Posts Tagged stroke rehabilitation

[Abstract + References] Electromyography as a Suitable Input for Virtual Reality-Based Biofeedback in Stroke Rehabilitation – Conference paper

Abstract

Virtual reality (VR)-based biofeedback of brain signals using electroencephalography (EEG) has been utilized to encourage the recovery of brain-to-muscle pathways following a stroke. Such models incorporate principles of action observation with neurofeedback of motor-related brain activity to increase sensorimotor activity on the lesioned hemisphere. However, for individuals with existing muscle activity in the hemiparetic arm, we hypothesize that providing biofeedback of muscle signals, to strengthen already established brain-to-muscle pathways, may be more effective. In this project, we aimed to understand whether and when feedback of muscle activity (measured using surface electromyography (EMG)) might more effective compared to EEG biofeedback. To do so, we used a virtual reality (VR) training paradigm we developed for stroke rehabilitation (REINVENT), which provides EEG biofeedback of ipsilesional sensorimotor brain activity and simultaneously records EMG signals. We acquired 640 trials over eight 1.5-h sessions in four stroke participants with varying levels of motor impairment. For each trial, participants attempted to move their affected arm. Successful trials, defined as when their EEG sensorimotor desynchronization (8–24 Hz) during a time-limited movement attempt exceeded their baseline activity, drove a virtual arm towards a target. Here, EMG signals were analyzed offline to see (1) whether EMG amplitude could be significantly differentiated between active trials compared to baseline, and (2) whether using EMG would have led to more successful VR biofeedback control than EEG. Our current results show a significant increase in EMG amplitude across all four participants for active versus baseline trials, suggesting that EMG biofeedback is feasible for stroke participants across a range of impairments. However, we observed significantly better performance with EMG than EEG for only the three individuals with higher motor abilities, suggesting that EMG biofeedback may be best suited for those with better motor abilities.

References

  1. 1.
    Langhorne, P., Bernhardt, J., Kwakkel, G.: Stroke rehabilitation. Lancet 377, 1693–1702 (2011).  https://doi.org/10.1016/S0140-6736(11)60325-5CrossRefGoogle Scholar
  2. 2.
    Ramos-Murguialday, A., et al.: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. (2013).  https://doi.org/10.1002/ana.23879CrossRefGoogle Scholar
  3. 3.
    Shindo, K.: Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J. Rehabil. Med. 43, 951–957 (2016).  https://doi.org/10.2340/16501977-0859CrossRefGoogle Scholar
  4. 4.
    Armagan, O., Tascioglu, F., Oner, C.: Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study. Am. J. Phys. Med. Rehabil. 82, 856–861 (2003).  https://doi.org/10.1097/01.PHM.0000091984.72486.E0CrossRefGoogle Scholar
  5. 5.
    Garrison, K.A., Aziz-Zadeh, L., Wong, S.W., Liew, S.L., Winstein, C.J.: Modulating the motor system by action observation after stroke. Stroke 44, 2247–2253 (2013).  https://doi.org/10.1161/STROKEAHA.113.001105CrossRefGoogle Scholar
  6. 6.
    Celnik, P., Webster, B., Glasser, D.M., Cohen, L.G.: Effects of action observation on physical training after stroke. Stroke. 39, 1814–1820 (2008).  https://doi.org/10.1161/STROKEAHA.107.508184CrossRefGoogle Scholar
  7. 7.
    Vourvopoulos, A., Bermúdezi Badia, S.: Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J. Neuroeng. Rehabil. 13, 1–14 (2016).  https://doi.org/10.1186/s12984-016-0173-2CrossRefGoogle Scholar
  8. 8.
    Spicer, R., Anglin, J., Krum, D.M., Liew, S.L.: REINVENT: a low-cost, virtual reality brain-computer interface for severe stroke upper limb motor recovery. In: Proceedings of IEEE Virtual Reality, pp. 385–386 (2017).  https://doi.org/10.1109/vr.2017.7892338
  9. 9.
    Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1999).  https://doi.org/10.1016/0013-4694(58)90053-1CrossRefGoogle Scholar
  10. 10.
    Kothe, C.: Lab Streaming Layer (LSL). https://github.com/sccn/labstreaminglayer
  11. 11.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 134, 9–21 (2004).  https://doi.org/10.1016/j.jneumeth.2003.10.009CrossRefGoogle Scholar

via Electromyography as a Suitable Input for Virtual Reality-Based Biofeedback in Stroke Rehabilitation | SpringerLink

, , , ,

Leave a comment

[Abstract + References] Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation – Conference paper

Abstract

Rehabilitation after stroke requires the exploitation of active movement by the patient in order to efficiently re-train the affected side. Individuals with severe stroke cannot benefit from many training solutions since they have paresis and/or spasticity, limiting volitional movement. Nonetheless, research has shown that individuals with severe stroke may have modest benefits from action observation, virtual reality, and neurofeedback from brain-computer interfaces (BCIs). In this study, we combined the principles of action observation in VR together with BCI neurofeedback for stroke rehabilitation to try to elicit optimal rehabilitation gains. Here, we illustrate the development of the REINVENT platform, which takes post-stroke brain signals indicating an attempt to move and drives a virtual avatar arm, providing patient-driven action observation in head-mounted VR. We also present a longitudinal case study with a single individual to demonstrate the feasibility and potentially efficacy of the REINVENT system.

References

  1. 1.
    Mozaffarian, D., et al.: American heart association statistics committee and stroke statistics subcommittee: heart disease and stroke statistics–2015 update: a report from the American heart association. Circulation 131, e29–e322 (2015)Google Scholar
  2. 2.
    Miller, E.L., et al.: American heart association council on cardiovascular nursing and the stroke council: comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American heart association. Stroke 41, 2402–2448 (2010)CrossRefGoogle Scholar
  3. 3.
    Celnik, P., Webster, B., Glasser, D., Cohen, L.: Effects of action observation on physical training after stroke. Stroke J. Cereb. Circ. 39, 1814–1820 (2008)CrossRefGoogle Scholar
  4. 4.
    Ertelt, D., et al.: Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage 36(Suppl 2), T164–T173 (2007)CrossRefGoogle Scholar
  5. 5.
    Garrison, K.A., Aziz-Zadeh, L., Wong, S.W., Liew, S.-L., Winstein, C.J.: Modulating the motor system by action observation after stroke. Stroke 44, 2247–2253 (2013)CrossRefGoogle Scholar
  6. 6.
    Ballester, B.R., et al.: The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J. Neuroeng. Rehabil. 12, 50 (2015)CrossRefGoogle Scholar
  7. 7.
    Vourvopoulos, A., Bermúdez i Badia, S.: Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J. Neuroeng. Rehabil. 13, 69 (2016)CrossRefGoogle Scholar
  8. 8.
    Maclean, N., Pound, P., Wolfe, C., Rudd, A.: Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ 321, 1051–1054 (2000)CrossRefGoogle Scholar
  9. 9.
    Paraskevopoulos, I., Tsekleves, E., Warland, A., Kilbride, C.: Virtual reality-based holistic framework: a tool for participatory development of customised playful therapy sessions for motor rehabilitation. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), September (2016)Google Scholar
  10. 10.
    Wolpaw, J.R.: Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  11. 11.
    Vourvopoulos, A., Bermudez i Badia, S.: Usability and cost-effectiveness in brain-computer interaction: is it user throughput or technology related? In: Proceedings of the 7th Augmented Human International Conference. ACM, Geneva, Switzerland (2016)Google Scholar
  12. 12.
    Schomer, D.L., Lopes da Silva, F.H.: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  13. 13.
    Kropotov, J.D.: Chapter 2.2 – Alpha rhythms. In: Kropotov, J.D. (ed.) Functional Neuromarkers for Psychiatry, pp. 89–105. Academic Press, San Diego (2016)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  15. 15.
    Wu, J., et al.: Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 138, 2359–2369 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhou, R.J., et al.: Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function. Front. Neurol. 9, 597 (2018)CrossRefGoogle Scholar
  17. 17.
    Soekadar, S.R., Birbaumer, N., Slutzky, M.W., Cohen, L.G.: Brain–machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015)CrossRefGoogle Scholar
  18. 18.
    Friedman, D.: Brain-computer interfacing and virtual reality. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds.) Handbook of Digital Games and Entertainment Technologies, pp. 151–171. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-4560-50-4_2CrossRefGoogle Scholar
  19. 19.
    Vourvopoulos, A., Ferreira, A., Bermúdez i Badia, S.: NeuRow: an immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback. In: 3rd International Conference on Physiological Computing Systems, Lisbon (2016)Google Scholar
  20. 20.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B Biol. Sci. 364, 3549–3557 (2009)CrossRefGoogle Scholar
  21. 21.
    Spicer, R., Anglin, J., Krum, D.M., Liew, S.L.: REINVENT: a low-cost, virtual reality brain-computer interface for severe stroke upper limb motor recovery. In: 2017 IEEE Virtual Reality (VR), pp. 385–386 (2017)Google Scholar
  22. 22.
    Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999). The International Federation of Clinical NeurophysiologyGoogle Scholar
  23. 23.
    Kothe, C.: Lab streaming layer (LSL). https://github.com/sccn/labstreaminglayer. Accessed 26 Oct 2015 (2014)
  24. 24.
    Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)Google Scholar
  25. 25.
    Duncan, P.W., Wallace, D., Lai, S.M., Johnson, D., Embretson, S., Laster, L.J.: The stroke impact scale version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke 30, 2131–2140 (1999)CrossRefGoogle Scholar
  26. 26.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993)CrossRefGoogle Scholar
  27. 27.
    Bailey, J.O., Bailenson, J.N., Casasanto, D.: When does virtual embodiment change our minds? Presence Teleoperators Virtual Environ. 25, 222–233 (2016)CrossRefGoogle Scholar
  28. 28.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperator Virtual Environ. 7, 225–240 (1998)CrossRefGoogle Scholar
  29. 29.
    Bouchard, S., Robillard, G., Renaud, P., Bernier, F.: Exploring new dimensions in the assessment of virtual reality induced side effects. J. Comput. Inf. Technol. 1, 20–32 (2011)Google Scholar
  30. 30.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  31. 31.
    Makeig, S.: Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86, 283–293 (1993)CrossRefGoogle Scholar
  32. 32.
    Neuper, C., Wörtz, M., Pfurtscheller, G.: ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 159, 211–222 (2006)CrossRefGoogle Scholar
  33. 33.
    Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46, 138–146 (1979)CrossRefGoogle Scholar
  34. 34.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31, 153–159 (2006)CrossRefGoogle Scholar
  35. 35.
    Liew, S.-L., et al.: Laterality of poststroke cortical motor activity during action observation is related to hemispheric dominance. Neural Plast. 2018, 14 (2018)CrossRefGoogle Scholar
  36. 36.
    Ritter, P., Moosmann, M., Villringer, A.: Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum. Brain Mapp. 30, 1168–1187 (2009)CrossRefGoogle Scholar
  37. 37.
    Westlake, K.P., et al.: Resting state alpha-band functional connectivity and recovery after stroke. Exp. Neurol. 237, 160–169 (2012)CrossRefGoogle Scholar
  38. 38.
    Dubovik, S., et al.: EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. https://www.hindawi.com/journals/bn/2013/109764/abs/

via Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for Stroke Rehabilitation | SpringerLink

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke – Full Text

Abstract

Upper limb motor deficits in severe stroke survivors often remain unresolved over extended time periods. Novel neurotechnologies have the potential to significantly support upper limb motor restoration in severely impaired stroke individuals. Here, we review recent controlled clinical studies and reviews focusing on the mechanisms of action and effectiveness of single and combined technology-aided interventions for upper limb motor rehabilitation after stroke, including robotics, muscular electrical stimulation, brain stimulation and brain computer/machine interfaces. We aim at identifying possible guidance for the optimal use of these new technologies to enhance upper limb motor recovery especially in severe chronic stroke patients. We found that the current literature does not provide enough evidence to support strict guidelines, because of the variability of the procedures for each intervention and of the heterogeneity of the stroke population. The present results confirm that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients, but the combination of interventions often lacks understanding of single intervention mechanisms of action, which may not reflect the summation of single intervention’s effectiveness. Stroke rehabilitation is a long and complex process, and one single intervention administrated in a short time interval cannot have a large impact for motor recovery, especially in severely impaired patients. To design personalized interventions combining or proposing different interventions in sequence, it is necessary to have an excellent understanding of the mechanisms determining the effectiveness of a single treatment in this heterogeneous population of stroke patients. We encourage the identification of objective biomarkers for stroke recovery for patients’ stratification and to tailor treatments. Furthermore, the advantage of longitudinal personalized trial designs compared to classical double-blind placebo-controlled clinical trials as the basis for precise personalized stroke rehabilitation medicine is discussed. Finally, we also promote the necessary conceptual change from ‘one-suits-all’ treatments within in-patient clinical rehabilitation set-ups towards personalized home-based treatment strategies, by adopting novel technologies merging rehabilitation and motor assistance, including implantable ones.

Introduction

Stroke constitutes a major public health problem affecting millions of people worldwide with considerable impacts on socio-economics and health-related costs. It is the second cause of death (Langhorne et al., 2011), and the third cause of disability-adjusted life-years worldwide (Feigin et al., 2014): ∼8.2 million people were affected by stroke in Europe in 2010, with a total cost of ∼€64 billion per year (Olesen et al., 2012). Due to ageing societies, these numbers might still rise, estimated to increase 1.5–2-fold from 2010 to 2030 (Feigin et al., 2014).

Improving upper limb functioning is a major therapeutic target in stroke rehabilitation (Pollock et al., 2014Veerbeek et al., 2017) to maximize patients’ functional recovery and reduce long-term disability (Nichols-Larsen et al., 2005Veerbeek et al., 2011Pollock et al., 2014). Motor impairment of the upper limb occurs in 73–88% first time stroke survivors and in 55–75% of chronic stroke patients (Lawrence et al., 2001). Constraint-induced movement therapy (CIMT), but also standard occupational practice, virtual reality and brain stimulation-based interventions for sensory and motor impairments show positive rehabilitative effects in mildly and moderately impaired stroke victims (Pollock et al., 2014Raffin and Hummel, 2018). However, stroke survivors with severe motor deficits are often excluded from these therapeutic approaches as their deficit does not allow easily rehabilitative motor training (e.g. CIMT), treatment effects are negligible and recovery unpredictable (Byblow et al., 2015Wuwei et al., 2015Buch et al., 2016Guggisberg et al., 2017).

Recent neurotechnology-supported interventions offer the opportunity to deliver high-intensity motor training to stroke victims with severe motor impairments (Sivan et al., 2011). Robotics, muscular electrical stimulation, brain stimulation, brain computer/machine interfaces (BCI/BMI) can support upper limb motor restoration including hand and arm movements and induce neuro-plastic changes within the motor network (Mrachacz-Kersting et al., 2016Biasiucci et al., 2018).

The main hurdle for an improvement of the status quo of stroke rehabilitation is the fragmentary knowledge about the physiological, psychological and social mechanisms, their interplay and how they impact on functional brain reorganization and stroke recovery. Positive stimulating and negatively blocking adaptive brain reorganization factors are insufficiently characterized except from some more or less trivial determinants, such as number and time of treatment sessions, pointing towards the more the better (Kwakkel et al., 1997). Even the long accepted model of detrimental interhemispheric inhibition of the overactive contralesional brain hemisphere on the ipsilesional hemisphere is based on an oversimplification and lack of differential knowledge and is thus called into question (Hummel et al., 2008Krakauer and Carmichael, 2017Morishita and Hummel, 2017).

Here, we take a pragmatic approach of comparing effectiveness data, keeping this lack of knowledge of mechanisms in mind and providing novel ideas towards precision medicine-based approaches to individually tailor treatments to the characteristics and needs of the individual patient with severe chronic stroke to maximize rehabilitative outcome.[…]

Continue —>   Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke | Brain | Oxford Academic

Conceptualization of longitudinal personalized rehabilitation-treatment designs for patients with severe chronic stroke. Ideally, each patient with severe chronic stroke with a stable motor recovery could be stratified based on objective biomarkers of stroke recovery in order to select the most appropriate/promising neurotechnology-aided interventions and/or their combination for the specific case. Then, these interventions can be administered in the clinic and/or at home in sequence, moving from one to another only when patient’s motor recovery plateaus. In this way, comparisons of the efficacy of each intervention (grey arrows) are still possible, and if the selected interventions and/or their combination are suitable, motor recovery could increase.

Conceptualization of longitudinal personalized rehabilitation-treatment designs for patients with severe chronic stroke. Ideally, each patient with severe chronic stroke with a stable motor recovery could be stratified based on objective biomarkers of stroke recovery in order to select the most appropriate/promising neurotechnology-aided interventions and/or their combination for the specific case. Then, these interventions can be administered in the clinic and/or at home in sequence, moving from one to another only when patient’s motor recovery plateaus. In this way, comparisons of the efficacy of each intervention (grey arrows) are still possible, and if the selected interventions and/or their combination are suitable, motor recovery could increase.

, , , , , , , , , , , ,

Leave a comment

[Abstract] Effects of kinesiotaping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study

BACKGROUND: Post-stroke spasticity is a common complication in patients with stroke and a key contributor to impaired hand function after stroke.
AIM: The purpose of this study was to investigate the effects of Kinesiotaping on managing spasticity of upper extremity and motor performance in patients with subacute stroke.
DESIGN: A Randomized Controlled Pilot Study.
SETTING: One hospital center.
POPULATION: Participants with stroke within six months.
METHODS: Thirty-one participants were enrolled. Patients were randomly allocated into Kinesiotaping (KT) group or control group. In KT group, Kinesio tape was applied as an add- on treatment over the dorsal side of the affected hand during the intervention. Both groups received regular rehabilitation 5 days a week for 3 weeks. The primary outcome was muscle spasticity measured by modified Ashworth Scale (MAS). Secondary outcomes were functional performances of affected limb measured by using Fugl-Meyer assessment for upper extremity (FMA-UE), Brunnstrom stage, and the Simple Test for Evaluating Hand Function (STEF). Measures were taken before intervention, right after intervention (the third week) and two weeks later (the fifth week).
RESULTS: Within-group comparisons yielded significant differences in FMA-UE and Brunnstrom stages at the third and fifth week in the control group (p=0.003-0.019). In the KT group, significant differences were noted in FMA-UE, Brunnstrom stage, and MAS at the third and fifth week (p=0.001-0.035), and in the proximal part of FMA-UE between the third and fifth week (p=0.005). Between-group comparisons showed a significant difference in the distal part of FMA-UE at the fifth week (p=0.037).
CONCLUSIONS: Kinesiotaping could provide some benefits in reducing spasticity and in improving motor performance on the affected hand in patients with subacute stroke.
CLINICAL REHABILITATION IMPACT: Kinesiotaping could be a choice for clinical practitioners to use for effectively managing post-stroke spasticity.

via Effects of kinesiotaping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study – European Journal of Physical and Rehabilitation Medicine 2019 Jun 13 – Minerva Medica – Journals

, , , , , , , , , ,

Leave a comment

[ARTICLE] Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control – Full Text

Abstract

Background

Ankle exoskeletons offer a promising opportunity to offset mechanical deficits after stroke by applying the needed torque at the paretic ankle. Because joint torque is related to gait speed, it is important to consider the user’s gait speed when determining the magnitude of assistive joint torque. We developed and tested a novel exoskeleton controller for delivering propulsive assistance which modulates exoskeleton torque magnitude based on both soleus muscle activity and walking speed. The purpose of this research is to assess the impact of the resulting exoskeleton assistance on post-stroke walking performance across a range of walking speeds.

Methods

Six participants with stroke walked with and without assistance applied to a powered ankle exoskeleton on the paretic limb. Walking speed started at 60% of their comfortable overground speed and was increased each minute (n00, n01, n02, etc.). We measured lower limb joint and limb powers, metabolic cost of transport, paretic and non-paretic limb propulsion, and trailing limb angle.

Results

Exoskeleton assistance increased with walking speed, verifying the speed-adaptive nature of the controller. Both paretic ankle joint power and total limb power increased significantly with exoskeleton assistance at six walking speeds (n00, n01, n02, n03, n04, n05). Despite these joint- and limb-level benefits associated with exoskeleton assistance, no subject averaged metabolic benefits were evident when compared to the unassisted condition. Both paretic trailing limb angle and integrated anterior paretic ground reaction forces were reduced with assistance applied as compared to no assistance at four speeds (n00, n01, n02, n03).

Conclusions

Our results suggest that despite appropriate scaling of ankle assistance by the exoskeleton controller, suboptimal limb posture limited the conversion of exoskeleton assistance into forward propulsion. Future studies could include biofeedback or verbal cues to guide users into limb configurations that encourage the conversion of mechanical power at the ankle to forward propulsion.

Trial registration

N/A.

Background

Walking after a stroke is more metabolically expensive, leading to rapid exhaustion, limited mobility, and reduced physical activity [1]. Hemiparetic walking is slow and asymmetric compared to unimpaired gait. Preferred walking speeds following stroke range between < 0.2 m s− 1 and ~ 0.8 m s− 1 [2] compared to ~ 1.4 m s− 1 in unimpaired adults, and large interlimb asymmetry has been documented in ankle joint power output [34]. The ankle plantarflexors are responsible for up to 50% of the total positive work needed to maintain forward gait [56]; therefore, weakness of the paretic plantarflexors is especially debilitating, and as a result, the paretic ankle is often a specific target of stroke rehabilitation [78910]. In recent years, ankle exoskeletons have emerged as a technology capable of improving ankle power output by applying torque at the ankle joint during walking in clinical populations [78] and healthy controls [11121314]. Myoelectric exoskeletons offer a user-controlled approach to stroke rehabilitation by measuring and adapting to changes in the user’s soleus electromyography (EMG) when generating torque profiles applied at the ankle [15]. For example, a proportional myoelectric ankle exoskeleton was shown to increase the paretic plantarflexion moment for persons post-stroke walking at 75% of their comfortable overground (OVG) speed [8]; despite these improvements, assistance did not reduce the metabolic cost of walking or improve percent paretic propulsion. The authors suggested exoskeleton performance could be limited because the walking speed was restricted to a pace at which exoskeleton assistance was not needed.

Exoskeleton design for improved function following a stroke would benefit from understanding the interaction among exoskeleton assistance, changes in walking speed, and measured walking performance. Increases in walking speed post-stroke are associated with improvements in forward propulsion and propulsion symmetry [16], trailing limb posture [1718], step length symmetries [1719], and greater walking economies [1719]. This suggests that assistive technologies need to account for variability in walking speeds to further improve post-stroke walking outcomes. However, research to date has evaluated exoskeleton performance at only one walking speed, typically set to either the participant’s comfortable OVG speed or a speed below this value [78]. At constant speeds, ankle exoskeletons have been shown to improve total ankle power in both healthy controls [11] and persons post-stroke [8], suggesting the joint powers and joint power symmetries could be improved by exoskeleton technology. Additionally, an exosuit applying assistance to the ankle was able to improve paretic propulsion and metabolic cost in persons post-stroke walking at their comfortable OVG speed [7]. Assessing the impact of exoskeleton assistance on walking performance across a range of speeds is the next logical step toward developing exoskeleton intervention strategies targeted at improving walking performance and quality of life for millions of persons post-stroke.

In order to assess the impact of exoskeleton assistance across a range of walking speeds in persons post-stroke, we developed a novel, speed-adaptive exoskeleton controller that automatically modulates the magnitude of ankle torque with changes in walking speed and soleus EMG. We hypothesized that: 1) Our novel speed-adaptive controller will scale exoskeleton assistance with increases in walking speed as intended. 2) Exoskeleton assistance will lead to increases in total average net paretic ankle power and limb power at all walking speeds. 3) Exoskeleton assistance will lead to metabolic benefits associated with improved paretic average net ankle and limb powers.

Methods

Exoskeleton hardware

We implemented an exoskeleton emulator comprised of a powerful off-board actuation and control system, a flexible Bowden cable transmission, and a lightweight exoskeleton end effector [20]. The exoskeleton end effector includes shank and foot carbon fiber components custom fitted to participants and hinged at the ankle. The desired exoskeleton torque profile was applied by a benchtop motor (Baldor Electric Co, USA) to the carbon-fiber ankle exoskeleton through a Bowden-cable transmission system. An inline tensile load cell (DCE-2500 N, LCM Systems, Newport, UK) was used to confirm the force transmitted by the exoskeleton emulator during exoskeleton assistance.

Speed-adaptive proportional myoelectric exoskeleton controller

Our exoskeleton controller alters the timing and magnitude of assistance with the user’s soleus EMG signal and walking speed (Fig. 1). The exoskeleton torque is determined from Eq. 1, in which participant mass (mparticipant) is constant across speeds, treadmill speed (V) is measured in real-time, the speed gain (Gspeed) is constant for all subjects and across speeds, the adaptive gain (Gadp) is constant for a gait cycle and calculated anew for each gait cycle, and the force-gated and normalized EMG (EMGGRFgated) is a continuously changing variable.

τexo (t)=mparticipant×V×Gspeed×Gadp×EMGGRFgatedτexo (t)=mparticipant×V×Gspeed×Gadp×EMGGRFgated
(1)
Fig. 1
Fig. 1

Novel speed-adaptive myoelectric exoskeleton controller measures and adapts to users’ soleus EMG signal as well as their walking speed in order to generate the exoskeleton torque profile. Raw soleus EMG signal is filtered and rectified to create an EMG envelope, and the created EMG envelope is then gated by anterior GRFs to ensure assistance is only applied during forward propulsion. The adaptive EMG gain is calculated as a moving average of peak force-gated EMG from the last five paretic gait cycles. The pre-speed gain control signal is the product of the force-gated EMG and the adaptive EMG gain. The speed gain is determined using real-time walking speed and computed as 25% of the maximum biological plantarflexion torque at that given walking speed. Exoskeleton torque is the result of multiplying the speed gain with the pre-speed gain control signal

[…]

Continue —> Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , ,

Leave a comment

[Abstract] Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial.

Abstract

OBJECTIVE:

Virtual reality game system is one of novel approaches, which can improve hemiplegic extremity functions of stroke patients. We aimed to evaluate the effect of the Microsoft Xbox 360 Kinect video game system on upper limb motor functions for subacute stroke patients.

METHODS:

The study included 42 stroke patients of which 35 (19 Virtual reality group, 16 control group) completed the study. All patients received 60 minutes of conventional therapy for upper extremity, 5 times per-week for 4 weeks. Virtual reality group additionally received Xbox Kinect game system 30 minutes per-day. Patients were evaluated prior to the rehabilitation and at the end of 4 weeks. Box&Block Test, Functional independence measure self-care score, Brunnstorm stage and Fugl-Meyer upper extremity motor function scale were used as outcome measures.

RESULTS:

The Brunnstrom stages and the scores on the Fugl-Meyer upper extremity, Box&Block Test and Functional independence measure improved significantly from baseline to post-treatment in both the experimental and the control groups. The Brunnstrom stage-upper extremity and Box&Block Test gain for the experimental group were significantly higher compared to the control group, while the Brunnstrom stage-hand, the Functional independence measure gain and Fugl-Meyer gain were similar between the groups.

CONCLUSIONS:

We found evidence that kinect-based game system in addition to conventional therapy may have supplemental benefit for stroke patients. However, for virtual reality game systems to enter the routine practice of stroke rehabilitation, randomized controlled clinical trials with longer follow-up periods and larger sample sizes are needed especially to determine an optimal duration and intensity of the treatment.

via https://www.ncbi.nlm.nih.gov/pubmed/30193810

, , , , , ,

Leave a comment

[Abstract] Using Vision to Study Poststroke Recovery and Test Hypotheses About Neurorehabilitation

Approximately one-third of stroke patients suffer visual field impairment as a result of their strokes. However, studies using the visual pathway as a paradigm for studying poststroke recovery are limited. In this article, we propose that the visual pathway has many features that make it an excellent model system for studying poststroke neuroplasticity and assessing the efficacy of therapeutic interventions. First, the functional anatomy of the visual pathway is well characterized, which makes it well suited for functional neuroimaging studies of poststroke recovery. Second, there are multiple highly standardized and clinically available diagnostic tools and outcome measures that can be used to assess visual function in stroke patients. Finally, as a sensory modality, the assessment of vision is arguably less likely to be affected by confounding factors such as functional compensation and patient motivation. Given these advantages, and the general similarities between poststroke visual field recovery and recovery in other functional domains, future neurorehabilitation studies should consider using the visual pathway to better understand the physiology of neurorecovery and test potential therapeutics.

via Using Vision to Study Poststroke Recovery and Test Hypotheses About Neurorehabilitation – Ania Busza, Colleen L. Schneider, Zoë R. Williams, Bradford Z. Mahon, Bogachan Sahin, 2019

, , , , ,

Leave a comment

[Abstract] Mental practice for upper limb motor restoration after stroke: an updated meta-analysis of randomized controlled trials

Abstract

OBJECTIVES:

Stroke is a common refractory disease that may cause dysfunctions in the motor system. The study aimed to evaluate the effects of mental practice (MP) compared with other methods on upper limb motor restoration after stroke.

METHODS:

Eligible studies were identified from Pubmed, Embase, and The Cochrane Library. The study quality was assessed with the Cochrane risk assessment tool and heterogeneity test was performed using I2 statistic and Q test. Random- and fixed-effects models were used and data were reported as weighted mean difference (WMD) and 95% confidence intervals (CIs). The publication bias was examined by Egger’s test and the sensitivity analysis was conducted by ignoring one literature at a time to observe whether this document could reverse the merged results.

RESULTS:

Total of 12 randomized controlled trials were identified. No evidence of publication bias was found. In a fixed-effect model, MP (experimental group) resulted in a significantly larger increase in Fugl-Meyer assessment (FMA) compared with other exercise methods (control group) (WMD = 2.0702, 95% CI: 1.2354-2.905, Z = 4.8606, P < 0.001). In a random-effect model, a significant pooled outcome was obtained for action research arm test (ARAT) (WMD = 4.0936, 95% CI: 1.9900-6.1971, Z = 3.8141, P < 0.001). Sensitivity analysis revealed that the merged WMDs of FMA and ARAT were not reversed.

CONCLUSIONS:

Mental practice is effective on upper limb motor restoration after stroke. It is recommended to treat with MP to improve the outcome of stroke.

 

via Mental practice for upper limb motor restoration after stroke: an updated meta-analysis of randomized controlled trials. – PubMed – NCBI

, , , , , , , , , ,

Leave a comment

[Abstract] Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis

Background. Clinical trials have demonstrated some benefits of electromyogram-triggered/controlled neuromuscular electrical stimulation (EMG-NMES) on motor recovery of upper limb (UL) function in patients with stroke. However, EMG-NMES use in clinical practice is limited due to a lack of evidence supporting its effectiveness.

Objective. To perform a systematic review and meta-analysis to determine the effects of EMG-NMES on stroke UL recovery based on each of the International Classification of Functioning, Disability, and Health (ICF) domains.

Methods. Database searches identified clinical trials comparing the effect of EMG-NMES versus no treatment or another treatment on stroke upper extremity motor recovery. A meta-analysis was done for outcomes at each ICF domain (Body Structure and Function, Activity and Participation) at posttest (short-term) and follow-up periods. Subgroup analyses were conducted based on stroke chronicity (acute/subacute, chronic phases). Sensitivity analysis was done by removing studies rated as poor or fair quality (PEDro score <6).

Results. Twenty-six studies (782 patients) met the inclusion criteria. Fifty percent of them were considered to be of high quality. The meta-analysis showed that EMG-NMES has a robust short-term effect on improving UL motor impairment in the Body Structure and Function domain. No evidence was found in favor of EMG-NMES for the Activity and Participation domain. EMG-NMES had a stronger effect for each ICF domain in chronic (≥3 months) compared to acute/subacute phases.

Conclusion. EMG-NMES is effective in the short term in improving UL impairment in individuals with chronic stroke.

 

via Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis – Katia Monte-Silva, Daniele Piscitelli, Nahid Norouzi-Gheidari, Marc Aureli Pique Batalla, Philippe Archambault, Mindy F. Levin, 2019

, , , , , , , , , , ,

Leave a comment

[Poster Abstract] GameBall: the development of a novel platform to provide enjoyable and affordable hand and arm rehabilitation following stroke

Purpose: Poor arm recovery post-stroke can lead to increased dependence, reduced quality of life, and is a strong predictor of lower psychological well being following stroke. Effective treatment interventions are characterised by repetitive practice. This repetitive nature can make doing exercises boring, and coupled with a lack of community resources ongoing rehabilitation of the arm is challenging. Therefore effective home-based stroke rehabilitation devices that are motivating and enjoyable to use, and affordable are needed.

First page of article

via GameBall: the development of a novel platform to provide enjoyable and affordable hand and arm rehabilitation following stroke – Physiotherapy

, , , , , , , , , ,

Leave a comment

%d bloggers like this: