients suffering from upper limb disability that exploits IoT by integrating gaming and wearable technology.

via Design and Implementation of a Wearable Device for Motivating Patients With Upper and/or Lower Limb Disability Via Gaming and Home Rehabilitation – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[Abstract] Vision-Based Serious Games and Virtual Reality Systems for Motor Rehabilitation: A Review Geared Toward a Research Methodology

ABSTRACT

Background

Nowadays, information technologies are being widely adopted to promote healthcare and rehabilitation. Owing to their affordability and use of hand-free controllers, vision-based systems have gradually been integrated into motor rehabilitation programs and have greatly drawn the interest of healthcare practitioners and the research community. Many studies have illustrated the effectiveness of these systems in rehabilitation. However, the report and design aspects of the reported clinical trials were disregarded.

Objective

In this paper, we present a systematic literature review of the use of vision-based serious games and virtual reality systems in motor rehabilitation programs. We aim to propose a research methodology that engineers can use to improve the designing and reporting processes of their clinical trials.

Methods

We conducted a review of published studies that entail clinical experiments. Searches were performed using Web of Science and Medline (PubMed) electronic databases, and selected studies were assessed using the Downs and Black Checklist and then analyzed according to specific research questions.

Results

We identified 86 studies and our findings indicate that the number of studies in this field is increasing, with Korea and USA in the lead. We found that Kinect, EyeToy system, and GestureTek IREX are the most commonly used technologies in studying the effects of vision-based serious games and virtual reality systems on rehabilitation. Findings also suggest that cerebral palsy and stroke patients are the main target groups, with a particular interest on the elderly patients in this target population. The findings indicate that most of the studies focused on postural control and upper extremity exercises and used different measurements during assessment.

Conclusions

Although the research community’s interest in this area is growing, many clinical trials lack sufficient clarity in many aspects and are not standardized. Some recommendations have been made throughout the article.

via Vision-Based Serious Games and Virtual Reality Systems for Motor Rehabilitation: A Review Geared Toward a Research Methodology – ScienceDirect

, , , , , , , , ,

Leave a comment

[ARTICLE] FarMyo: A Serious Game for Hand and Wrist Rehabilitation Using a Low-Cost Electromyography Device – Full Text PDF

Abstract

One of the strategies used in recent years to increase the commitment and motivation of patients undergoing rehabilitation is the use of graphical systems, such as virtual environments and serious games. In addition to contributing to the motivation, these systems can simulate real life activities and provide means to measure and assess user performance. The use of natural interaction devices, originally conceived for the game market, has allowed the development of low cost and minimally invasive rehabilitation systems. With the advent of natural interaction devices based on electromyography, the user’s electromyographic data can also be used to build these systems. This paper shows the development of a serious game focused on aiding the rehabilitation process of patients with hand motor problems, targeting to solve problems related to cost, adaptability and patient motivation in this type of application. The game uses an electromyography device to recognize the gestures being performed by the user. A gesture recognition system was developed to detect new gestures, complementing the device’s own recognition system, which is responsible for interpreting the signals. An initial evaluation of the game was conducted with professional physiotherapists.

Download Full Text PDF

via FarMyo: A Serious Game for Hand and Wrist Rehabilitation Using a Low-Cost Electromyography Device | International Journal of Serious Games

, , , , ,

Leave a comment

[Abstract + References] Serious Game Based on Myo Armband for Upper-Limb Rehabilitation Exercises – Conference paper

Abstract

The purpose of a rehabilitation processes is to restore a person to a state of optimal functioning. A wide variety of rehabilitation processes consist of repetition tasks. Thus, Serious Games (SG) can be used as a technology to assist in this process by motivating patients to perform the exercises during rehabilitation sessions using a variety of devices, with goals or scores to be achieved during sessions. This work addresses the development and usage of SG based on the Myo Armband, an affordable-access device, which is used to build an Assistive Technology for upper-limb rehabilitation. This SG has a circus target shooting as theme, in which the individuals must make the selected upper-limb rehabilitation exercise (the full fist position), in order to shoot with the gun and hit the targets. To test these SG, five healthy volunteers used them during 3 sessions of 10 repetitions each. To evaluate this SG, the volunteers answered a System Usability Scale (SUS) questionnaire and a free questionnaire with questions about the structure of the SG. Results showed that these SG have good potential to be used as a rehabilitation tool, and the suggestions of the free form questionnaire will be useful to make the necessary changes before its usage with impaired patients.

References

  1. 1.
    Brasil. A Coleção Progestores – Para entender a gestão do SUS. Ciência e Tecnologia em Saúde, 1 ed. Brasília (2007)Google Scholar
  2. 2.
    Brasil. Subsecretaria Nacional de Promoção dos Direitos da Pessoa com Deficiência. Comitê de Ajudas Técnicas. Tecnologia Assistiva. CORDE, 138 pp. Brasília (2009)Google Scholar
  3. 3.
    Brasil. Ministério do Planejamento, Orçamento e Gestão. Instituto Brasileiro de Geografia e Estatística – IBGE. Censo demográfico 2010: características gerais da população, religião e pessoas com deficiência, pp. 1–215. Rio de Janeiro (2010)Google Scholar
  4. 4.
    Robitaille, S.: The Illustrated Guide to Assistive Technology and Devices: Tools and Gadgets for Living Independently. Demos Medical Publishing, New York (2010)Google Scholar
  5. 5.
    Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects. Taylor & Francis, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Bonnechère, B.: Serious Games in Physical Rehabilitation. Springer International Publishing, Brussels (2018)CrossRefGoogle Scholar
  7. 7.
    Delisa, A., Gans, M., Walsh, E.: Physical Medicine and Rehabilitation: Principles and Practice, 15th edn. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  8. 8.
    Monteiro, C.B.D.M.: Realidade virtual e jogos eletrônicos: uma proposta para deficientes. Realidade virtual na paralisia cerebral, pp. 68–87. São Paulo (2011)Google Scholar
  9. 9.
    Masson, S., Fortuna, F., Moura, F., Soriano, D.: Integrating Myo Armband for the control of myoelectric upper limb prosthesis. In: Proceedings of the XXV Congresso Brasileiro de Engenharia Biomédica. Foz do Iguaçu (2016)Google Scholar
  10. 10.
    Kisner, C., Colby, L.A.: Therapeutic Exercise: Foundations and Techniques, 6th edn. Fa Davis, Philadelphia (2012)Google Scholar
  11. 11.
    Levin, F., Weiss, L., Keshner, A.: Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95(3), 415–425 (2015)CrossRefGoogle Scholar
  12. 12.
    Silva, R., Silva, A.: Tecnologias para Construção de Mundos Virtuais: Um Comparativo Entre as Opções Existentes no Mercado, FAZU em Revista, pp. 211–215 (2012)Google Scholar
  13. 13.
    Hjorungdal, R.M., Sanfilippo, F., Osen, O.L., Rutle, A., Bye, R.T.: A. game-based learning framework for controlling brain-actuated wheelchairs. In: ECMS, pp. 554–563 (2016)Google Scholar
  14. 14.
    Unity Technologies: Unity. http://unity3d.com/ (2018). Accessed 18 Feb 2018
  15. 15.
    Blender Foundation: Blender. https://www.blender.org/ (2018). Accessed 18 Feb 2018
  16. 16.
    Gimp: Gimp. https://www.gimp.org/ (2018). Accessed 18 Feb 2018
  17. 17.
    Finstad, K.: The system usability scale and non-native english speakers. J. Usability Stud. 1(4), 185–188 (2006)Google Scholar
  18. 18.
    Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)Google Scholar

via Serious Game Based on Myo Armband for Upper-Limb Rehabilitation Exercises | SpringerLink

, , , , , ,

Leave a comment

[Abstract + References] Virtual Reality Game Development Using Accelerometers for Post-stroke Rehabilitation – Conference paper

Abstract

Stroke can generate several types of sequelae, including motor difficulties in both upper and lower limbs. One way to eliminate or reduce these difficulties is through physical therapy, but this type of treatment can often become tiresome and monotonous, decreasing the patient’s interest. Thus, aiming to assist in the rehabilitation of patients, this work seeks to use immersive virtual reality games with the purpose of interacting with physiotherapy exercises. In this type of game the individual must use special equipment (glasses) to feel in an environment where they can interact in different ways with the scenery. Among the possible equipment used for immersive virtual reality was chosen to use a smartphone in conjunction with a virtual reality glasses. In this way an environment was developed that allows the individual to move through the scenario by the control of the upper virtual members by accelerometry sensors, which will be positioned properly to identify the actual movement of the limbs. Thus, an equipment was developed capable of reading the movements and sending this information to a smartphone that executes the developed game.

References

  1. 1.
    Monteiro, A.: Qualidade de vida (QV) em Indivíduos com Sequelas de Acidente Vascular Cerebral (AVC). Vila Nova de Gaia: Escola Superior de Tecnologias da Saúde do Porto. Vila Nova de Gaia (2011)Google Scholar
  2. 2.
    Lennon, S., Hastings, M.: Key physiotherapy indicators for quality of stroke care. Physiotherapy 82(12):655–664 (1996)CrossRefGoogle Scholar
  3. 3.
    Deutsch, J.E., Mirelman, A.: Virtual Reality-based approaches to enable walking for people poststroke. Topics Stroke Rehabil. 14(6):45–53 (2007)CrossRefGoogle Scholar
  4. 4.
    Dores, A.R., et al.: Realidade Virtual na Reabilitação: Por Que Sim e Por Que Não? Uma Revisão Sistemática. Acta Médica Portuguesa, v. 25(6) (2012)Google Scholar
  5. 5.
    Tori, R., Kirner, C., Siscoutto, R.A.: Fundamentos e tecnologia de realidade virtual e aumentada. Editora SBC (2006)Google Scholar
  6. 6.
    Pompeu, J.E., Alonso, T.H., Masson, I.B., et al.: Os efeitos da realidade virtual na reabilitação do acidente vascular encefálico: Uma revisão sistemática. Motricidade 10(4) (2014)Google Scholar
  7. 7.
    Sha, M.A., et al.: EMG biofeedback based VR system for hand rotation and grasping rehabilitation. In: 14th International Conference on Information Visualisation (IV). IEEE, pp. 479–484 (2010)Google Scholar
  8. 8.
    Kang, Y., Park, H., Kim, H. et al.: Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm. J. NeuroEng. Rehabil. 9(1):71 (2012)CrossRefGoogle Scholar
  9. 9.
    Yasuda, K., Muroi, D., Ohira, M., et al.: Validation of an immersive virtual reality system for training near and far space neglect in individuals with stroke: a pilot study. Topics Stroke Rehabil. 24(7):533–538 (2017)CrossRefGoogle Scholar
  10. 10.
    Kang, H.K., Kim, Y., Chung, Y., Hwang, S.: Effects of treadmill training with optic flow on balance and gait in individuals following stroke: randomized controlled trials. Clinic. Rehabil. 26(3):246–255 (2012)CrossRefGoogle Scholar
  11. 11.
    Brahler, S.: Analysis of the Android Archtecture. Karlsruher Institut fur Technologie. [S.l.], p. 43 (2010)Google Scholar

via Virtual Reality Game Development Using Accelerometers for Post-stroke Rehabilitation | SpringerLink

, , , ,

Leave a comment

[Abstract] Towards Bilateral Upper-Limb Rehabilitation after Stroke using Kinect Game – IEEE Conference Publication

Abstract:

This paper presented a game-based rehabilitation of the upper limb after stroke. We designed and developed a game for supporting stroke patients to have an exercise their arms, and the game had functions for recording their playing and showing a performance report. The performance report can infer the progress of bilateral uppper-limb rehabilitation and use for comparing among patient cases. This is because the game used a Kinect device to detect the arm movements in aspect of precision and speed.

 

1. L. Anderson, G. A. Sharp, R. J. Norton, H. Dalal, S. G. Dean, K. Jolly, A. Cowie, A. Zawada, R. S. Taylor, “Home-based versus centre-based cardiac rehabilitation”, The Cochrane Library, 2017.

2. K. Thomson, A. Pollock, C. Bugge, M. C. Brady, “Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice”, Disability and Rehabilitation: Assistive Technology, vol. 11, no. 6, pp. 454-461, 2016.

3. L. Y. Joo, T. S. Yin, D. Xu, E. Thia, P. F. Chia, C. W. K. Kuah, K. K. He, “A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke”, Journal of rehabilitation medicine, vol. 42, no. 5, pp. 437-441, 2010.

4. K. Price, “Health promotion and some implications of consumer choice”, Journal of nursing management, vol. 14, no. 6, pp. 494-501, 2006.

5. J. A. M. Bravo, P. Paliyawan, T. Harada, R. Thawonmas, “Intelligent assistant for providing instructions and recommending motions during full-body motion gaming”, Consumer Electronics (GCCE) 2017 IEEE 6th Global Conference on. IEEE, pp. 1-2, 2017.

 

via Towards Bilateral Upper-Limb Rehabilitation after Stroke using Kinect Game – IEEE Conference Publication

 

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke – Full Text

Abstract

Background

Impairment of upper extremity function is a common outcome following stroke, to the detriment of lifestyle and employment opportunities. Yet, access to treatment may be limited due to geographical and transportation constraints, especially for those living in rural areas. While stroke rates are higher in these areas, stroke survivors in these regions of the country have substantially less access to clinical therapy. Home therapy could offer an important alternative to clinical treatment, but the inherent isolation and the monotony of self-directed training can greatly reduce compliance.

Methods

We developed a 3D, networked multi-user Virtual Environment for Rehabilitative Gaming Exercises (VERGE) system for home therapy. Within this environment, stroke survivors can interact with therapists and/or fellow stroke survivors in the same virtual space even though they may be physically remote. Each user’s own movement controls an avatar through kinematic measurements made with a low-cost, Kinect™ device. The system was explicitly designed to train movements important to rehabilitation and to provide real-time feedback of performance to users and clinicians. To obtain user feedback about the system, 15 stroke survivors with chronic upper extremity hemiparesis participated in a multisession pilot evaluation study, consisting of a three-week intervention in a laboratory setting. For each week, the participant performed three one-hour training sessions with one of three modalities: 1) VERGE system, 2) an existing virtual reality environment based on Alice in Wonderland (AWVR), or 3) a home exercise program (HEP).

Results

Over 85% of the subjects found the VERGE system to be an effective means of promoting repetitive practice of arm movement. Arm displacement averaged 350 m for each VERGE training session. Arm displacement was not significantly less when using VERGE than when using AWVR or HEP. Participants were split on preference for VERGE, AWVR or HEP. Importantly, almost all subjects indicated a willingness to perform the training for at least 2–3 days per week at home.

Conclusions

Multi-user VR environments hold promise for home therapy, although the importance of reducing complexity of operation for the user in the VR system must be emphasized. A modified version of the VERGE system is currently being used in a home therapy study.

Background

Chronic upper extremity impairment is all too common among the more than 7 million stroke survivors in the U.S. [1]. These impairments have disabling effects on all facets of life, including self-care, employment, and leisure activities. Repetitive practice of movement, such as arm movement, is thought to improve outcomes for stroke survivors [234], but access to the clinic for therapy is often limited by geography or lack of transportation. While almost 50 million Americans live in rural areas, 90% of physical and occupational therapists live in major urban areas [5]. Per capita ratios of therapists to overall population are 50% larger in urban as compared to rural regions of the country [6]. Rates of stroke in these rural areas, however, exceed those of major urban areas [789]. Thus, a large number of stroke survivors have limited access to skilled treatment. Data from 21 states found that only 30% of stroke survivors received outpatient rehabilitation, a much lower percentage than that recommended by clinical practice guidelines [10]. Declines seen following discharge from inpatient rehabilitation are undoubtedly exacerbated by limited access to clinical therapy [11].

Disparity in quality of care has been recognized in the acute treatment of stroke for a number of years. This situation has led to the development of telemedicine to extend expert care to individuals during the initial hours and days following the stroke, advance site-independent treatment, and create models of care in rural areas [121314]. Therapy options after this acute period, however, generally remain limited for stroke survivors in rural areas. Akin to the telemedicine efforts, telerehabilitation treatments have been proposed. However, telerehabilitation interactions are typically limited to off-line monitoring by the therapist [8915], phone calls between a therapist and client [1617], or videoconferencing [181920]. While systems allowing more direct interaction have been proposed, the hardware cost and complexity limit applicability for home-based therapy [212223]. Hence, the therapist is relegated to the role of observer and the intimacy of a clinical therapy session is lost. Therapy options are substantially restricted, as is the available feedback.

Recently, multiple investigators have been exploring means of improving home-based therapy through the development of systems or serious games which permit multiple, simultaneous users [24252627282930]. These efforts have proposed the inclusion of multiple users as a means to overcome resistance to home-based therapy that may result due to isolation or lack of engagement. Indeed, studies have observed a preference for multi-user vs, single-user therapy when utilizing these systems [2629]. However, these systems have largely been limited to control of a one-dimensional or two-dimensional space and both users remain in the same physical location (e.g., side by side). One team of researchers did develop a framework for supporting distant users (such as a therapist in the hospital and a stroke survivor in their home), but game control was limited to one or two dimensions [3132].

Here, we describe the development of a fully three-dimensional (3D) virtual reality environment (VRE) for home-based therapy in which multiple, remote users can interact in real time. In this Virtual Environment for Rehabilitative Gaming Exercises (VERGE) system [33], movement of the user is mapped to corresponding movement of an avatar to foster a sense of presence in and engagement with the VRE. The 3D environment encompasses aspects of clinical therapy, such as transport of objects or movement of the hand into specified regions of the upper extremity workspace. Although the importance of 3D movements in VR environments is a topic of debate [3435], movements tested in environments with lesser degrees-of-freedom (DOF) are often very limited and dictated by a one DOF robot. These movements differ substantially from the types of movements normally seen in 3D reaching movements [436]. The network architecture of the system allows users to be located remotely from each other, such as a stroke survivor in their home, a therapist in a clinic, or a stroke survivor’s friend or relative living in another city or state. The virtual nature of the environment allows even very limited movements in the physical world to have successful functional outcomes in the virtual world, thereby offering a sense of accomplishment and motivation for successive attempts. Additionally, task difficulty can easily be modified in order to maintain the proper level of challenge, which is important for motor learning in general [37] and rehabilitation in particular [38].

We developed and performed preliminary testing of the VERGE system to gauge user response in comparison to two other therapy modalities that could be used for home therapy: an existing virtual reality system based on the Alice in Wonderland story (AWVR) [39] and a home exercise program (HEP). Fifteen stroke survivors completed three, one-hour therapy sessions per week with each of the three therapy modalities (9 sessions total). We hypothesized that the use of the VERGE system would not decrease the amount of arm movement promoted, in comparison with the AWVR and HEP modalities. We further expected that users’ self-described engagement would be greatest for the VERGE system due to the presence of a partner.

Methods

VERGE System

Architecture

At its core, VERGE consists of a 3D VRE in which avatars interact with virtual objects. To date, we have created two such VREs, one depicting a dining room and the other a kitchen. The scenes were created in Maya (Autodesk Inc., San Rafael, CA) and imported into Unity 3D (Unity 4.5, Unity Technologies, San Francisco, CA), the software platform controlling VERGE. The VREs are rich in detail in order to provide depth cues [40]. Thus, depth can be conveyed without the need for stereovision, such as that provided by head mounted displays (HMDs). We have found that HMDs can be difficult for stroke survivors to use due to the limited field-of-view and, especially, involuntary coupling between neck and arm motion [4142]. The latter may lead to complications with moving the arm while keeping the head steady.

The avatars were created from a custom skeleton in Maya (Autodesk Inc., San Rafael, CA), which was rigged to an existing mesh of the “casual young man” 3D model, purchased and modified for our project (Fig. 1). We created the custom skeleton to match the topology of the existing character while corresponding to the skeletal joint naming convention in Unity 3D. The skeleton (and thus avatar) is animated according to joint angle data captured with a Kinect™ I optical tracker (Microsoft Corp., Redmont, WA). The 3D motion data from the Kinect™ are transmitted to the Unity code through UDP to drive the movement of the avatar in the virtual environment.

[…]

Continue —> Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , , , , , , ,

Leave a comment

%d bloggers like this: