Posts Tagged subacute stroke

[Abstract] A low cost kinect-based virtual rehabilitation system for inpatient rehabilitation of the upper limb in patients with subacute stroke: A randomized, double-blind, sham-controlled pilot trial.



We designed this study to prove the efficacy of the low-cost Kinect-based virtual rehabilitation (VR) system for upper limb recovery among patients with subacute stroke.


A double-blind, randomized, sham-controlled trial was performed. A total of 23 subjects with subacute stroke (<3 months) were allocated to sham (n = 11) and real VR group (n = 12). Both groups participated in a daily 30-minute occupational therapy for upper limb recovery for 10 consecutive weekdays. Subjects received an additional daily 30-minute Kinect-based or sham VR. Assessment was performed before the VR, immediately and 1 month after the last session of VR. Fugl-Meyer Assessment (FMA) (primary outcome) and other secondary functional outcomes were measured. Accelerometers were used to measure hemiparetic upper limb movements during the therapy.


FMA immediately after last VR session was not different between the sham (46.8 ± 16.0) and the real VR group (49.4 ± 14.2) (P = .937 in intention to treat analysis). Significant differences of total activity counts (TAC) were found in hemiparetic upper limb during the therapy between groups (F2,26 = 4.43; P = .22). Real VR group (107,926 ± 68,874) showed significantly more TACs compared with the sham VR group (46,686 ± 25,814) but there was no statistical significance between real VR and control (64,575 ± 27,533).


Low-cost Kinect-based upper limb rehabilitation system was not more efficacious compared with sham VR. However, the compliance in VR was good and VR system induced more arm motion than control and similar activity compared with the conventional therapy, which suggests its utility as an adjuvant additional therapy during inpatient stroke rehabilitation.

PMID:29924029 DOI:10.1097/MD.0000000000011173

via A low cost kinect-based virtual rehabilitation system for inpatient rehabilitation of the upper limb in patients with subacute stroke: A randomized… – PubMed – NCBI

, , , , , , , ,

Leave a comment

[ARTICLE] Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients – Full Text



Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).


Chronic conditions such as stroke are becoming more prevalent as the world’s population ages (Christensen et al., 2009). Although the number of fatalities caused by stroke has fallen in most countries, stroke is still a leading cause of acquired adult hemiparesis (Langhorne et al., 2009; Liu and Duan, 2017). Up to 85% of patients who survive a stroke experience hemiparesis, resulting in impaired movement of an arm and hand (Nakayama et al., 1994). Among them, a large proportion (46% to 95%) remain symptomatic six months after experiencing an ischemic stroke (Kong et al., 2011). The loss of upper limb function adversely affects the quality of life and impedes the normal use of other body parts. The motor function recovery of the upper limbs is more difficult than that of the lower extremities (Kwakkel et al., 1996; Nichols-Larsen et al., 2005; Día and Gutiérrez, 2013). Functional motor recovery in the affected upper extremities in patients with hemiparesis is the primary goal of physical therapists (Page et al., 2001). Evidence suggests that repetitive, task-oriented training of the paretic upper extremity is beneficial (Barreca et al., 2003; Wolf et al., 2006). Rehabilitation intervention is a critical part of the recovery and studies have reported that intensive repeated practice is likely necessary to modify the neural organization and favor the recovery of the functional upper limb motor skills of stroke survivors (Brunnstrom, 1966; Kopp et al., 1999; Taub et al., 1999; Wolf et al., 2006; Nudo, 2011). Meta-analyses of clinical trials have indicated that longer sessions of practice promote better outcomes in the case of impairments, thus improving the daily activities of people after a stroke (Nudo, 2011; Veerbeek et al., 2014; Sehatzadeh, 2015; French et al., 2016). However, the execution of these conventional rehabilitation techniques is tedious, resource-intensive, and often requires the transportation of patients to specialized facilities (Jutai and Teasell, 2003; Teasell et al., 2009).

Virtual reality training is becoming a promising technology that can promote motor recovery by providing high-intensity, repetitive, and task-orientated training with computer programs simulating three-dimensional situations in which patients play by moving their body parts (Saposnik et al., 2010, 2011; Kim et al., 2011; Laver et al., 2015; Tsoupikova et al., 2015). The gaming industry has developed a variety of virtual reality systems for both home and clinical applications (Saposnik et al., 2010; Bao et al., 2013; Orihuela-Espina et al., 2013; Gatica-Rojas and Méndez-Rebolledo, 2014). The most difficult task related to hemiparesis rehabilitation after a stroke is the functional recovery of the affected hand (Carey et al., 2002). To facilitate the functional recovery of a paretic hand along with that of the proximal upper extremity, an ideal virtual reality system should be able to track hand position and motion, which is not a feature of most existing virtual reality systems (Jang et al., 2005; Merians et al., 2009). The leap motion controller developed by Leap Motion ( provides a means of capturing and tracking the fine movements of the hand and fingers, while controlling a virtual environment requiring hand-arm coordination as part of the practicing of virtual tasks (Iosa et al., 2015; Smeragliuolo et al., 2016).

Most virtual reality studies have often only involved patients who have experienced chronic stroke (Piron et al., 2003; Yavuzer et al., 2008; Saposnik et al., 2010; da Silva Cameirao et al., 2011). For patients in the chronic stage, who had missed the window of opportunity present at the acute and subacute stages (in which the brain plasticity peaks), rehabilitation-therapy-induced neuroplasticity can only be effective within a relatively narrow range (Chen et al., 2002). No motor function recovery of the hands, six months after the onset of a stroke, indicates a poor prognosis for hand function (Duncan et al., 1992).

We hypothesized that Leap Motion-based virtual reality training would facilitate motor functional recovery of the affected upper limb, as well as neural reorganization in subacute stroke patients. Functional magnetic resonance imaging (fMRI), also called blood oxygenation level-dependent fMRI (BOLD-fMRI), is widely used as a non-invasive, convenient, and economical method to examine cerebral function (Ogawa et al., 1990; Iosa et al., 2015; Yu et al., 2016). In the present study, we evaluated the brain function reorganization by fMRI, as well as the motor function recovery of the affected upper limb in patients with subacute stroke using Leap Motion-based virtual reality training.[…]

Continue —>  Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients Wang Zr, Wang P, Xing L, Mei Lp, Zhao J, Zhang T – Neural Regen Res

Figure 1: Leap Motion-based virtual reality system and training games.
(A, B) Leap Motion-based virtual reality system; (C) petal-picking game; (D) piano-playing game; (E) robot-assembling game; (F) object-catching with balance board game; (G) firefly game; (H) bee-batting game.



, , , , , , , , ,

Leave a comment

[Abstract] Upper limb motor training using a Saebo™ orthosis is feasible for increasing task-specific practice in hospital after stroke



Assistive technologies have the potential to increase the amount of movement practice provided during inpatient stroke rehabilitation. The primary aim of this study was to investigate the feasibility of using the Saebo-Flex device in a subacute stroke setting to increase task-specific practice for people with little or no active hand movement. The secondary aim was to collect preliminary data comparing hand/upper limb function between a control group that received usual rehabilitation and an intervention group that used, in addition, the Saebo-Flex device.


Nine inpatients (mean three months (median six weeks) post-stroke) participated in this feasibility study conducted in an Australian rehabilitation setting, using a randomised pre-test and post-test design with concealed allocation and blinded outcome assessment. In addition to usual rehabilitation, the intervention group received eight weeks of daily motor training using the Saebo-Flex device. The control group received usual rehabilitation (task-specific motor training) only. Participants were assessed at baseline (pre-randomisation) and at the end of the eight-week study period. Feasibility was assessed with respect to ease of recruitment, application of the device, compliance with the treatment programme and safety. Secondary outcome measures included the Motor Assessment Scale (upper limb items), Box and Block Test, grip strength and the Stroke Impact Scale.


Recruitment to the study was very slow because of the low number of patients with little or no active hand movement. Otherwise, the study was feasible in terms of being able to apply the Saebo-Flex device and compliance with the treatment programme. There were no adverse events, and a greater amount of upper limb rehabilitation was provided to the intervention group. While there were trends in favour of the intervention group, particularly for dexterity, no between-group differences were seen for any of the secondary outcomes.


This pilot feasibility study showed that the use of assistive technology, specifically the Saebo-Flex device, could be successfully used in a sample of stroke patients with little or no active hand movement. However, recruitment to the trial was very slow. The use of the Saebo-FlexTM device had variable results on outcomes, with some positive trends seen in hand function, particularly dexterity.

Source: Upper limb motor training using a Saebo™ orthosis is feasible for increasing task-specific practice in hospital after stroke – Lannin – 2016 – Australian Occupational Therapy Journal – Wiley Online Library

, , , , , , , ,

Leave a comment

[Abstract] Combined tDCS and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study



Visual field defects after posterior cerebral artery stroke can be improved by vision restoration training (VRT), but when combined with transcranial direct current stimulation (tDCS) which alters brain excitability, vision recovery can be potentiated in the chronic stage. To date the combination of VRT and tDCS has not been evaluated in post-acute stroke rehabilitation.


To determine whether combined tDCS and VRT can be effectively implemented in the early recovery phase following a stroke, we wished to explore the feasibility, safety and efficacy of an early intervention.


Open-label pilot study including a case series of seven tDCS/VRT versus a convenience sample of seven control patients ( ID: NCT02935413).


Rehabilitation center


Patients with homonymous visual field defects following a posterior cerebral artery stroke.


Seven homonymous hemianopia patients were prospectively treated with 10 sessions of combined tDCS (2mA, 10 daily sessions of 20 min) and VRT at 66 (±50) days on average post-stroke. Visual field recovery was compared with retrospective data of 7 controls, whose defect sizes and age of lesions were matched to the experimental subjects and who had received standard rehabilitation with compensatory eye movement and exploration training.


All seven patients of the treatment group completed the treatment protocol. Safety and acceptance were excellent, and patients reported occasional skin itching beneath the electrodes as the only minor side effect. Irrespective of their treatment, both groups (treatment and control) showed improved visual fields as documented by an increased mean sensitivity threshold in dB (decibel) in standard static perimetry. Recovery was significantly greater (p<.05) in tDCS/VRT patients (36.73 ± 37.0%) than in controls (10.74 ± 8.86).


In this open-label pilot study, tDCS/VRT in sub-acute stroke was safe, with excellent applicability and acceptance of the treatment. Preliminary effectiveness calculations show that tDCS/VRT may be superior to standard vision training procedures. A confirmatory, larger-sample, controlled, randomized and double-blind trial is now underway to compare real- vs. sham-tDCS supported visual field training in the early vision rehabilitation phase.

This study was supported by the ERA-net neuron network “Restoration of Vision after Stroke (REVIS)”, (BMBF grant nr: 01EW1210). ID: NCT02935413

Source: Combined tDCS and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study

, , , , , , , , , ,

Leave a comment

[ARTICLE] The Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke – Full Text PDF


Objectives: Stroke is the leading cause of long-term disability. Hand motor impairment resulting from chronic stroke may have extensive physical, psychological, financial, and social implications despite available rehabilitative treatments. The best time to start treatment for stroke, is in sub-acute period. Repetitive transcranial magnetic stimulation (rTMS) is a method of stimulating and augmenting the neurophysiology of the motor cortex in order to promote the neuroplastic changes that are associated with motor recovery. The purpose of this study was to compare the effects of repetitive transcranial magnetic stimulation protocols plus routine rehabilitation on hand motor functions and hand corticomotor excitability in stroke patients with hemiplegia with pure routine rehabilitation programs.

Methods: This study was a randomized clinical trial which was performed on 24 patients with hemiplegia who were randomly divided in to three groups. One group (n=7), received high frequency repetitive transcranial magnetic stimulation (Hf rTMS) on lesioned M1 with routine rehabilitation program, and the other group (n=7), received rehabilitation program with low frequency repetitive transcranial magnetic stimulation stimulation (Lf rTMS) on nonlesined M1, and a control group (n=10), who were given only routine rehabilitation programs. The treatment was performed for 10 sessions, three times peri-test, Post and follow-up about neurophysiological contralesional hemisphere evaluations using record of MEP wave indices by single pulse TMS, and assessing functional wolf test and hand grip power of disabled hand by dynamometer.

Results: The results demonstrated that the rest MEP threshold reduction in experimental group which received high frequency magnetic stimulation was statistically significant (P<0.05). There was similar finding for active MEP threshold in the both high and low frequency but not in control group (P<0.05). Also there were more significant relation between obtained results from WOLF test and grip power with MEP mentioned parameters, in high frequency group, but not in low frequency and control group.

Discussion: According to the results, However it seems that Hf rTMS combined with routin physiotherapy can significantly improve hand functions and brain neurophysiology via specifically increase of contralesional corticomotor excitability in sever stroke patients that is representative of the role of neuroplasticity in nonlesioned hemisphere but the hypothesis of movement improvement related cognitive balance can’t be eliminated by exploring powerful approved effect of Hf rTMS on mood regulation.



Source: The Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke – Iranian Rehabilitation Journal

, , , , , , , , ,

Leave a comment

[ARTICLE] Do all sub acute stroke patients benefit from robot-assisted therapy? A retrospective study


Purpose: Upper limb robot-assisted rehabilitation is a highly intensive therapy, mainly recommended after stroke. Whether robotic therapy is suitable for subacute patients with severe impairments including cognitive disorders is unknown. This retrospective study explored factors impacting on motor performance achieved in a 16-session robotic training combined with standard rehabilitation.

Methods: Seventeen subacute inpatients (age 53 ± 18; 49 ± 26 days post-stroke) were assessed at baseline using upper extremity motor impairments scales, Functional Independence Measure, aphasia and neglect scores. Number of movements and robotic assistance were compared between Session 2 (S2), 8 (8) and 16 (S16), Motricity Index between pre and post-treatment. Correlation analyses explored predictors of motor performance.

Results: Overall, number of movements and Motricity Index increased significantly while robot-assistance decreased. The mean number of movements per session correlated positively with baseline motor capacities but not with age, aphasia and neglect. However, the increase in Motricity index correlated negatively with baseline Motricity index and the increase in the number of movements correlated negatively with the number of movements at S2.

Conclusion: High intensity robot-assisted training may be associated with motor improvement in subacute hemiparesis. More severely impaired patients may derive greater benefit from robot-assisted training; age, aphasia and neglect do not represent exclusion criteria.

via Do all sub acute stroke patients benefit from robot-assisted therapy? A retrospective study – Restorative Neurology and Neuroscience – IOS Press.

, , , , , , ,

Leave a comment

[ARTICLE] The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial

…These results suggest that mCIMT combined with trunk restraint is more helpful to improve upper-extremity function than mCIMT only in subacute stroke patients with moderate motor impairment…

via The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial.

, , , , , , , ,


%d bloggers like this: