Posts Tagged stability

[VIDEO] Harnessing the Power of Neuroplasticity: The Nuts and Bolts of Better Brains – YouTube

What if your brain at 77 were as plastic as it was at 7? What if you could learn Mandarin with the ease of a toddler or play Rachmaninoff without breaking a sweat? A growing understanding of neuroplasticity suggests these fantasies could one day become reality. Neuroplasticity may also be the key to solving diseases like Alzheimer’s, depression, and autism. In this program, leading neuroscientists discuss their most recent findings and both the tantalizing possibilities and pitfalls for our future cognitive selves.

PARTICIPANTS: Alvaro Pascual-Leone, Nim Tottenham, Carla Shatz



This program is part of the BIG IDEAS SERIES, made possible with support from the JOHN TEMPLETON FOUNDATION.

TOPICS: – Opening film 00:07 – What is neuroplasticity? 03:53 – Participant introductions 04:21 – Structure of the brain 05:21 – Is the brain fundamentally unwired at the start? 07:02 – Why does the process of human brain development seem inefficient? 08:30 – Balancing stability and plasticity 10:43 – Critical periods of brain development 13:01 – Extended human childhood development compared to other animals 14:54 – Stability and. plasticity in the visual system 17:37 – Reopening the visual system 25:13 – Pros and cons of brain plasticity vs. stability 27:28 – Plasticity in the autistic brain 29:55 – What is Transcranial magnetic stimulation (TMS) 31:25 – Phases of emotional development 33:10 – Schizophrenia and plasticity 37:40 – Recovery from brain injury 40:24 – Modern rehabilitation techniques 47:21 – Holy grail of Neuroscience 50:12 – Enhancing memory performance as we age 53:37 – Regulating emotions 57:19

PROGRAM CREDITS: – Produced by Nils Kongshaug – Associate Produced by Christine Driscoll – Opening film written / produced by Vin Liota – Music provided by APM – Additional images and footage provided by: Getty Images, Shutterstock, Videoblocks

This program was recorded live at the 2018 World Science Festival and has been edited and condensed for YouTube.

via Harnessing the Power of Neuroplasticity: The Nuts and Bolts of Better Brains – YouTube

, , , , , , , , , , ,

Leave a comment

[Abstract] Effects of dry needling on post-stroke spasticity, motor function and stability limits: a randomised clinical trial



To determine the effects of inclusion of deep dry needling into a treatment session following the Bobath concept on spasticity, motor function and postural control after a stroke.


26 patients who had suffered a stroke were randomly assigned to one of two treatment groups: Bobath only, or Bobath plus dry needling. Both groups received a session including strengthening, stretching and reconditioning exercises following the principles of the Bobath concept. Patients in the Bobath plus dry needling group also received a single session of ultrasound-guided dry needling of the tibialis posterior. Spasticity (Modified Modified Ashworth Scale), function (Fugl-Meyer Scale) and stability limits (computerised dynamic posturography using the SMART EquiTest System) were collected before and 10 min after treatment by a blinded assessor. The parameters of the stability limits included movement velocity (MVL), maximum excursion (MXE), end-point excursion (EPE) and directional control (DCL).


A greater number of individuals receiving Bobath plus dry needling exhibited a decrease in spasticity after treatment (P<0.001). Analysis of covariance (ANCOVA) showed that patients receiving Bobath plus dry needling exhibited greater improvements in the balance (0.8, 95% CI 0.2 to 1.4), sensory (1.7, 95% CI 0.7 to 2.7) and range of motion (3.2, 95% CI 2.0 to 4.4) domains of the Fugl-Meyer Scale than those receiving Bobath only. ANCOVA also found that subjects receiving dry needling showed a greater increase in MVL non-affected forward direction, EPE non-affected direction, MXE backward and MXE affected/non-affected, DCL backward and DCL affected backward direction, than those who did not receive it.


The inclusion of deep dry needling into a treatment session following the Bobath concept was effective at decreasing spasticity and improving balance, range of motion and the accuracy of maintaining stability in patients who had experienced a stroke.


via Effects of dry needling on post-stroke spasticity, motor function and stability limits: a randomised clinical trial. – PubMed – NCBI

, , , , , ,

Leave a comment

[ARTICLE] Effects of Real-Time (Sonification) and Rhythmic Auditory Stimuli on Recovering Arm Function Post Stroke: A Systematic Review and Meta-Analysis – Full Text

Background: External auditory stimuli have been widely used for recovering arm function post-stroke. Rhythmic and real-time auditory stimuli have been reported to enhance motor recovery by facilitating perceptuomotor representation, cross-modal processing, and neural plasticity. However, a consensus as to their influence for recovering arm function post-stroke is still warranted because of high variability noted in research methods.

Objective: A systematic review and meta-analysis was carried out to analyze the effects of rhythmic and real-time auditory stimuli on arm recovery post stroke.

Method: Systematic identification of published literature was performed according to PRISMA guidelines, from inception until December 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale.

Results: Of 1,889 records, 23 studies which involved 585 (226 females/359 males) patients met our inclusion criteria. The meta-analysis revealed beneficial effects of training with both types of auditory inputs for Fugl-Meyer assessment (Hedge’s g: 0.79), Stroke impact scale (0.95), elbow range of motion (0.37), and reduction in wolf motor function time test (−0.55). Upon further comparison, a beneficial effect of real-time auditory feedback was found over rhythmic auditory cueing for Fugl-meyer assessment (1.3 as compared to 0.6). Moreover, the findings suggest a training dosage of 30 min to 1 h for at least 3–5 sessions per week with either of the auditory stimuli.

Conclusion: This review suggests the application of external auditory stimuli for recovering arm functioning post-stroke.


According to World health organization, stroke accounts as the third main cause of disability across the world (1). The incidence of stroke related disability have almost doubled in the developing countries in the past decade (23). The disability affects basic day to day life activities (4), which further increase dependency (5), anxiety, depression (6), social isolation (7), and promote a poor quality of life (89). Moreover, the disability inflicts substantial economic burden on patients (10).

Typically, patients affected from stroke exhibit sensorimotor dysfunctions on the contralateral side of the affected brain region (11). These deficits can be exhibited focally, segmentally, unilaterally, or bilaterally (12). The symptoms are typically characterized by progressive inefficient movement synergy patterns (13), abnormal muscle tone (14), force production (15), compromised dexterity (16), poor coordination (17), and more (18). Moreover, hyper/hypokinetic movement disorders are also common [see Handley et al.,(12)]. Additionally, cognitive and sensory dysfunctions are also common in patients with stroke (19). Despite advancements in rehabilitation, poor prognosis in stroke is still prevalent, especially for recovering arm function (520). Studies suggest that upper limb recovery is an important predictor for determining the health status outcome, and quality of life for stroke patients (2122).

The poor gross and fine motor performance in upper extremities can be due to abnormal co-contraction of antagonists/agonists (23), disruptions in force production/adaptation (24), and regulation of stretch reflex (1525). Besides, these musculoskeletal dysfunctions can considerably impair joint kinematics (2627). According to Hara et al. (28) impaired activation of motor units in terms of firing rate and synchronization might result in such deficits. Furthermore, as the disease progresses, these changes increase fatigue (29), reduce coordination (30), and with the progression of time promote development of joint contractures (31), and subluxations/dislocations (32). Likewise, discrepancies in sensory perceptions, memory, cognition, and behavior further impact the prognostic outcome of a stroke patient (3335).

Neuroimaging studies suggest site specific lesions and silent infarcts at medial temporal lobe (36), gray (37), and white matter (38), further leading to a wide array of cognitive dysfunctions (39) [see Makin, (40) and Sperber and Karnath (41).] Similarly, deficits in corticospinal (4243), thalamocortical (44), superior occipito-frontal (41), and superior-longitudinal pathways (45), might overload the already impaired cognitive-motor pathways. Such a constraining impact on the impaired cognitive pathways might increase “internal” conscious monitoring by the patients to control their movements [see movement re-investment 4648)]. This increase in attention is aimed to safeguard the stability of a movement (4950), it retrospectively impairs autonomic execution of a movement and promotes movement failure (4648). Likewise, dysfunctions in sensory perception could affect perceptuomotor representations in the brain, thereby affecting motor planning and execution (35). Together, these cognitive and sensorimotor dysfunctions affect the prognosis of a stroke patient.

Common treatment strategies to curb cognitive motor dysfunctions in stroke patients include training with virtual-reality (51), mental imagery (52), biofeedback (53), physical therapy (54), exercise (55), prosthesis (5658), dual-task priority training, and more (59). Recently studies have tried to enhance the stroke recovery by simultaneously addressing the sensory deficits with motor rehabilitation by applying external sensory stimulation as a neuro-prosthetic (5962). Studies have analyzed the effects of different sensory stimuli in auditory, visual and tactile domain on motor performance (596162). However, the literature predominantly supports the beneficial role of auditory stimuli (506364). The main reasons which underlie the beneficial effects are thought to be multifaceted. Firstly, rich neuroanatomical interconnectivity has been reported between auditory and motor cortex (6567). Here, inference can be drawn from literature evaluating auditory startle reflex on animal models (6869). Studies using Double-labeling experiments have revealed that cochlear root neurons in the auditory nerve can project bilaterally to sensorimotor paths, including synapsing on reticulospinal neurons (656870). Likewise, patterns of thalamocortical and corticocortical inputs unique to auditory cortex have also been reported [for a detailed review see (71)]. In humans, neuroimaging data confirms the presence of cortico-subcortical network involving putamen, supplementary motor area, premotor cortex, and the auditory cortex especially for perceiving and processing rhythmic auditory stimuli (7275). Secondly, the human auditory system can consistently perceive auditory cues 20–50 ms faster as compared to its visual and tactile counterparts (7678). Thirdly, the auditory system has a strong bias to identify temporal patterns of periodicity and structure as compared to other sensory perceptual systems (7880). For instance, auditory rhythmic perception has been reported to exist well beyond the limits of temporal resolution of visual modalities i.e., when periodicities are presented at a rate of ~300–900 ms (8081).

In the literature, however, rhythmic auditory cueing (67), and real-time kinematic auditory feedback (82), also termed as sonification, are the most widely studied approaches in upper limb stroke rehabilitation. Both the methods possess differential influence over neurophysiological and musculoskeletal domains. Firstly, rhythmic auditory cueing can be defined as repetitive isosynchronous stimulations applied with an aim to simultaneously synchronize motor execution (8384). Here, neuroimaging data for rhythmic auditory stimuli suggests facilitated activations in premotor cortex, insula, cuneus, supplementary motor area, cerebellum, and basal ganglia (73808587). Moreover, training with rhythmic auditory cueing has been reported to modulate neuromagnetic β oscillations (8889), biological motion perception (8290), auditory-motor imagery (9193), shape variability in musculoskeletal activation patterns (94), cortical reorganization, neural-plasticity (9596), and also movement specific re-investment (97). Real-time kinematic auditory feedback on the other hand is a comparatively new approach. Such type of an intervention involves mapping of movement parameters on to the sound components, such as pitch, amplitude with a very minimal or no latency (82). The feedback has been reported to alleviate sensory perceptions like proprioception (98), by enhancing sensorimotor representation while facilitating activations in action observation system (90), and inducing neural plasticity (99). Moreover, the feedback has been reported by Effenberg et al. (82) to extend the benefits of discrete rhythmic auditory cueing stimuli. Here, the authors suggest that the continuous flow of information might allow a participant to better perceive their movement amplitudes and positioning, thereby resulting in development of both feedback and feed-forward models (82). Moreover, by allowing additional influence over the action observation system the real-time auditory stimuli might also enrich the internal stimulation of the executed movement (508290). This methodology involves delivering action relevant auditory feedback, where the characteristics of stimuli (e.g., frequency, amplitude) are mapped to the specific joint kinematics in real-time, for an example see (98). Schmitz et al. (90) in a neuroimaging study reported that observation of a convergent audio (sonification)-visual feedback led to enhanced activations in fronto-parietal networks, action observation system i.e., superior temporal sulcus, Broadman area 44, 6, insula, precentral gyrus, cerebellum, thalamus and basal ganglia (90). The authors mentioned that the multimodal nature of the stimuli can enhance the activation in areas associated with biological motion perception and in sub-cortical structures involving striatal-thalamic frontal motor loop. This then might improve perceptual analysis of a movement thereby resulting in efficient motor planning and execution (90).

Till date, no study has analyzed the influence of real-time auditory feedback on upper limb recovery post-stroke. Moreover, no study has compared the influence of rhythmic and real-time auditory stimuli on upper limb recovery post stroke. This information might serve to be an important source of information for future research and for developing efficient rehabilitation protocols in stroke community. Only four systematic reviews have analyzed the influence of rhythmic auditory stimulations on arm recovery post stroke (100101103), in which only two reviews included a statistical meta-analysis (102103). In these studies limitations persisted in terms of meta-analysis approach i.e., no heterogeneity analysis. Therefore, interpretation of results from the statistical analyses might indicate biasing. Therefore, the aim of the present systematic review and meta-analysis is to develop a state of knowledge where both qualitative and quantitative data for different auditory stimuli delivery methods can be interpreted for the use of stroke patients and medical practitioners alike. Moreover, a meta-analysis approach will be used to determine specific training dosage for auditory stimuli in recovering arm function post-stroke.[…]


Continue —>  Frontiers | Effects of Real-Time (Sonification) and Rhythmic Auditory Stimuli on Recovering Arm Function Post Stroke: A Systematic Review and Meta-Analysis | Neurology

, , , , , , , , ,

Leave a comment

%d bloggers like this: