Posts Tagged stroke rehabilitation


Recently, the functional near-infrared spectroscopy (600–900nm electromagnetic wave) (ff-NIRS)-based rehabilitation researches have been studied for understanding the human brain. Although ff-NIRS can successfully measure the relative blood concentration changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) as an assessment tool to identify significant clinical intervention during pre- and post-rehabilitation therapy for stroke survivors, there is insufficient information particularly on the use of ff-NIRS as a clinical translation in upper extremity function rehabilitation. In order to widely utilize the ff-NIRS for upper extremity rehabilitation, device information, experiment design, measurement procedure, and analyzing method are described for clinician aspect in this study. In addition, further research trend was introduced from previous studies for stroke survivor rehabilitation. The authors believed that the information provided in this study can be a useful guideline to encourage future researchers to focus on upper extremity function rehabilitation of stroke survivors.




, , , , , , , ,

Leave a comment

[Abstract] Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials

Background: Stroke is a major cause of life-long disability in adults, associated with poor quality of life. Virtual reality (VR)-based therapy systems are known to be helpful in improving motor functions following stroke, but recent clinical findings have not been included in the previous publications of meta-analysis studies.

Aims: This meta-analysis was based on the available literature to evaluate the therapeutic potential of VR as compared to dose-matched conventional therapies (CT) in patients with stroke.

Methods: We retrieved relevant articles in EMBASE, MEDLINE, PubMed, and Web of Science published between 2010 and February 2019. Peer-reviewed randomized controlled trials that compared VR with CT were included.

Results: A total of 27 studies met the inclusion criteria. The analysis indicated that the VR group showed statistically significant improvement in the recovery of UL function (Fugl-Meyer Upper Extremity [FM-UE]: n = 20 studies, Mean Difference [MD] = 3.84, P = .01), activity (Box and Block Test [BBT]: n = 13, MD = 3.82, P = .04), and participation (Motor Activity Log [MAL]: n = 6, MD = 0.8, P = .0001) versus the control group.

Conclusion: VR appears to be a promising therapeutic technology for UL motor rehabilitation in patients with stroke.


via Virtual reality therapy for upper limb rehabilitation in patients with stroke: a meta-analysis of randomized clinical trials: Brain Injury: Vol 0, No 0

, , , , , , , ,

Leave a comment

[Abstract] The Role of Robotic Path Assistance and Weight Support in Facilitating 3D Movements in Individuals With Poststroke Hemiparesis

Background. High-intensity repetitive training is challenging to provide poststroke. Robotic approaches can facilitate such training by unweighting the limb and/or by improving trajectory control, but the extent to which these types of assistance are necessary is not known.

Objective. The purpose of this study was to examine the extent to which robotic path assistance and/or weight support facilitate repetitive 3D movements in high functioning and low functioning subjects with poststroke arm motor impairment relative to healthy controls.

Methods. Seven healthy controls and 18 subjects with chronic poststroke right-sided hemiparesis performed 300 repetitions of a 3D circle-drawing task using a 3D Cable-driven Arm Exoskeleton (CAREX) robot. Subjects performed 100 repetitions each with path assistance alone, weight support alone, and path assistance plus weight support in a random order over a single session. Kinematic data from the task were used to compute the normalized error and speed as well as the speed-error relationship.

Results. Low functioning stroke subjects (Fugl-Meyer Scale score = 16.6 ± 6.5) showed the lowest error with path assistance plus weight support, whereas high functioning stroke subjects (Fugl-Meyer Scale score = 59.6 ± 6.8) moved faster with path assistance alone. When both speed and error were considered together, low functioning subjects significantly reduced their error and increased their speed but showed no difference across the robotic conditions.

Conclusions. Robotic assistance can facilitate repetitive task performance in individuals with severe arm motor impairment, but path assistance provides little advantage over weight support alone. Future studies focusing on antigravity arm movement control are warranted poststroke.


via The Role of Robotic Path Assistance and Weight Support in Facilitating 3D Movements in Individuals With Poststroke Hemiparesis – Preeti Raghavan, Seda Bilaloglu, Syed Zain Ali, Xin Jin, Viswanath Aluru, Megan C. Buckley, Alvin Tang, Arash Yousefi, Jennifer Stone, Sunil K. Agrawal, Ying Lu, 2020

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Cable driven exoskeleton for upper-limb rehabilitation: A design review


One of the primary reasons for long-term disabilities in the world is strokes. The causes of these cerebrovascular diseases are various, i.e., high blood pressure, heart disease, etc. For those who survive strokes, this affectation causes lose in mobility of extremities, requiring the intervention of long session with a therapeutic professional to recover the movement of the impair limb. Hence, the investment to threat this condition is usually high. Those devices permit the user a mean to conduct the therapies without the constant supervision of a professional. Furthermore, exoskeletons are capable of maintaining a detailed recording of the forces and movements developed for the patients throughout the session. However, the construction of an exoskeleton is not cheap principally for the actuation systems, especially if the exoskeleton requires the actuator to be placed at the joints of the user; thus, the actuator at a joint would have to withstand the load of the actuator of the following joint and so on.

Researchers have addressed this drawback by applying cable transmission systems that allow the exoskeleton to place their actuator at a base, reducing the weight of their design and decreasing their cost. Thus, this paper reviews the principal models of cable-driven exoskeleton for stroke rehabilitation focusing on the upper-limb. The analysis departs from the study of the anatomy of the arm in all its extension, including the shoulder, elbow, wrist, fingers, and the thumb. Besides, it also includes the mechanical consideration the researchers have to take in mind to design a proper exoskeleton. Then, the article presents a compendium of the different transmission systems found in the literature, addressing their advantages, disadvantages and their requirements for the design. Lastly, the paper reviews the cable-driven exoskeleton for stroke rehabilitation of the upper limb. Again, for this analysis, it is included the design consideration of each prototype focusing on their advantages in terms of anatomical mechanics.


, , , , , , , ,

Leave a comment

[Abstract] Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods


  • NIRS was designed to detect effect of stimulation on cortical activation response.
  • Multisensory environment can induce cortical activation in most brain regions.
  • Multisensory stimuli are more beneficial to neural activities and cognitive control.
  • Activation of the motor cortex is closely related to the cognitive performance.



This study aimed to assess the effects of the multisensory rehabilitation product for stroke patients on cortical activation response through near-infrared spectroscopy (NIRS).


The music rehabilitation glove (MRG), multisensory rehabilitation product, was developed with a user-centered design concept. The 40-channel NIRS system monitored the cortical activation changes in the motor cortex (MC), prefrontal cortex (PFC), temporal lobe (TL) and occipital lobe (OL) of 22 young subjects during “sequential finger-to-thumb opposition movements (SFTOM)” phase of traditional training and “musical finger-to-thumb opposition movements (MFTOM)” phase of MRG training.


The two phases of training showed significant activation (P < 0.05) in the cerebral cortex compared with baseline, with more activation during MFTOM in the MC, PFC and TL. Compared with SFTOM, there were 22 channels of cortical activation in MFTOM that had significant enhancements (P < 0.05). There was also a significant positive correlation between the prefrontal cortex and motor cortex in the cortical activation.


According to these results, MFTOM-induced cortical activation in the MC, PFC and TL with visual, auditory and tactile stimuli was stronger than SFTOM, providing evidence that the multisensory stimulation is more beneficial to cortical activation and cognitive control to promote neurological recovery.

via Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods – ScienceDirect

, , , , , , , , ,

Leave a comment

[Abstract] Fugl-Meyer Assessment Scores Are Related With Kinematic Measures in People with Chronic Hemiparesis after Stroke


Background: Stroke often results in motor impairment and limited functional capacity. This study aimed to verify the relationship between widely used clinical scales and instrumented measurements to evaluate poststroke individuals with mild, moderate, and severe motor impairment.

Methods: This cross-sectional study included 34 participants with chronic hemiparesis after stroke. Fugl-Meyer Assessment and Modified Ashworth Scale were used to quantify upper and lower limb motor impairment and the resistance to passive movement (i.e., spasticity), respectively. Upper limb Motor performance (movement time and velocities) and movement quality (range of motion, smoothness and trunk displacement) were analyzed during a reaching forward task using an optoelectronic system (instrumented measurement). Lower limb motor performance (gait and functional mobility parameters) was assessed by using an inertial measurement unit system.

Findings: Fugl-Meyer Assessment correlated with motor performance (upper and lower limbs) and with movement quality (upper limb). Modified Ashworth scale correlated with movement quality (upper limb). Cutoff values of 9.0 cm in trunk anterior displacement and .57 m/s in gait velocity were estimated to differentiate participants with mild/moderate and severe compromise according to the Fugl-Meyer Assessment.

Conclusions: These results suggest that the Fugl-Meyer Assessment can be used to infer about motor performance and movement quality in chronic poststroke individuals with different levels of impairment.


via Fugl-Meyer Assessment Scores Are Related With Kinematic Measures in People with Chronic Hemiparesis after Stroke – ScienceDirect

, , , , , , , ,

Leave a comment

[Abstract] Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial

The aim of this study was to compare the effects of two kinds of wrist-hand orthosis on wrist flexor spasticity in chronic stroke patients.

This is a randomized controlled trial.

The study was conducted in a rehabilitation center.

A total of 40 chronic hemiparetic stroke patients with wrist flexor spasticity were involved in the study.

Patients were randomly assigned to either an experimental group (conventional rehabilitation therapy + 3D-printed orthosis, 20 patients) or a control group (conventional rehabilitation therapy + low-temperature thermoplastic plate orthosis, 20 patients). The time of wearing orthosis was about 4–8 hours per day for six weeks.

Primary outcome measure: Modified Ashworth Scale was assessed three times (at baseline, three weeks, and six weeks). Secondary outcome measures: passive range of motion, Fugl-Meyer Assessment score, visual analogue scale score, and the swelling score were assessed twice (at baseline and six weeks). The subjective feeling score was assessed at six weeks.

No significant difference was found between the two groups in the change of Modified Ashworth Scale scores at three weeks (15% versus 25%, P = 0.496). At six weeks, the Modified Ashworth Scale scores (65% versus 30%, P = 0.02), passive range of wrist extension (P < 0.001), ulnar deviation (P = 0.028), Fugl-Meyer Assessment scores (P < 0.001), and swelling scores (P < 0.001) showed significant changes between the experimental group and the control group. No significant difference was found between the two groups in the change of visual analogue scale scores (P = 0.637) and the subjective feeling scores (P = 0.243).

3D-printed orthosis showed greater changes than low-temperature thermoplastic plate orthosis in reducing spasticity and swelling, improving motor function of the wrist and passive range of wrist extension for stroke patients.

via Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial – Yanan Zheng, Gongliang Liu, Long Yu, Yanmin Wang, Yuan Fang, Yikang Shen, Xiuling Huang, Lei Qiao, Jianzhong Yang, Ying Zhang, Zikai Hua,

, , , , , , , , ,

Leave a comment

[Abstract] QM-FOrMS: A portable and cost-effective upper extremity rehabilitation system


Long-term rehabilitation opportunities are critical for millions of individuals with chronic upper limb motor deficits striving to improve their motor performance. While formal rehabilitation is well organized in the acute stages of stroke, there is minimal professional support of rehabilitation across the lifespan. In this paper, we introduce an upper extremity rehabilitation system, the Quality of Movement Feedback-Oriented Measurement System (QM-FOrMS), by integrating cost-effective portable sensors and clinically verified motion quality analysis towards individuals with upper limb motor deficits. Specifically, QM-FOrMS is comprised of an eTextile pressure sensitive mat, named Smart Mat, a sensory can, named Smart Can, and a mobile device. A personalizable and adaptive upper limb rehabilitation program is developed, including both unilateral and bilateral functional activities which can be selected from a list or custom designed to further tailor the program to the individual.


via QM-FOrMS: A portable and cost-effective upper extremity rehabilitation system – ScienceDirect

, , , , , , , , ,

Leave a comment

[ARTICLE] Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System – Full Text


Background: New technologies to improve post-stroke rehabilitation outcomes are of great interest and have a positive impact on functional, motor, and cognitive recovery. Identifying the most effective rehabilitation intervention is a recognized priority for stroke research and provides an opportunity to achieve a more desirable effect. Objective: The objective is to verify the effect of new technologies on motor outcomes of the upper limbs, functional state, and cognitive functions in post-stroke rehabilitation. Methods: Forty two post-stroke patients (8.69 ± 4.27 weeks after stroke onset) were involved in the experimental study during inpatient rehabilitation. Patients were randomly divided into two groups: conventional programs were combined with the Armeo Spring robot-assisted trainer (Armeo group; n = 17) and the Kinect-based system (Kinect group; n = 25). The duration of sessions with the new technological devices was 45 min/day (10 sessions in total). Functional recovery was compared among groups using the Functional Independence Measure (FIM), and upper limbs’ motor function recovery was compared using the Fugl–Meyer Assessment Upper Extremity (FMA-UE), Modified Ashworth Scale (MAS), Hand grip strength (dynamometry), Hand Tapping test (HTT), Box and Block Test (BBT), and kinematic measures (active Range Of Motion (ROM)), while cognitive functions were assessed by the MMSE (Mini-Mental State Examination), ACE-R (Addenbrooke’s Cognitive Examination-Revised), and HAD (Hospital Anxiety and Depression Scale) scores. Results: Functional independence did not show meaningful differences in scores between technologies (p > 0.05), though abilities of self-care were significantly higher after Kinect-based training (p < 0.05). The upper limbs’ kinematics demonstrated higher functional recovery after robot training: decreased muscle tone, improved shoulder and elbow ROMs, hand dexterity, and grip strength (p < 0.05). Besides, virtual reality games involve more arm rotation and performing wider movements. Both new technologies caused an increase in overall global cognitive changes, but visual constructive abilities (attention, memory, visuospatial abilities, and complex commands) were statistically higher after robotic therapy. Furthermore, decreased anxiety level was observed after virtual reality therapy (p < 0.05). Conclusions: Our study displays that even a short-term, two-week training program with new technologies had a positive effect and significantly recovered post-strokes functional level in self-care, upper limb motor ability (dexterity and movements, grip strength, kinematic data), visual constructive abilities (attention, memory, visuospatial abilities, and complex commands) and decreased anxiety level.

1. Introduction

Insufficient motor control compromises the ability of Stroke Patients (SP) to perform activities of daily living and will likely have a negative impact on the quality of life. Improving Upper Limb (UL) function is an important part of post-stroke rehabilitation in order to reduce disability []. Recovery in the context of motor ability may refer to the return of pre-stroke muscle activation patterns or to compensation involving the appearance of alternative muscle activation patterns that attempt to compensate for the motor function deficit []. The past decades have seen rapid development of a wide variety of assistive technologies that can be used in UL rehabilitation. These include electromyographic biofeedback, virtual reality, electromechanical and robotic devices, electrical stimulation, transcranial magnetic stimulation, direct current stimulation, and orthoses []. Currently, two effective technologies that provide external feedback to SP during training, improve the retention of learned skills, and may be able to enhance the motor recovery are discussed [].

Virtual Reality (VR): The Microsoft TM Kinect-based system provides feedback on movement execution and/or goal attainment []. Incorporating therapy exercises into virtual games can make therapy more enjoyable and more realistic, such that task-based exercises have increased applicability in the clinical environment [,], increasing motivation and therefore adherence, which are useful for navigating this virtual environment; this has been identified as the most feasible for future implementation [].

Electromechanical and robotic devices can move passive UL along more secure movement trajectories and provide either assistance or resistance to movement of a single joint or control of inter-segmental coordination. Recent technological advances have the ability to control multiple joints accurately at the same time, enabling them to produce more realistic task-based exercises for SP []. Compared to manual therapy, robots have the potential to provide intensive rehabilitation consistently for a longer duration []. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires physiological limb muscle activation, which can be achieved through functional UL movement exercises and activation of the appropriate peripheral receptors []. The Armeo Spring robot-assisted trainer device may improve UL motor function recovery as predicted by reshaping of cortical and transcallosal plasticity, according to the baseline cortical excitability []. Knowledge of the potential brain plasticity reservoir after brain damage constitutes a prerequisite for an optimal rehabilitation strategy [,]. There is evidence that robot training for the hand is superior; during post-stroke rehabilitation, hand training is likely to be the most useful [,].

Previous studies have shown that the use of systems based on VR environments, motion sensors, and robotics can improve motor function. Currently, no high-quality evidence can be found for any interventions that are currently used as part of routine practice, and evidence is insufficient to enable comparison of the relative effectiveness of interventions [,,].

The objectives of the study are to clarify in which area of functional UL recovery these new technologies are more suitable and effective and how much these interventions affect functional state and cognitive functions.

We raise the hypothesis that a robot-assisted device and virtual reality both have a positive effect on functional independence recovery in stroke-affected patients; however, having a different influence on UL motor function and cognitive changes. We assume that the robot-assisted device is more efficient and more accurately allows selecting tasks for developing specific motor function (range of motion, strength or dexterity of the affected arm), while Kinect-based games provide more free movements that are less suitable for specific motor function development and may be more targeted for cognitive functions.


Continue —>  Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System

, , , , , , , , , ,

Leave a comment

[Abstract] Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study


BACKGROUND: Post-stroke spasticity is a common complication in patients with stroke and a key contributor to impaired hand function after stroke.
AIM: The purpose of this study was to investigate the effects of kinesio taping on managing spasticity of upper extremity and motor performance in patients with subacute stroke.
DESIGN: A randomized controlled pilot study.
SETTING: A hospital center.
POPULATION: Participants with stroke within six months.
METHODS: Thirty-one participants were enrolled. Patients were randomly allocated into kinesio taping (KT) group or control group. In KT group, Kinesio Tape was applied as an add-on treatment over the dorsal side of the affected hand during the intervention. Both groups received regular rehabilitation 5 days a week for 3 weeks. The primary outcome was muscle spasticity measured by modified Ashworth Scale (MAS). Secondary outcomes were functional performances of affected limb measured by using Fugl-Meyer assessment for upper extremity (FMA-UE), Brunnstrom stage, and the Simple Test for Evaluating Hand Function (STEF). Measures were taken before intervention, right after intervention (the third week) and two weeks later (the fifth week).
RESULTS: Within-group comparisons yielded significant differences in FMA-UE and Brunnstrom stages at the third and fifth week in the control group (P=0.003-0.019). In the KT group, significant differences were noted in FMA-UE, Brunnstrom stage, and MAS at the third and fifth week (P=0.001-0.035), and in the proximal part of FMA-UE between the third and fifth week (P=0.005). Between-group comparisons showed a significant difference in the distal part of FMA-UE at the fifth week (P=0.037).
CONCLUSIONS: Kinesio taping could provide some benefits in reducing spasticity and in improving motor performance on the affected hand in patients with subacute stroke.
CLINICAL REHABILITATION IMPACT: Kinesio taping could be a choice for clinical practitioners to use for effectively managing post-stroke spasticity.


via Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study – European Journal of Physical and Rehabilitation Medicine 2019 October;55(5):551-7 – Minerva Medica – Journals

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: