Posts Tagged SMART

[Abstract+References] SMART Arm Training With Outcome-Triggered Electrical Stimulation in Subacute Stroke Survivors With Severe Arm Disability: A Randomized Controlled Trial.

Background. Stroke survivors with severe upper limb disability need opportunities to engage in task-oriented practice to achieve meaningful recovery. Objective. To compare the effect of SMART Arm training, with or without outcome-triggered electrical stimulation to usual therapy, on arm function for stroke survivors with severe upper limb disability undergoing inpatient rehabilitation. Methods. A prospective, multicenter, randomized controlled trial was conducted with 3 parallel groups, concealed allocation, assessor blinding and intention-to-treat analysis. Fifty inpatients within 4 months of stroke with severe upper limb disability were randomly allocated to 60 min/d, 5 days a week for 4 weeks of (1) SMART Arm with outcome-triggered electrical stimulation and usual therapy, (2) SMART Arm alone and usual therapy, or (3) usual therapy. Assessment occurred at baseline (0 weeks), posttraining (4 weeks), and follow-up (26 and 52 weeks). The primary outcome measure was Motor Assessment Scale item 6 (MAS6) at posttraining. Results. All groups demonstrated a statistically (P < .001) and clinically significant improvement in arm function at posttraining (MAS6 change ≥1 point) and at 52 weeks (MAS6 change ≥2 points). There were no differences in improvement in arm function between groups (P= .367). There were greater odds of a higher MAS6 score in SMART Arm groups as compared with usual therapy alone posttraining (SMART Arm stimulation generalized odds ratio [GenOR] = 1.47, 95%CI = 1.23-1.71) and at 26 weeks (SMART Arm alone GenOR = 1.31, 95% CI = 1.05-1.57). Conclusion. SMART Arm training supported a clinically significant improvement in arm function, which was similar to usual therapy. All groups maintained gains at 12 months.

1. Houwink, A, Nijland, RH, Geurts, AC, Kwakkel, G. Functional recovery of the paretic upper limb after stroke: who regains hand capacity? Arch Phys Med Rehabil. 2013;94:839844Google ScholarCrossrefMedline
2. Broeks, JG, Lankhorst, GJ, Rumping, K, Prevo, AJ. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 1999;21:357364Google ScholarCrossrefMedline
3. Wolf, SL, Kwakkel, G, Bayley, M, McDonnell, MN. Upper Extremity Stroke Algorithm Working Group. Best practice for arm recovery post stroke: an international application. Physiotherapy. 2016;102:14Google ScholarCrossrefMedline
4. Kleim, JA. Neural plasticity and neurorehabilitation: teaching the new brain old tricks. J Commun Disord. 2011;44:521528Google ScholarCrossrefMedline
5. Pollock, A, Farmer, SE, Brady, MC. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;(11):CD010820Google ScholarMedline
6. Zondervan, DK, Augsburger, R, Bodenhoefer, B, Friedman, N, Reinkensmeyer, DJ, Cramer, SC. Machine-based, self-guided home therapy for individuals with severe arm impairment after stroke:a randomized controlled trial. Neurorehabil Neural Repair. 2015;29:395406Google ScholarLink
7. Howlett, OA, Lannin, NA, Ada, L, McKinstry, C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015;96:934943Google ScholarCrossrefMedline
8. McCabe, J, Monkiewicz, M, Holcomb, J, Pundik, S, Daly, JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96:981990Google ScholarCrossrefMedline
9. Barker, RN, Brauer, SG, Carson, RG. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Stroke. 2008;39:18001807Google ScholarCrossrefMedline
10. Hayward, KS, Barker, RN, Brauer, SG, Lloyd, D, Horsley, SA, Carson, RG. SMART Arm with outcome-triggered electrical stimulation: a pilot randomized clinical trial. Top Stroke Rehabil. 2013;20:289298Google ScholarCrossrefMedline
11. Barker, RN, Brauer, S, Carson, R. Training-induced changes in the pattern of triceps to biceps activation during reaching tasks after chronic and severe stroke. Exp Brain Res. 2009;196:483496Google ScholarCrossrefMedline
12. Barker, RN, Brauer, SG, Barry, BK, Gill, TJ, Carson, RG. Training-induced modifications of corticospinal reactivity in severely affected stroke survivors. Exp Brain Res. 2012;221:211221Google ScholarCrossrefMedline
13. Zeiler, SR, Krakauer, JW. The interaction between training and plasticity in the post-stroke brain. Curr Opin Neurol. 2013;26:609616Google ScholarCrossrefMedline
14. Hayward, KS, Neibling, BA, Barker, RN. Self-administered, home-based SMART (Sensorimotor Active Rehabilitation Training) arm training: a single-case report. Am J Occup Ther. 2015;69:6904210020p1-8. Google ScholarCrossrefMedline
15. Wahl, AS, Schwab, ME. Finding an optimal rehabilitation paradigm after stroke: enhancing fiber growth and training of the brain at the right moment. Front Hum Neurosci. 2014;8:381Google ScholarCrossrefMedline
16. Hatam, SM, Saussez, G, Della Faille, M. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442Google ScholarMedline
17. Murphy, TH, Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861872Google ScholarCrossrefMedline
18. Kwah, LK, Harvey, LA, Diong, JH, Herbert, RD. Half of the adults who present to hospital with stroke develop at least one contracture within six months: an observational study. J Physiother. 2012;58:4147Google ScholarCrossrefMedline
19. Adey-Wakeling, Z, Arima, H, Crotty, M. Incidence and associations of hemiplegic shoulder pain poststroke: prospective population-based study. Arch Phys Med Rehabil. 2015;96:241.e1247.e1Google ScholarCrossref
20. Kleim, JA. Neural Plasticity: Foundation for Neurorehabilita-tion. Scottsdale, AZTanas2012Google Scholar
21. Brauer, SG, Hayward, KS, Carson, RG, Cresswell, AG, Barker, RN. The efficacy of SMART arm training early after stroke for stroke survivors with severe upper limb disability: a protocol for a randomised controlled trial. BMC Neurol. 2013;13:71Google ScholarCrossrefMedline
22. Malouin, F, Pichard, L, Bonneau, C, Durand, A, Corriveau, D. Evaluating motor recovery early after stroke: comparison of the Fugl-Meyer Assessment and the Motor Assessment Scale. Arch Phys Med Rehabil. 1994;75:12061212Google ScholarCrossrefMedline
23. Hayward, KS, Kuys, SS, Barker, RN, Brauer, SG. Can stroke survivors with severe upper arm disability achieve clinically important change in arm function during inpatient rehabilitation? A multicentre, prospective, observational study. NeuroRehabilitation. 2014;35:1723Google ScholarMedline
24. Bohannon, RW, Smith, MB. Inter-rater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67:206207Google ScholarCrossrefMedline
25. Ritchie, DM, Boyle, JA, McInnes, JM. Clinical studies with an articular index for the assessment of joint tenderness in patients with rheumatoid arthritis. Q J Med. 1968;37:393406Google ScholarMedline
26. Khan, A, Chien, CW, Brauer, SG. Rasch-based scoring offered more precision in differentiating patient groups in measuring upper limb function. J Clin Epidemiol. 2013;66:681687Google ScholarCrossrefMedline
27. Duncan, PW, Wallace, D, Lai, SM, Johnson, D, Emberston, S, Laster, LJ. The Stroke Impact Scale Version 2.0. Evaluation of the reliability, validity and sensitivity to change. Stroke. 1999;30:21312140Google ScholarCrossrefMedline
28. Uswatte, G, Taub, E, Morris, D, Light, K, Thompson, PA. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology. 2006;67:11891194Google ScholarCrossrefMedline
29. Helm-Estabrooks, N. Cognitive Linguistic Quick Test. Examiner’s Manual. San Antonio, TXPsychological Corporation, Harcourt Assessment Company2001Google Scholar
30. Lincoln, NB, Jackson, JM, Adams, SA. Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy. 1998:358365Google Scholar
31. Winters, C, Heymans, MW, van Wegen, EE, Kwakkel, G. How to design clinical rehabilitation trials for the upper paretic limb early post stroke? Trials. 2016;17:468Google ScholarCrossrefMedline
32. van der Lee, JH, Wagenaar, RC, Lankhorst, GJ, Vogelaar, TW, Deville, WL, Bouter, LM. Forced use of the upper extremity in chronic stroke patients—results from a single-blind randomized clinical trial. Stroke. 1999;30:23692375Google ScholarCrossrefMedline
33. Hayward, KS, Kuys, SS, Barker, RN, Brauer, SG. Clinically important improvements in motor function are achievable during inpatient rehabilitation by stroke patients with severe motor disability: a prospective observational study. NeuroRehabilitation. 2014;34:773779Google ScholarMedline
34. Churilov, L, Arnup, S, Johns, H. An improved method for simple, assumption-free ordinal analysis of the modified Rankin Scale using generalized odds ratios. Int J Stroke. 2014;9:9991005Google ScholarLink
35. Hayward, KS, Barker, RN, Wiseman, AH, Brauer, SG. Dose and content of training provided to stroke survivors with severe upper limb disability undertaking inpatient rehabilitation: an observational study. Brain Impairment. 2013;14:392405Google ScholarCrossref
36. Shirzad, N, Van der Loos, HFM. Evaluating the user experience of exercising reaching motions with a robot that predicts desired movement difficulty. J Mot Behav. 2016;48:3146Google ScholarCrossrefMedline
37. Bernstein, NA. The Co-ordination and Regulation of Movement. Oxford, EnglandPergamon Press1967Google Scholar
38. Krakauer, JW. Rethinking motor rehabilitation after strokePaper presented at: International Conference on Virtual RehabilitationJune 9-12, 2015Valencia, SpainGoogle Scholar
39. Guadagnoli, MA, Lee, TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004;36:212224Google ScholarCrossrefMedline
40. Winters, C, van Wegen, EE, Daffertshofer, A, Kwakkel, G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29:614622Google ScholarLinkISI
41. Schneider, EJ, Lannin, NA, Ada, L, Schmidt, J. Increasing the amount of usual rehabilitation improves activity after stroke: a systematic review. J Physiother. 2016;62:182187Google ScholarCrossrefMedline
42. Krakauer, JW, Marshall, RS. The proportional recovery rule for stroke revisited. Ann Neurol. 2015;78:845847Google ScholarCrossrefMedline
43. Duncan, PW, Goldstein, LB, Matchar, D, Divine, GW, Feussner, J. Measurement of motor recovery after stroke—outcome assessment and sample-size requirements. Stroke. 1992;23:10841089Google ScholarCrossrefMedline
44. Birkenmeier, RL, Prager, EM, Lang, CE. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: a proof-of-concept study. Neurorehabil Neural Repair. 2010;24:620635Google ScholarLink
45. Lang, CE, Lohse, KR, Birkenmeier, RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28:549555Google ScholarCrossrefMedline
46. Magill, RA, Anderson, D. Motor Learning and Control: Concepts and Applications. 10th ed. New York, NYMcGraw-Hill2014Google Scholar
47. Lee, JY, Ready, EA, Davis, EN, Doyle, PC. Purposefulness as a critical factor in functioning, disability and health. Clin Rehabil. 2017;31:10051018Google ScholarLink
48. Bernhardt, J, Borschmann, K, Boyd, L. Moving rehabilitation research forward: developing consensus statements for rehabilitation and recovery research. Int J Stroke. 2016;11:454458Google ScholarLinkISI
49. Hayward, KS. It is time to redefine recovery for individuals with severe upper limb impairment after stroke. IJTR Int J Ther Rehabil. 2016;23:256257Google ScholarCrossref
50. Krebs, HI, Hogan, N. Therapeutic robotics: a technology push. Stroke rehabilitation is being aided by robots that guide movement of shoulders and elbows, wrists, hands, arms and ankles to significantly improve recovery of patients. Proc IEEE Inst Electr Electron Eng. 2006;94:17271738Google ScholarCrossrefMedline
51. de Kroon, JR, van der Lee, JH, Ijzerman, MJ, Lankhorst, GJ. Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil. 2002;16:350360Google ScholarLink
52. Cauraugh, J, Light, K, Kim, S, Thigpen, M, Behrman, A. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke. 2000;31:13601364Google ScholarCrossrefMedline
53. Veerbeek, JM, Langbroek-Amersfoort, AC, van Wegen, EE, Meskers, CG, Kwakkel, G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31:107121Google ScholarLink
54. Nascimento, LR, Michaelsen, SM, Ada, L, Polese, JC, Teixeira-Salmela, LF. Cyclical electrical stimulation increases strength and improves activity after stroke: a systematic review. J Physiother. 2014;60:2230Google ScholarCrossrefMedline
55. Kwakkel, G, Kollen, BJ, van der Grond, J, Prevo, AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:21812186Google ScholarCrossrefMedline
56. Dromerick, AW, Edwardson, MA, Edwards, DF. Critical periods after stroke study: translating animal stroke recovery experiments into a clinical trial. Front Hum Neurosci. 2015;9:231Google ScholarCrossrefMedline

via SMART Arm Training With Outcome-Triggered Electrical Stimulation in Subacute Stroke Survivors With Severe Arm Disability: A Randomized Controlled TrialNeurorehabilitation and Neural Repair – Ruth N. Barker, Kathryn S. Hayward, Richard G. Carson, David Lloyd, Sandra G. Brauer, 2017

, , , , , , , , , ,

Leave a comment

[Blog Post] Flic: A Smart Button For People With Disabilities – Assistive Technology Blog

 

Close up of a person holding Flic - a small, round, smart wireless button.

The Internet, as we know it, has been constantly evolving. One of the concepts that has originated in the recent past is Internet of Things (IoT), which is capable of providing immense convenience to everyone, especially people with disabilities. The last so many years have seen the evolution of many “smart” products that connect to the Internet, and can be operated from anywhere. Flic, a smart wireless button, is a product based on the Internet of Things concept, which not only lets you control smart bulbs and appliances around the house as well as music, but with just a click (double click or hold) can send out emails, open phone browser, hang up phone call, open phone camera, start navigation system, and do much more!

Imagine a person in a wheelchair or someone with impaired mobility entering their house, and wanting to turn on their lights. In most situations it may not be convenient for them to reach every switch and turn on every light in their room on and off. With Flic, with just a press of a button, they can have as many lights turned on with just one click. A “task” for Flic can have multiple actions, so that person can not only turn on their lights but also turn on any appliance connected to a smart outlet (Wemo), turn on music, send an email to family members indicating they are home, etc.

Flic works with IFTTT as well and can trigger possibly anything through it. One example is elderly people or those with Alzheimer’s, when out and about, may forget where they are, and not know how to get back home. At home, they may take a fall and may have difficulty getting up. In such cases, they can just press their Flic, which, through IFTTT, will send their loved an email with their current location (Latitude, Longitude), indicating that they need help.

Who would this be helpful for?

1. Person in wheelchair.
2. Person with impaired mobility.
3. Person confined to bed because of old age or injuries.
4. Deaf person who is unable to use voice commands with “Amazon Echo“.
5. Amputee/ double amputee who can stick Flics on any surface and press them with their knee.

Ryan Hudson Peralta, a double amputee, uses Flic on his wheelchair to control smart lights around his house.

Another person in a wheelchair has Flic stuck (it has an adhesive back) on the surface of his entertainment center, and he pushes it with his knee to perform desired actions.

The physical Flic button can have actions associated to “click”, “double click”, and “hold”. However, the phone app lets you create unlimited number of “tasks”, with each task consisting of unlimited actions.

Watch the video below to see some examples of Flic. Can you think of some ways that people with disabilities will be able to use Flic?

 

Flic retails for $35 per button.
Website: https://flic.io/

, , , , , ,

Leave a comment

[ARTICLE] Self-Administered, Home-Based SMART (Sensorimotor Active Rehabilitation Training) Arm Training: A Single-Case Report

Abstract

This single-case, mixed-method study explored the feasibility of self-administered, home-based SMART (sensorimotor active rehabilitation training) Arm training for a 57-yr-old man with severe upper-limb disability after a right frontoparietal hemorrhagic stroke 9 mo earlier. Over 4 wk of self-administered, home-based SMART Arm training, the participant completed 2,100 repetitions unassisted. His wife provided support for equipment set-up and training progressions.

Clinically meaningful improvements in arm impairment (strength), activity (arm and hand tasks), and participation (use of arm in everyday tasks) occurred after training (at 4 wk) and at follow-up (at 16 wk). Areas for refinement of SMART Arm training derived from thematic analysis of the participant’s and researchers’ journals focused on enabling independence, ensuring home and user friendliness, maintaining the motivation to persevere, progressing toward everyday tasks, and integrating practice into daily routine.

These findings suggest that further investigation of self-administered, home-based SMART Arm training is warranted for people with stroke who have severe upper-limb disability.

via Self-Administered, Home-Based SMART (Sensorimotor Active Rehabilitation Training) Arm Training: A Single-Case Report.

, , , , , ,

Leave a comment

%d bloggers like this: