Posts Tagged Soft robotics

[Abstract] Modeling and analysis of hydraulic piston actuation of McKibben fluidic artificial muscles for hand rehabilitation

Soft robotic actuators are well-suited for interactions with the human body, particularly in rehabilitation applications. The fluidic artificial muscle (FAM), specifically the McKibben FAM, is a type of soft robotic actuator that can be driven either pneumatically or hydraulically, and has potential for use in rehabilitation devices. The force applied by a FAM is well-described by a variety of models, the most common of which is based on the virtual work principle. However, the use of a piston assembly as a hydraulic power source for activation of FAMs has not previously been modeled in detail. This article presents a FAM designed to address the specific needs of a hand rehabilitation device. A syringe pump test bed is used to find and validate a novel volume–strain relationship. The volume–strain relationship remains constant with the coupled piston–FAM system, regardless of load. This confirms a bivariate approach to FAM control which is particularly beneficial in the exoskeleton application as the load varies throughout use. A novel, fixed-end cylindrical model is found to predict the strain of the FAM, given a volume input, regardless of load. For the FAMs tested in this work, the fixed-end cylindrical model improves strain prediction seven-fold when compared with traditional models.

via Modeling and analysis of hydraulic piston actuation of McKibben fluidic artificial muscles for hand rehabilitation – Anderson S Camp, Edward M Chapman, Paola Jaramillo Cienfuegos,

, , , , , , , , , ,

Leave a comment

[Abstract + References] A personalized flexible exoskeleton for finger rehabilitation: a conceptual design – Conference paper

Abstract

Several robotic rehabilitation systems have already been developed for the hand requiring the biological joints to be aligned with those of the exoskeleton making the standardization of this devices for different anthropomorphic sizes almost impossible. This problem together with the usage of rigid components can affect the natural movement of the hand and injure the user. Moreover, these systems are also typically expensive and are designed for in-clinic use as they are generally not portable.

Biomimetic and bioinspired inspiration using soft robotics can solve these issues. This paper aims to introduce the conceptual design of a personalized flexible exoskeleton for finger rehabilitation modelled around one specific user’s finger with the help of a 3D scanning procedure presenting a dynamic FEM analysis and a preliminary prototype obtaining a low-cost and easy to use and wear device.

References

  1. 1.
    Abrahams, E., and Silver M. The case for personalized medicine. (2009), 680-684.CrossRefGoogle Scholar
  2. 2.
    Smith, Richard. “Stratified, personalised, or precision medicine.” BMJ 39 (2012), pp. 143-158.Google Scholar
  3. 3.
    Ueki, S., Nishimoto, Y., Abe, M., Kawasaki, H., Ito, S., Ishigure, Y., Mizumoto, J., Ojika, T, Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control. in: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, (2008), pp. 4282–4285.Google Scholar
  4. 4.
    Jones, C.L., Wang, F., Morrison, R., Sarkar, N. and Kamper, D.G. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke, IEEE/ASME Transactions on Mechatronics, (2014), 19(1), pp.131-140.CrossRefGoogle Scholar
  5. 5.
    Rus, D., Tolley, M.T. Design, fabrication and control of soft robots. Nature, 521, (2015), pp. 467–475.CrossRefGoogle Scholar
  6. 6.
    Shahid, T., Gouwanda, D., Nurzaman, S.G., Gopalai, A.A. Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons.Biomimetics, 3(3), (2018), pp.17.CrossRefGoogle Scholar
  7. 7.
    Buchholz, B. and T. J. Armstrong, A kinematic model of the human hand to evaluate its prehensile capabilities, J Biomech, (1992), vol. 25, pp. 149-62.CrossRefGoogle Scholar
  8. 8.
    Zakia, H., Azlan, N.Z., Yusof, A.Z. Human hand motion analysis during different eating activities. Appl. Bionics Biomech., 12, (2018).Google Scholar
  9. 9.
    Meng, Q., Xiang, S. and Yu, H. Review and Challenges Surrounding the Technology, Advances in Engineering Research, vol. 86, (2017).Google Scholar
  10. 10.
    Polygerinos, P., Wang, Z., Galloway, K.C.l Wood, R.J., Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. (2015), 73, 135–143.CrossRefGoogle Scholar
  11. 11.
    Polygerinos, P., Galloway, K.C., Sanan, S., Herman, M., Walsh, C.J. EMG Controlled Soft Robotic Glove for Assistance during Activities of Daily Living. In Proceedings of ICORR 2015, Singapore, 11–14 August, (2015), pp. 55–60.Google Scholar
  12. 12.
    Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J. Towards a Soft Pneumatic Glove for Hand Rehabilitation. In IROS 2013, Tokyo, Japan, 3–7 November, (2013), pp. 1512–1517.Google Scholar
  13. 13.
    Yap, H.K., Kamaldin, N., Lim, J.H., Nasrallah, F.A., Goh, J.C., Yeow, C.H. A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging. IEEE Trans. Neural Syst. Rehabil. Eng., (2017), 25, 782–793.CrossRefGoogle Scholar
  14. 14.
    Yap, H.K., Lim, J.H., Nasrallah, F., Cho Hong Goh, J., Yeow, C.H. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications. J.Med. Eng. Technol., (2016), 40, 199–209.CrossRefGoogle Scholar
  15. 15.
    Yap, H.K., Lim, J.H., Nasrallah, F., Low, F.Z., Goh, J.C., Yeow, R.C. MRC-Glove. A fMRI Compatible Soft Robotic Glove for Hand Rehabilitation Application. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August, (2015), pp. 735–740.Google Scholar
  16. 16.
    Yap, H.K., Ang, B.W., Lim, J.H., Goh, J.C., Yeow, C.H. A Fabric-Regulated Soft Robotic Glove with User Intent Detection Using EMG and RFID for Hand Assistive Application. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May, (2016), pp. 3537–3542.Google Scholar
  17. 17.
    Yap, H.K., Lim, J.H., Nasrallah, F., Goh, J.C., Yeow, R.C. A Soft Exoskeleton for Hand Assistive and Rehabilitation Application Using Pneumatic Actuators with Variable Stiffness. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May, (2015), pp. 4967–4972.Google Scholar
  18. 18.
    Yap, H.K., Lim, J.H., Nasrallah, F., Yeow, C.H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci., (2017), 11, pp. 547.Google Scholar
  19. 19.
    Yap, H.K., Lim, J.H., Goh, J.C., Yeow, C.H. Design of a soft robotic glove for hand rehabilitation of stroke patients with clenched fist deformity using inflatable plastic actuators. J.Med. Devices, (2016), 10, 044504.CrossRefGoogle Scholar
  20. 20.
    Yap, H.K., Ng, H.Y., Yeow, C.H. High-force soft printable pneumatics for soft robotic applications. Soft Robot, (2016), 9, 3, 144–158.CrossRefGoogle Scholar
  21. 21.
    Yap, H.K., Goh, J.C., Yeow, R.C. Design and Characterization of Soft Actuator for Hand Rehabilitation Application. In Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering, Dubrovnik, Croatia, 7–11 September 2014, Springer: Cham, Switzerland, (2015), pp. 367–370.Google Scholar
  22. 22.
    Kang, B.B., Lee, H., In, H., Jeong, U., Chung, J., Cho, K.J. Development of a Polymer-Based Tendon-Driven Wearable Robotic Hand. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May, (2016), pp. 3750–3755.Google Scholar
  23. 23.
    In, H., Kang, B.B., Sin, M. and Cho, K.J. Exo-Glove: a wearable robot for the hand with a soft tendon routing system. Robotics & Automation Magazine, (2015), 22(1), pp. 97-105.Google Scholar
  24. 24.
    Kang, B.B., In, H., Cho, K. Force Transmission in Joint-Less Tendon Driven Wearable Robotic Hand. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems (ICCAS), Jeju Island, Korea, 17–21 October, (2012), pp. 1853–1858.Google Scholar
  25. 25.
    In, H., Cho, K.J. Evaluation of the Antagonistic Tendon Driven System for SNU Exo-Glove. In Proceedings of the 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju Island, Korea, 26–28 November, (2012), pp. 507–509.Google Scholar
  26. 26.
    In, H., Cho, K.J. Analysis of the forces on the finger joints by a joint-less wearable robotic hand, SNU Exo-Glove. In Converging Clinical and Engineering Research on Neurorehabilitation, Springer: Berlin/Heidelberg, Germany, (2013), pp. 93–97.CrossRefGoogle Scholar
  27. 27.
    Netter, F.H. Atlas of Human Anatomy. Elsevier Health Sciences, (2017), pp. 451.Google Scholar
  28. 28.
    Károly János, B., Ákos, J. and Károly, B. Force measurement of hand and fingers. Biomechanica Hungarica 3.1, 2010.Google Scholar
  29. 29.
    Cafolla, D. Ceccarelli, M., Wang, M.F, Carbone, G. 3D printing for feasibility check of mechanism design, International Journal of Mechanics and Control, (2016), (17)1, 2016, pp. 3-12.Google Scholar

via A personalized flexible exoskeleton for finger rehabilitation: a conceptual design | SpringerLink

 

, , , , , , , ,

Leave a comment

[WEB SITE] These Robotic Pants Could Help Some Disabled People Walk Again

right trousers.jpg

“The Right Trousers” (John von Radowitz/PA ) 

smithsonian.com

Could the answer to mobility problems one day be as easy as pulling on a pair of trousers? A research team led by Bristol University professor Jonathan Rossiter has recently unveiled a prototype pair of robotic trousers that they hope could help some disabled people walk without other assistance.

As an engineer who researches ways of helping people with spinal chord injuries move their limbs again, I’m acutely aware of how the loss of mobility can affect a person’s quality of life, and how restoring that movement can help. Given the staggering number of people with disabilities (over 6.5 million people with mobility problems in the UK alone) and our aging population, devices that improve mobility could help a large segment of the population.

Yet despite 50 years of research, this kind of technology has rarely been adopted outside the lab. So is the novel development of robotic trousers on course to finally take a working mobility technology into the home?

Unlike the rigid robotic device in the Wallace and Gromit animated film The Wrong Trousers, the new so-called “Right Trousers” use soft artificial muscles to create movement, as well as harnessing the wearer’s real muscles. These mimic human muscles in producing a force simply by becoming shorter and pulling on both ends.

By bundling several artificial muscles together, the assistive trousers can move a joint such as the knee, and help the user with movements such as standing up from a chair. Because the artificial muscles are elastic and soft they are safer than traditional motors used in rigid robotic exoskeletons that, although powerful, are stiff and uncomfortable.

The researchers have put forward several different ideas for how to shorten the artificial muscles and create movement. One design adapts the concept of air muscles, which are effectively balloons that expand sideways and shorten in length as they fill with air.

 

For more  visit site —>  These Robotic Pants Could Help Some Disabled People Walk Again | Innovation | Smithsonian

, , , , ,

Leave a comment

[Abstract + References] Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface

Abstract

Comparing with the traditional way for hand rehabilitation, such as simple trainers and artificial rigid auxiliary, this paper presents an isometric and isotonic soft hand for rehabilitation supported by the soft robots theory which aims to satisfy the more comprehensive rehabilitation requirements. Salient features of the device are the ability to achieve higher and controllable stiffness for both isometric and isotonic contraction. Then we analyze the active control for isometric and isotonic movement through electroencephalograph (EEG) signal. This paper focuses on three issues. The first is using silicon rubber to build a soft finger which can continuously stretch and bend to fit the basic action of the fingers. The second is changing stiffness of the finger through the coordination between variable stiffness cavity and actuating cavity. The last is to classify different EEG states based on isometric and isotonic contraction using common spatial pattern feature extraction (CSP) methods and support vector machine classification methods (SVM). On this basis, an EEG-based manipulator control system was set up.

 

I. Introduction

In recent years, stroke has became one of the major health problems which significantly affect the daily life of the elderly, and hand rehabilitation is introduced as an auxiliary treatment. Though various kinds of mechanical devices for hand rehabilitation have been developed, some deficiencies still exist in the current rigid rehabilitation hand, such as the degrees of freedom is not enough, complexity, unsafe status, overweight, being uncomfortable, unfitness and so on. Therefore, with the growth of aging population, it is highly needed to develop some new devices to satisfy the comprehensive rehabilitation requirements. Meanwhile, inspired by the mollusks in nature, soft robot is made of soft materials that can withstand large strains. It is a new type of continuum robot with high flexibility and environmental adaptability. The soft robot has a broad application prospects in military detection techniques, such as instance search, rescue, medical application and other fields.

References

1. J Zhang, H Wang, J Tang et al., “Modeling and design of a soft pneumatic finger for hand rehabilitation [C]”, IEEE International Conference on Information and Automation, pp. 2460-2465, 2015.

2. H Godaba, J Li, Y Wang et al., “A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator [J]”, IEEE Robotics & Automation Letters, vol. 1, no. 2, pp. 624-631, 2016.

3. Y Yang, Y. Chen, “Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer [C]”, IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 195-200, 2016.

4. M Wehner, R L Truby, D J Fitzgerald et al., “An integrated design and fabrication strategy for entirely soft autonomous robots [J]”, Nature, vol. 536, no. 7617, pp. 451, 2016.

5. P Polygerinos, Z Wang, K C Galloway et al., “Soft robotic glove for combined assistance and at-home rehabilitation [J]”, Robotics & Autonomous Systems, vol. 73, no. C, pp. 135-143, 2014.

6. M Tian, Y Xiao, X Wang et al., “Design and Experimental Research of Pneumatic Soft Humanoid Robot Hand [M]/ /” in Robot Intelligence Technology and Applications 4. Springer International Publishing, 2017.

7. K Y Hong, J H Lim, F Nasrallah et al., “A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness [C]”, IEEE International Conference on Robotics and Automation, pp. 4967-4972, 2015.

8. J.R Wolpaw, N Birbaumer, WJ Heetderks, DJ Mcfarland, PH Peckham, G Schalk et al., “Brain-computer interface technology: a review of thefirst international meeting”, IEEE Transactions on Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 8, no. 2, pp. 164, 2000.

9. C Ethier, ER Oby, MJ Bauman, LE. Miller, “Restoration of grasp following paralysis through brain-controlled stimulation of muscles”, Nature, vol. 485, no. 7398, pp. 368, 2012.

10. C JL, B W, D JE, W W, T EC, W DJ et al., “High-performance neuroprosthetic control by an individual with tetraplegia”, Lancet, vol. 381, no. 9866, pp. 557-564, 2013.

11. UA Qidwai, M. Shakir, Fuzzy Classification-Based Control of Wheelchair Using EEG Data to Assist People with Disabilities, vol. 7666, pp. 458-467, 2012.

12. UA Qidwai, M. Shakir, Fuzzy Classification-Based Control of Wheelchair Using EEG Data to Assist People with Disabilities, vol. 7666, pp. 458-467, 2012.

13. D Broetz, C Braun, C Weber, S.R Soekadar, A Caria, N. Birbaumer, “Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report”, Neurorehabilitation & Neural Repair, vol. 24, no. 7, pp. 674, 2010.

14. BH. Dobkin, “Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation”, Journal of Physiology, vol. 579, no. Pt 3, pp. 637, 2007.

15. S.R Soekadar, N Birbaumer, LG. Cohen, Brain-Computer Interfaces in the Rehabilitation of Stroke and Neurotrauma, Japan:Springer, 2011.

16. LR Hochberg, B Daniel, J Beata, NY Masse, JD Simeral, V Joern et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm”, Nature, vol. 485, no. 7398, pp. 372-375, 2013.

17. S R Soekadar, M Witkowski, C Gómez et al., Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia [J], vol. 1, no. 1, pp. eaag3296, 2016.

18. L B. Rosenberg, Force feedback interface having isotonic and isometric functionality: CA US 5825308 A [P], 1998.

19. L B. Rosenberg, Isotonic-isometric haptic feedback interface: US US71 02541 [P], 2006.

20. J T Gwin, D P. Ferris, “An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions [J]”, Journal of NeuroEngineering and Rehabilitation, vol. 9, no. 1, pp. 35, 9 2012-06-09.

21. S Bouisset, F Goubel, B. Maton, “[Isometric isotonic contraction and anisotonic isometric contraction: an electromyographic comparison] [J]”, Electromyography & Clinical Neurophysiology, vol. 13, no. 5, pp. 525, 1973.

 

via Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[REVIEW] Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons – Full Text HTML

Abstract

Soft robotics is a branch of robotics that deals with mechatronics and electromechanical systems primarily made of soft materials. This paper presents a summary of a chronicle study of various soft robotic hand exoskeletons, with different electroencephalography (EEG)- and electromyography (EMG)-based instrumentations and controls, for rehabilitation and assistance in activities of daily living. A total of 45 soft robotic hand exoskeletons are reviewed. The study follows two methodological frameworks: a systematic review and a chronological review of the exoskeletons. The first approach summarizes the designs of different soft robotic hand exoskeletons based on their mechanical, electrical and functional attributes, including the degree of freedom, number of fingers, force transmission, actuation mode and control strategy. The second approach discusses the technological trend of soft robotic hand exoskeletons in the past decade. The timeline analysis demonstrates the transformation of the exoskeletons from rigid ferrous materials to soft elastomeric materials. It uncovers recent research, development and integration of their mechanical and electrical components. It also approximates the future of the soft robotic hand exoskeletons and some of their crucial design attributes.

1. Introduction

The emerging trend of soft robotics has stimulated the interest of engineers and researchers around the world to look into various applications, ranging from biomedical and rehabilitation to grasping and manipulation [1,2]. Biomimetic and bioinspired soft robots have been among the most successful products of soft material robotics. Among others, the inspiration for these soft robots originates from examining invertebrates like caterpillars, worms and fish grubs [2]. The hydrostatic and fluid-like structure motivates researchers to look more into the use of soft materials to develop similar structures.
One of the major lessons learned from these biostructures was the ability to form and adapt to complexly shaped bodies. This led to various developments such as: (1) an octopus-like robot for flexible manipulation [2]; (2) a worm-like robot that uses a thermal shape-memory alloy (SMA) actuator to imitate the motion of its biological counterpart [3]; and (3) a caterpillar-shaped soft robot that imitates the process of translating deformation to locomotor dynamics [4].
Another important development in the emerging field of soft robotics is the use of pneumatic soft grippers for handling fragile objects such as an uncooked egg or an anesthetized mouse [5]. These devices can grip, hold and release certain complexly shaped objects. They have several fingers to hold delicate objects by intelligently adapting themselves to the shape of the object and providing maximum gripping force without damaging it.
This new trend is especially interesting for biomedical and rehabilitation engineering applications as well, with the hand exoskeleton as one of the examples. A major shift from the use of hard to soft materials can be observed in some of the latest designs of hand exoskeletons, such as the Wyss Institute glove [6,7,8], the Magnetic Resonance Compatible (MRC) glove [9,10,11,12], the National University of Singapore (NUS) glove [13,14,15,16,17] and the Seoul National University (SNU) glove [18,19,20,21,22,23]. The hand exoskeleton is an integral part of rehabilitation robotics that provides rehabilitation exercises and assistance in activities of daily living (ADL), such as gripping and grasping [24]. It is commonly recommended for patients with cerebrovascular disease [24], cerebral palsy [25] and rheumatoid arthritis [26].
Unlike a prosthetic hand, a hand exoskeleton is designed and built around the human hand; thus, it has to conform to the hand anatomy and its range of motion to minimize the wearer’s discomfort. More importantly, it has to be light and able to be put on easily so that the wearer can use it daily to perform basic activities. Figure 1a shows the natural skeletal structure of the human finger, the movement of which may be assisted. The structure consists of three joints: distal (DIP), proximal (PIP) and metacarpal (MCP) interphalangeal joints [27,28]. The finger movements are controlled through the activation of extrinsic and intrinsic muscles. The extrinsic muscles are actuated from the forearm and control the flexor and extensor muscle tendons to move the fingers. The intrinsic muscles are located within the finger, and they control the independent motion of the finger [28]. The maximum flexion for the MCP joint ranges from 70° to 95° depending on the finger orientation, while the maximum flexion for the DIP and PIP joints is about 110° and 90°, respectively.
Hand exoskeletons have endured extensive research, primarily in the field of assistive and rehabilitative robotics, and have also been discussed from various perspectives [29,30,31]. Several iterations of different hand exoskeletons indicate the growing need for a better, lighter and more practical solution. Most of the existing hand exoskeletons adopt one of the design approaches depicted in Figure 1. With the rise of soft robotics, there has been a progressive shift from the conventional rigid mechanical structure designs (Figure 1b) to designs with softer actuation (Figure 1c) and designs that closely resemble the natural finger musculoskeletal structure (Figure 1d) [27]. This study aims to review these changes in the recent decade and discuss how the adoption of soft robotics helps in designing a more compliant hand exoskeleton. The design of a hand exoskeleton can be divided into three main components: the mechanical design, the actuation unit and sensory feedback control. This work also examines how soft robotics technology has changed the architectures of these components over the years.[…]

 

Continue —>  Biomimetics | Free Full-Text | Moving toward Soft Robotics: A Decade Review of the Design of Hand Exoskeletons | HTML

, , , , , , ,

Leave a comment

[Abstract] Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation

Abstract

In the modern world, due to an increased aging population, hand disability is becoming increasingly common. The prevalence of conditions such as stroke is placing an ever-growing burden on the limited fiscal resources of health care providers and the capacity of their physical therapy staff. As a solution, this paper presents a novel design for a wearable and adaptive glove for patients so that they can practice rehabilitative activities at home, reducing the workload for therapists and increasing the patient’s independence. As an initial evaluation of the design’s feasibility the prototype was subjected to motion analysis to compare its performance with the hand in an assessment of grasping patterns of a selection of blocks and spheres. The outcomes of this paper suggest that the theory of design has validity and may lead to a system that could be successful in the treatment of stroke patients to guide them through finger flexion and extension, which could enable them to gain more control and confidence in interacting with the world around them.

I. Introduction

In the modern world an extended life expectancy coupled with a sedentary lifestyle raises concerns over long term health in the population. This is highlighted by the increasing incidence of disability stemming from multiple sources, for example medical conditions such as cancer or stroke [1]. While avoiding the lifestyle factors that have a high association with these diseases would be the preferred solutions of health services the world over, as populations get progressively older and more sedentary, this becomes increasingly more difficult [1], [2]. The treatment of these conditions is often complex; in stroke for example, the initial incident is a constriction of blood flow in the brain which in turn damages the nervous system’s ability to communicate with the rest of the body. This damage will occur in one hemisphere of the body but can impact both the upper and lower limbs, as well as impairing functional processes such as speech and cognitive thinking.

 

via Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Soft robotic devices for hand rehabilitation and assistance: a narrative review – Full Text

Abstract

Introduction

The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design’s therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction.

Methods

A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation.

Results

In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted.

Conclusion

The past 3 years has seen a rapid increase in the development of soft robotic devices for hand rehabilitative applications. These mostly preclinical research prototypes display a wide range of technical solutions which have been highlighted in the framework developed in this analysis. More work needs to be done in actuator design, safety, and implementation in order for these devices to progress to clinical trials. It is our goal that this review will guide future developers through the various design considerations in order to develop better devices for patients with hand impairments.

Background

Imagine tying your shoes or putting on a pair of pants while having limited use of your hands. Now imagine the impact on your daily life if that limitation was permanent. The ability to perform activities of daily living (ADL) is highly dependent on hand function, leaving those suffering with hand impairments less capable of executing ADLs and with a reduced quality of life. Unfortunately, the hand is often the last part of the body to receive rehabilitation.

According to a 2015 National Health Interview Survey, there were approximately 4.7 million adults in the United States that found it “Very difficult to or cannot grasp or handle small objects” [1]. Hand impairments are commonly observed in neurological and musculoskeletal diseases such as arthritis, Cerebral Palsy, Parkinson’s Disease, and stroke. A summary of motor impairment prevalence associated with these diseases may be seen in Table 1. Fortunately, physical rehabilitation has been shown to promote motor recovery through repetitive isolated movements [25]. This is largely due to neuroplasticity – the ability for the brain to reorganize itself by establishing new neural connections. Occupational and physical therapists thus attempt to take advantage of neuroplasticity in order to re-map motor function in the brain through repeated exercise. Currently, however, there is no consensus on the best mode and dosing to facilitate neuroplasticity [6]. Additionally, recovery success relies heavily on a patient’s ability to attend therapy, which can be deterred by the frequency, duration, or cost of the therapy. Robotic devices could enhance access to repeated exercise. As such, they have been developed and investigated for their utilization as an adjunctive therapy to improve patient access, compliance and subsequent outcomes of rehabilitation efforts. An overview of the designs with comparisons between the different approaches will help future development of these tools. […]

 

Continue —>  Soft robotic devices for hand rehabilitation and assistance: a narrative review

, , , , , , , ,

Leave a comment

[Abstract] A soft robotic glove for hand motion assistance

Abstract:

Soft robotic devices have the potential to be widely used in daily lives for their inherent compliance and adaptability, which result in high safety under unexpected situations. System complexity and requirements are much lower, comparing with conventional rigid-bodied robotic devices, which also result in significantly lower costs. This paper presents a robotic glove by utilizing soft artificial muscles providing redundant degrees of freedom (DOFs) to generate both flexion and extension hand motions for daily grasping and manipulation tasks. Different with the existing devices, to minimize the weight applied to the user’s hands, pneumatic soft actuators were located on the fore arm and drive each finger via cable-transmission mechanisms. This actuation mechanism brings extra adaptability, motion smoothness, and user safety to the system. This design makes wearable robotic gloves more light-weight and user-friendly. Both theoretical and experimental analyses were conducted to explore the mechanical properties of pneumatic soft actuators. In addition, the fingertip trajectories were analyzed using Finite Element Methods, and a series of experiments were conducted evaluating both the technical and practical performances of the proposed glove.

 

I. Introduction

Glove-type wearable robotic devices are developed to assist people with impaired hand functions both in their activities of daily living (ADLs) and in rehabilitation [1]–[12]. Most of such wearable robotic devices generate hand movements with linkage systems actuated by electrical motors which usually are heavy and inconvenient for using. Moreover, because of the human hand variation, most wearable robotic devices require customization in order to fulfill the geometrical fitting requirements between the exoskeleton device and the human hand joints. Approximating the high dexterity of human hands usually requires high complexity in both the mechanical and controller structures of the robotic systems, and hence also results in high costs for most users.

via A soft robotic glove for hand motion assistance – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Soft robotic devices for hand rehabilitation and assistance: a narrative review – Full Text

Abstract

Introduction

The debilitating effects on hand function from a number of a neurologic disorders has given rise to the development of rehabilitative robotic devices aimed at restoring hand function in these patients. To combat the shortcomings of previous traditional robotics, soft robotics are rapidly emerging as an alternative due to their inherent safety, less complex designs, and increased potential for portability and efficacy. While several groups have begun designing devices, there are few devices that have progressed enough to provide clinical evidence of their design’s therapeutic abilities. Therefore, a global review of devices that have been previously attempted could facilitate the development of new and improved devices in the next step towards obtaining clinical proof of the rehabilitative effects of soft robotics in hand dysfunction.

Methods

A literature search was performed in SportDiscus, Pubmed, Scopus, and Web of Science for articles related to the design of soft robotic devices for hand rehabilitation. A framework of the key design elements of the devices was developed to ease the comparison of the various approaches to building them. This framework includes an analysis of the trends in portability, safety features, user intent detection methods, actuation systems, total DOF, number of independent actuators, device weight, evaluation metrics, and modes of rehabilitation.

Results

In this study, a total of 62 articles representing 44 unique devices were identified and summarized according to the framework we developed to compare different design aspects. By far, the most common type of device was that which used a pneumatic actuator to guide finger flexion/extension. However, the remainder of our framework elements yielded more heterogeneous results. Consequently, those results are summarized and the advantages and disadvantages of many design choices as well as their rationales were highlighted.

Conclusion

The past 3 years has seen a rapid increase in the development of soft robotic devices for hand rehabilitative applications. These mostly preclinical research prototypes display a wide range of technical solutions which have been highlighted in the framework developed in this analysis. More work needs to be done in actuator design, safety, and implementation in order for these devices to progress to clinical trials. It is our goal that this review will guide future developers through the various design considerations in order to develop better devices for patients with hand impairments.

Background

Imagine tying your shoes or putting on a pair of pants while having limited use of your hands. Now imagine the impact on your daily life if that limitation was permanent. The ability to perform activities of daily living (ADL) is highly dependent on hand function, leaving those suffering with hand impairments less capable of executing ADLs and with a reduced quality of life. Unfortunately, the hand is often the last part of the body to receive rehabilitation.

According to a 2015 National Health Interview Survey, there were approximately 4.7 million adults in the United States that found it “Very difficult to or cannot grasp or handle small objects” [1]. Hand impairments are commonly observed in neurological and musculoskeletal diseases such as arthritis, Cerebral Palsy, Parkinson’s Disease, and stroke. A summary of motor impairment prevalence associated with these diseases may be seen in Table 1. Fortunately, physical rehabilitation has been shown to promote motor recovery through repetitive isolated movements [2345]. This is largely due to neuroplasticity – the ability for the brain to reorganize itself by establishing new neural connections. Occupational and physical therapists thus attempt to take advantage of neuroplasticity in order to re-map motor function in the brain through repeated exercise. Currently, however, there is no consensus on the best mode and dosing to facilitate neuroplasticity [6]. Additionally, recovery success relies heavily on a patient’s ability to attend therapy, which can be deterred by the frequency, duration, or cost of the therapy. Robotic devices could enhance access to repeated exercise. As such, they have been developed and investigated for their utilization as an adjunctive therapy to improve patient access, compliance and subsequent outcomes of rehabilitation efforts. An overview of the designs with comparisons between the different approaches will help future development of these tools.[…]

Continue —> Soft robotic devices for hand rehabilitation and assistance: a narrative review | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 5Methods of detection along motor pathway [81]

, , , , , , , ,

Leave a comment

[ARTICLE] Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function – Full Text

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. The qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.

Introduction

The human hand is a complex sensorimotor apparatus that consists of many joints, muscles, and sensory receptors. Such complexity allows for skillful and dexterous manual actions in activities of daily living (ADL). When the sensorimotor function of hand is impaired by neurological diseases or traumatic injuries, the quality of life of the affected individual could be severely impacted. For example, stroke is a condition that is broadly defined as a loss in brain function due to necrotic cell death stemming from a sudden loss in blood supply within the cranium (Hankey, 2017). This event can lead to a multitude of repercussions on sensorimotor function, one of which being impaired hand control such as weakened grip strength (Foulkes et al., 1988Duncan et al., 1994Nakayama et al., 1994Jørgensen et al., 1995Wilkinson et al., 1997Winstein et al., 2004Legg et al., 2007). Other potential causes of impaired hand function include cerebral palsy, multiple sclerosis, and amputation. Therefore, effective rehabilitation to help patients regain functional hand control is critically important in clinical practice. It has been shown that recovery of sensory motor function relies on the plasticity of the central nervous system to relearn and remodel the brain (Warraich and Kleim, 2010). Specifically, there are several factors that are known to contribute to neuroplasticity (Kleim and Jones, 2008): specificity, number of repetition, training intensity, time, and salience. However, existing physical therapy of hand is limited by the resource and accessibility, leading to inadequate dosage and lack of patients’ motivation. Robot-assisted hand rehabilitation has recently attracted a lot of attention because robotic devices have the advantage to provide (1) enriched environment to strengthen motivation, (2) increase number of repetition through automated control, and (3) progressive intensity levels that adapts to patient’s need (for review, see Balasubramanian et al., 2010).

Specifically, haptic interfaces and variable stiffness mechanisms are usually incorporated into robotic rehabilitation devices to provide varying difficulties by adjusting force output or stiffness. For example, the LINarm++ is a rehabilitative device that appropriates variable stiffness actuators with multimodal sensors to provide changing resistance in a physical environment in which users performs arm movement (Malosio et al., 2016Spagnuolo et al., 2017). This device also encompasses a functional electrical stimulation system which has been shown to promote motor recovery in upper limb rehabilitation (Popović and Popović, 2006). The Haptic Knob is a device that trains stroke patients’ grasping movements, and wrist pronation and supination motions by rotating a dial that is able to produce forces and torques up to 50 N and 1.5 Nm, respectively, depending on the patient’s level of impairment (Lambercy et al., 2009). The GripAble is a handheld rehabilitative device that allows the patient to squeeze, lift, and rotate to play a video game with increasing difficulty and gives feedback through vibration in response to the patient’s performance (Mace et al., 20152017). The MIT-MANUS, a planar rehabilitation robot, also has a hand-module that converts rotary motions to linear motions, and in turn allows for controllable impedance in the device (Masia et al., 2006). In addition, pneumatic particle jamming systems have been designed to provide users with haptic feedback by changing the stiffness and geometry of the surface the user presses on with their fingertips (Stanley et al., 2013Genecov et al., 2014). These devices and systems, however, are either costly and bulky due to complex mechanical design or have limited range of stiffness due to passive mechanical components.

To overcome these limitations, this paper proposes the design of a novel pneumatically actuated soft robotics-based variable stiffness haptic interface to support rehabilitation of sensorimotor function of hands (Figure 1). Soft robotics is a rapidly growing field that utilizes highly compliant materials that are fluidic actuated to effectively adapt to shapes and constraints that traditionally rigid machines are unable to Majidi (2014) and Polygerinos et al. (2017). Several soft-robotics devices have been developed to provide assistance to stroke patients, but none of these has been designed as resistive training devices. An example of an existing device includes the use of soft actuators that bend, twist, and extend through finger-like motions in a rehabilitative exoglove to be worn by stroke patients (Polygerinos et al., 2015a,bYap et al., 2017). A variable stiffness device that employs soft-robotics allows a greater range of stiffness to be implemented since there is minimal or no impedance to the initial stiffness of the device. In addition, soft robotics methods allow devices to be manufactured with lowered cost and have much less complexity, thus suitable to be used not only inpatient but also outpatient hand rehabilitative services (Taylor et al., 1996Godwin et al., 2011).

 

Figure 1. The prototyped soft haptic variable stiffness interface with a hand grasping it.

In Section “Materials and Methods” of this paper, the materials and methods employed in designing and fabricating the soft robotic haptic interface are described, including the design criteria of the prototype. This section also describes the methodology for a stiffness perception test on healthy participant with the proposed device. In addition, the overall closed-loop control system of the device to provide pressure regulation is presented in this section. Section “Results” describes the preliminary results obtained from characterization of the device’s varying stiffness in response to changing pressure inputs, and the subjective evaluation of perceived stiffness obtained from test participants. Finally, Section “Discussion” includes an overall discussion of open question and future research directions. […]

Continue —>  Frontiers | Soft Robotic Haptic Interface with Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function | Robotics and AI

, , , , , , , , ,

Leave a comment

%d bloggers like this: