Posts Tagged stroke rehabilitation

[ARTICLE] The Effect of High Intensity Training on Stroke Rehabilitation: A Systematic Review – Full Text

Abstract

Background and Purpose: Stroke is one of the leading causes of disability worldwide. Stroke can cause deficits in one’s ability to walk independently, cause deficits in balance, and lead to a variety of other health issues as a sequela of paresis and prolonged physical inactivity.1 The purpose of this systematic review is to evaluate the efficacy of high intensity training (HIT) for the rehabilitation of patients with stroke.

Methods: A systematic review was performed utilizing five databases using search terms “stroke rehabilitation” and “high intensity training”. Article titles and abstracts were screened to include key words “stroke”, “high intensity training”, “resistance training”, “interval training”, “power training”, or “step training”. Research studies using subjects with co-morbidities other than stroke and its residuum were excluded.

Results: After meeting the selection criteria, 10 studies were selected for review. A review of each article’s subject population, tests performed, intervention, and result, reveal that many types of high intensity training have a positive effect on functional and health outcomes in patients with stroke.

Conclusion: High intensity training (HIT) has a positive effect on the rehabilitative potential of patients with stroke. HIT is shown to improve patient’s respiratory function, walking ability, balance, functional ability and other key areas.

Introduction

Stroke can be defined as an acute neurologic dysfunction of vascular origin from a hemorrhagic or ischemic event causing a disruption of blood flow to tissues of the brain.2 Strokes are a global health issue affecting 16 million people each year. It is estimated that by the year 2030 there will be 77 million survivors of stroke worldwide. Each year, 114 of 100,000 people in the United States will suffer their first stroke, accounting for 75% of hospitalizations due to stroke. The remaining 25% of stroke hospitalizations are of patients with recurrent strokes. Patient risk factors for stroke include, but are not limited to hypertension, smoking, diabetes, obesity, dyslipidemia, and elevated homocysteine.3 The long-term implications of a stroke depend upon how early a stroke is recognized and treated. Clinical manifestations following a stroke can include a loss of balance, speech and visual deficits, cognitive dysfunction and hemiparesis. There is potential for the spontaneous recovery of certain deficits in the first few weeks following a stroke, however there is likelihood for long-term dysfunction. The most prevalent long-term dysfunction after a stroke are motor impairments secondary to hemiparesis; which reduces muscle mass and the force of muscle contraction causing lower limb weakness, loss of mobility and gait deficiencies of the affected side.2,3

Continue —>  https://www.linkedin.com/pulse/effect-high-intensity-training-stroke-rehabilitation-review-timothy

Figure 1: Flow diagram of Selection Process

, ,

Leave a comment

[ARTICLE] User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke – Full Text

Abstract:

Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient’s work station as part of a novel robot-based system for motor telerehabilitation.

1 Introduction

Stroke is one of the dominant causes of acquired disability [1] and it is the second leading cause of death worldwide [2]. The high incidence of the disease and the current demographic developments are likely to increase the number of stroke patients in the future. Most of the survivors have physical, cognitive and functional limitations and require intensive rehabilitation in order to resume independent everyday life [3]. Therefore, the main goal of motor rehabilitation is relearning of voluntary movement capability, a process which takes at least several months, some improvement can occur even after years. In the rehabilitation clinic, patients usually receive a daily intensive therapy program. However, for further improvement of motor abilities, severely affected patients are required to continue their rehabilitation training outside the rehabilitation settings, after being discharged from the rehabilitation clinic. Langhammer and Stanghelle [4] found that a lack of follow-up rehabilitation treatment at home leads to deterioration of activities of daily living (ADL) and to motor functions in general. A possible solution is an individualized and motivating telerehabilitation system in the patient’s domestic environment. Some studies [5], [6] have confirmed the advantage of home rehabilitation after stroke and showed that telerehabilitation received high acceptance and satisfaction, both from patients, as well as from health professionals [7]. Most of the existing telesystems [7], [8] are based on audio-visual conferencing or on virtual environments and contain rather simple software for monitoring patients’ condition. However, in neurological rehabilitation the sensorimotor loop needs to be activated by provision of physiological haptic feedback (touch and proprioception) [3].

Robot-based rehabilitation is currently one of the most prevalent therapeutic approaches. It is often applied in hospitals alongside conventional therapy and is beneficial for motor recovery [9]. Rehabilitation training including a haptic-therapy device may therefore be even more promising for home environments than non-haptic telerehabilitation. Several telerehabilitation systems, which include not only audio and visual, but also haptic modality, already exist [10], [11] . Most of these solutions use low-cost commercial haptic devices (e.g. joysticks) for therapy training, with the goal of cost minimization and providing procurable technology. Nonetheless, devices specifically developed for stroke rehabilitation, which are already established in clinical settings, may have greater impact on motor relearning and could therefore also be more effective at home, compared with existing home rehabilitation devices.

In a previous paper [12], we presented a concept and design overview of a haptic robot-based telerehabilitation system for upper extremities which is currently under development. In the present work, we describe therapeutic requirements, user-centred development [13] and implementation of the patient’s station of the telesystem.

Continue —> User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke : Current Directions in Biomedical Engineering

Figure 3 Implementation of the patient’s work station based on Reha-Slide (left) and Bi-Manu-Track (right).

, , , , , , , ,

Leave a comment

[ARTICLE] A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training – Full Text

Although motor learning theory has led to evidence-based practices, few trials have revealed the superiority of one theory-based therapy over another after stroke. Nor have improvements in skills been as clinically robust as one might hope. We review some possible explanations, then potential technology-enabled solutions.

Over the Internet, the type, quantity, and quality of practice and exercise in the home and community can be monitored remotely and feedback provided to optimize training frequency, intensity, and progression at home. A theory-driven foundation of synergistic interventions for walking, reaching and grasping, strengthening, and fitness could be provided by a bundle of home-based Rehabilitation Internet-of-Things (RIoT) devices.

A RIoT might include wearable, activity-recognition sensors and instrumented rehabilitation devices with radio transmission to a smartphone or tablet to continuously measure repetitions, speed, accuracy, forces, and temporal spatial features of movement. Using telerehabilitation resources, a therapist would interpret the data and provide behavioral training for self-management via goal setting and instruction to increase compliance and long-term carryover.

On top of this user-friendly, safe, and conceptually sound foundation to support more opportunity for practice, experimental interventions could be tested or additions and replacements made, perhaps drawing from virtual reality and gaming programs or robots. RIoT devices continuously measure the actual amount of quality practice; improvements and plateaus over time in strength, fitness, and skills; and activity and participation in home and community settings. Investigators may gain more control over some of the confounders of their trials and patients will have access to inexpensive therapies.

Neurologic rehabilitation has been testing a motor learning theory for the past quarter century that may be wearing thin in terms of leading to more robust evidence-based practices. The theory has become a mantra for the field that goes like this. Repetitive practice of increasingly challenging task-related activities assisted by a therapist in an adequate dose will lead to gains in motor skills, mostly restricted to what was trained, via mechanisms of activity-dependent induction of molecular, cellular, synaptic, and structural plasticity within spared neural ensembles and networks.

This theory has led to a range of evidence-based therapies, as well as to caricatures of the mantra (eg, a therapist says to patient, “Do those plasticity reps!”). A mantra can become too automatic, no longer apt to be reexamined as a testable theory. A recent Cochrane review of upper extremity stroke rehabilitation found “adequately powered, high-quality randomized clinical trials (RCTs) that confirmed the benefit of constraint-induced therapy paradigms, mental practice, mirror therapy, virtual reality paradigms, and a high dose of repetitive task practice.”1 The review also found positive RCT evidence for other practice protocols. However, they concluded, no one strategy was clearly better than another to improve functional use of the arm and hand. The ICARE trial2 for the upper extremity after stroke found that both a state-of-the-art Accelerated Skill Acquisition Program (motor learning plus motivational and psychological support strategy) compared to motor learning-based occupational therapy for 30 hours over 10 weeks led to a 70% increase in speed on the Wolf Motor Function Test, but so did usual care that averaged only 11 hours of formal but uncharacterized therapy. In this well-designed RCT, the investigators found no apparent effect of either the dose or content of therapy. Did dose and content really differ enough to reveal more than equivalence, or is the motor-learning mantra in need of repair?

Walking trials after stroke and spinal cord injury,38 such as robot-assisted stepping and body weight-supported treadmill training (BWSTT), were conceived as adhering to the task-oriented practice mantra. But they too have not improved outcomes more than conventional over-ground physical therapy. Indeed, the absolute gains in primary outcomes for moderate to severely impaired hemiplegic participants after BWSTT and other therapies have been in the range of only 0.12 to 0.22 m/s for fastest walking speed and 50 to 75 m for 6-minute walking distance after 12 to 36 training sessions over 4 to 12 weeks.3,9 These 15% to 25% increases are just as disappointing when comparing gains in those who start out at a speed of <0.4 m/s compared to >0.4 to 0.8 m/s.3

Has mantra-oriented training reached an unanticipated plateau due to inherent limitations? Clearly, if not enough residual sensorimotor neural substrate is available for training-induced adaptation or for behavioral compensation, more training may only fail. Perhaps, however, investigators need to reconsider the theoretical basis for the mantra, that is, whether they have been offering all of the necessary components of task-related practice, such as enough progressively difficult practice goals, the best context and environment for training, the behavioral training that motivates compliance and carryover of practice beyond the sessions of formal training, and blending in other physical activities such as strengthening and fitness exercise that also augment practice-related neural plasticity? These questions point to new directions for research….

Continue —> A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training – Mar 01, 2017

Figure 1. Components of a Rehabilitation-Internet-of-Things: wireless chargers for sensors (1), ankle accelerometers with gyroscopes (2) and Android phone (3) to monitor walking and cycling, and a force sensor (4) in line with a stretch band (5) to monitor resistance exercises.

 

, , , , , , , , , ,

Leave a comment

[ARTICLE] Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect – Full Text

Hemispatial neglect is a severe cognitive condition frequently observed after a stroke, associated with unawareness of one side of space, disability and poor long-term outcome. Visuomotor feedback training (VFT) is a neglect rehabilitation technique that involves a simple, inexpensive and feasible training of grasping-to-lift rods at the centre. We compared the immediate and long-term effects of VFT vs. a control training when delivered in a home-based setting. Twenty participants were randomly allocated to an intervention (who received VFT) or a control group (n = 10 each). Training was delivered for two sessions by an experimenter and then patients self-administered it for 10 sessions over two weeks. Outcome measures included the Behavioural Inattention Test (BIT), line bisection, Balloons Test, Landmark task, room description task, subjective straight-ahead pointing task and the Stroke Impact Scale. The measures were obtained before, immediately after the training sessions and after four-months post-training. Significantly greater short and long-term improvements were obtained after VFT when compared to control training in line bisection, BIT and spatial bias in cancellation. VFT also produced improvements on activities of daily living. We conclude that VFT is a feasible, effective, home-based rehabilitation method for neglect patients that warrants further investigation with well-designed randomised controlled trials on a large sample of patients.

Continue —> Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect: Neuropsychological Rehabilitation: Vol 0, No 0

Figure

Figure 3 of 5 Figure 3. (A) Lesion map for individual patients. B-C) Lesion overlap map summarising the degree of involvement for each voxel in the intervention (B; N = 8) and control (C; N = 5) groups. Lesions were identified by a clinical neurologist (K.M.), who was blind to the design, group assignment and purpose of the study. Lesions were mapped onto 11 axial slices of a T1-weighted template, corresponding to the MNI z coordinates of −24, −16, −8, 0, 8, 16, 24, 32, 40, 50, 60 mm using identical or closest matching transverse slices for each patient using MRIcro software package (Rorden & Brett, 2000 Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12, 191–200. doi: 10.1155/2000/421719 [CrossRef], [PubMed], [Web of Science ®] ). Due to technical difficulties at the clinical facility, we were able to obtain and map digital brain scans for 13 patients only (6 MRIs and 7 CTs) as the remaining digital brain scans were either lost or corrupted. Please note however, that all brain scan reports were available and confirmed the presence of a stroke and its location for all our patients. The range of colour scale derives from the absolute number of patient lesions involved in each voxel.

, , , , , , , ,

Leave a comment

[Abstract] Applying microsoft kinect for windows to develop a Stroke Rehabilitation System

Abstract:

This study develops a Stroke Rehabilitation System for stroke patients. Patients can stay at home to use this system. The design of this system is based on WHO ICF concept to develop the system and included Barthel scale for patient’s evaluation. The programs design by Microsoft C# programming language to control Microsoft Kinect System. The results demonstrate that our system can easy to implement in patient’s home. We collect patient’s daily rehabilitation data and record it to the database. The data can be statistically analyze and drop a bar chart for visually watch. The results can upload to local hospital Medical Cloud for doctor’s reference. We also demonstrate the system and provide sample code for reference.

Source: Applying microsoft kinect for windows to develop a Stroke Rehabilitation System – IEEE Xplore Document

, , , ,

Leave a comment

[Abstract] A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training

Abstract

Although motor learning theory has led to evidence-based practices, few trials have revealed the superiority of one theory-based therapy over another after stroke. Nor have improvements in skills been as clinically robust as one might hope.

We review some possible explanations, then potential technology-enabled solutions. Over the Internet, the type, quantity, and quality of practice and exercise in the home and community can be monitored remotely and feedback provided to optimize training frequency, intensity, and progression at home. A theory-driven foundation of synergistic interventions for walking, reaching and grasping, strengthening, and fitness could be provided by a bundle of home-based Rehabilitation Internet-of-Things (RIoT) devices. A RIoT might include wearable, activity-recognition sensors and instrumented rehabilitation devices with radio transmission to a smartphone or tablet to continuously measure repetitions, speed, accuracy, forces, and temporal spatial features of movement.

Using telerehabilitation resources, a therapist would interpret the data and provide behavioral training for self-management via goal setting and instruction to increase compliance and long-term carryover. On top of this user-friendly, safe, and conceptually sound foundation to support more opportunity for practice, experimental interventions could be tested or additions and replacements made, perhaps drawing from virtual reality and gaming programs or robots. RIoT devices continuously measure the actual amount of quality practice; improvements and plateaus over time in strength, fitness, and skills; and activity and participation in home and community settings. Investigators may gain more control over some of the confounders of their trials and patients will have access to inexpensive therapies.

Source: A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training

, , , , , , , , , , ,

Leave a comment

[Abstract] A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training

Abstract

Although motor learning theory has led to evidence-based practices, few trials have revealed the superiority of one theory-based therapy over another after stroke. Nor have improvements in skills been as clinically robust as one might hope. We review some possible explanations, then potential technology-enabled solutions. Over the Internet, the type, quantity, and quality of practice and exercise in the home and community can be monitored remotely and feedback provided to optimize training frequency, intensity, and progression at home. A theory-driven foundation of synergistic interventions for walking, reaching and grasping, strengthening, and fitness could be provided by a bundle of home-based Rehabilitation Internet-of-Things (RIoT) devices. A RIoT might include wearable, activity-recognition sensors and instrumented rehabilitation devices with radio transmission to a smartphone or tablet to continuously measure repetitions, speed, accuracy, forces, and temporal spatial features of movement. Using telerehabilitation resources, a therapist would interpret the data and provide behavioral training for self-management via goal setting and instruction to increase compliance and long-term carryover. On top of this user-friendly, safe, and conceptually sound foundation to support more opportunity for practice, experimental interventions could be tested or additions and replacements made, perhaps drawing from virtual reality and gaming programs or robots. RIoT devices continuously measure the actual amount of quality practice; improvements and plateaus over time in strength, fitness, and skills; and activity and participation in home and community settings. Investigators may gain more control over some of the confounders of their trials and patients will have access to inexpensive therapies.

Source: A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training

, , , , , , , , , , , ,

Leave a comment

[Blog] Great Assessment Tools for Stroke Rehabilitation – ICE Learning Center

 

March 30, 2016

How often do you use standardized assessment tools? If therapists are required to in order to measure patient outcomes, then why aren’t they used more often? What’s your reason? Takes too much time? Don’t know which to use, how to score it or where to find it? Here are 4 sites that answer all of these questions and more!

Most of the assessment tools listed are free and link directly to a pdf of the tool. Some include videos to show how to score the tool. You can find all of the assessment tools and the evidence needed for creating your plan of intervention in stroke rehabilitation. They’re fantastic resources for students as well as therapists! 

Stroke Engine

Strokengine.ca is my #1 choice for therapists looking for assessment tools specific to stroke rehabilitation. I love how this site is organized and it’s easy to scan and find the exact tool you need from the 90+ assessment tools. Just select a category and all of the tools you need are listed!

Each tool includes:
• Purpose of the Measure
• In-depth Review
• Summary Table
• Psychometric Properties
• See the Measure

Strokengine.ca also includes a section on interventions in stroke rehabilitation. The information included is derived from quality articles, websites and systematic reviews. All have been reviewed using a systematic process.

Rehabilitation Measures Database

If you would like additional standardized tools, for diagnoses other than stroke, go to RIC’s Rehabilitation Measures Database and choose from over 300 standardized tools!

The Internet Stroke Center

Another resource for Stroke Assessment Scales, it includes more than 30 tools, including those used by physicians.

Evidence-Based Review of Stroke Rehabilitation (EBRSR)

The Evidence-Based Review of Stroke Rehabilitation is the best for finding evidence to support your choice of intervention. The EBRSR now includes in-depth reviews of well over 2000 studies including 1,431 randomized controlled trials. Parts of the EBRSR have been translated into a number of languages.

, , , , , ,

Leave a comment

[ARTICLE] Effects of 8 weeks of mat-based Pilates exercise on gait in chronic stroke patients – Full Text PDF

Abstract.

[Purpose] The purpose of this study was to investigate the effects of an 8-week program of Pilates exercise on gait in chronic hemiplegia patients and to determine whether or not it can be used for rehabilitation in postsrtoke patients.

[Subjects and Methods] Twenty individuals with unilateral chronic hemiparetic stroke (age, 66.1 ± 4.4 yrs; height, 162.3 ± 8.3 cm; weight, 67.4 ± 12.3 kg) participated in this study and were randomly allocated equally to either a Pilates exercise group or a control group. To identify the effects of Pilates exercise, a 3-D motion analysis with 8 infrared cameras was performed.

[Results] For the gait parameters, improvements were found in the Pilates exercise group for all variables, and statistical significance was observed for stride length, gait velocity, knee range of motion and hip range of motion. For the asymmetry indexes, insignificant improvements were found for all variables in the Pilates exercise group.

[Conclusion] In conclusion, an 8-week program of Pilates exercise had a positive influence on improving the gait ability of poststroke patients, and the intervention could be applied to poststroke patients with various levels of physical disability by adjusting the intensity of training.

Download Full Text PDF

, , ,

Leave a comment

[ARTICLE] Effect of mirror therapy on upper extremity motor function in stroke patients: a randomized controlled trial – Full Text PDF

Abstract.

[Purpose] This study aimed to evaluate the effectiveness of mirror therapy combined with a conventional rehabilitation program on upper extremity motor and functional recovery in stroke patients.

[Subjects and Methods] Thirty-one hemiplegic patients were included. The patients were randomly assigned to a mirror (n=16) or conventional group (n=15). The patients in both groups underwent conventional therapy for 4 weeks (60–120 minutes/day, 5 days/week). The mirror group received mirror therapy, consisting of periodic flexion and extension movements of the wrist and fingers on the non-paralyzed side. The patients in the conventional group performed the same exercises against the non-reflecting face of the mirror. The patients were evaluated at the beginning and end of the treatment by a blinded assessor using the Brunnstrom stage, Fugl-Meyer Assessment (FMA) upper extremity score, and the Functional Independence Measure (FIM) self-care score.

[Results] There was an improvement in Brunnstrom stage and the FIM self-care score in both groups, but the post-treatment FMA score was significantly higher in the mirror therapy group than in the conventional treatment group.

[Conclusion] Mirror therapy in addition to a conventional rehabilitation program was found to provide additional benefit in motor recovery of the upper extremity in stroke patients. Key words: Stroke rehabilitation, Mirror therapy, Upper extremity

Download Full Text PDF

, , , , ,

Leave a comment

%d bloggers like this: