Posts Tagged surface electromyography

[Abstract] The eWrist — A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation.

Abstract:

Chronic wrist impairment is frequent following stroke and negatively impacts everyday life. Rehabilitation of the dysfunctional limb is possible but requires extensive training and motivation. Wearable training devices might offer new opportunities for rehabilitation. However, few devices are available to train wrist extension even though this movement is highly relevant for many upper limb activities of daily living. As a proof of concept, we developed the eWrist, a wearable one degree-of-freedom powered exoskeleton which supports wrist extension training. Conceptually one might think of an electric bike which provides mechanical support only when the rider moves the pedals, i.e. it enhances motor activity but does not replace it. Stroke patients may not have the ability to produce overt movements, but they might still be able to produce weak muscle activation that can be measured via surface electromyography (sEMG). By combining force and sEMG-based control in an assist-as-needed support strategy, we aim at providing a training device which enhances activity of the wrist extensor muscles in the context of daily life activities, thereby, driving cortical reorganization and recovery. Preliminary results show that the integration of sEMG signals in the control strategy allow for adjustable assistance with respect to a proxy measurement of corticomotor drive.

Source: The eWrist — A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation – IEEE Xplore Document

Advertisements

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Late physiotherapy rehabilitation changes gait patterns in post-stroke patients – Full Text PDF

Summary
Study aim: To determine whether a physiotherapy protocol improves the electromyographic activation (EA) during the hemiparetic gait in patients with delayed access to rehabilitation. Material and methods: 40 post-stroke patients underwent clinical evaluation and gait assessment at the time of admission and at the end of treatment.

Results: The anterior leg muscles tibialis anterior and rectus femoris had earlier onset (p = 0.0001).

Conclusion: Electromyographic findings showed altered patterns during the hemiparetic gait cycle, even in patients with delayed access to treatment.

 Full Text PDF

, , , , , ,

Leave a comment

[ARTICLE] Electromyographic Activity of the Upper Limb in Three Hand Function Tests – Full Text

Summary

Objective/Background

Occupational therapists usually assess hand function through standardised tests, however, there is no consensus on how the scores assigned to hand dexterity can accurately measure hand function required for daily activities and few studies evaluate the movement patterns of the upper limbs during hand function tests. This study aimed to evaluate the differences in muscle activation patterns during the performance of three hand dexterity tests.

Methods

Twenty university students underwent a surface electromyographic (sEMG) assessment of eight upper limb muscles during the performance of the box and blocks test (BBT), nine-hole peg test (9HPT), and functional dexterity test (FDT). The description and comparison of each muscle activity during the test performance, gender differences, and the correlation between individual muscles’ sEMG activity were analysed through appropriate statistics.

Results

Increased activity of proximal muscles was found during the performance of BBT (p < .001). While a higher activation of the distal muscles occurred during the FDT and 9HPT performance, no differences were found between them. Comparisons of the sEMG activity revealed a significant increase in the muscle activation among women (p = .05). Strong and positive correlations (r > .5; p < .05) were observed between proximal and distal sEMG activities, suggesting a coordinate pattern of muscle activation during hand function tests.

Conclusion

The results suggested the existence of differences in the muscle activation pattern during the performance of hand function evaluations. Occupational therapists should be aware of unique muscle requirements and its impact on the results of dexterity tests during hand function evaluation.

Introduction

Hand and upper extremity function is essential to humans as it allows for the performance of a wide range of self-care, productive, and leisure activities (Chan & Spencer, 2004). Due to its importance, impairments in the upper extremities lead to restrictions on activity performance and impacts participation in social activities and engagements in meaningful occupations, ultimately affecting overall wellbeing and quality of life (van de Ven-Stevens et al., 2016).

Treating patients with hand and upper limb injuries is a common situation for occupational therapists; hand and wrist lesions account for approximately 20% of all cases seen in hospital emergency departments (Dias & Garcia-Elias, 2006), with most patients presenting further limitations to upper extremity function due to a restricted range of motion, pain, oedema, and muscle weakness caused by the trauma (Ydreborg, Engstrand, Steinvall, & Larsson, 2015). In addition to acute situations, restricted hand function also represents one of the leading causes of limited participation in daily activities by patients with chronic diseases, such as rheumatoid arthritis (Andrade, Brandão, Pinto, & Lanna, 2016) and stroke (Dawson, Binns, Hunt, Lemsky, & Polatajko, 2013).

Although the cause of injury varies in different countries (Che Daud, Yau, Barnett, Judd, Jones, & Muhammad Nawawi, 2016), the majority of the upper limb trauma affects working adults aged between 20 years and 64 years (de Putter et al., 2016), thereby causing a significant economic impact. Studies completed in the past decade have estimated the healthcare and productivity costs of upper limb lesions to be US$ 410–740 million per year (de Putter et al., 2012 ;  de Putter et al., 2016), with increased absenteeism and early retirement age observed among patients (Shi et al., 2014 ;  Tiippana-Kinnunen et al., 2013).

Assessment procedures that allow occupational therapists to obtain accurate and reliable information regarding patients’ hand function are essential for setting realistic goals and measuring patients’ progression during the rehabilitation of upper limb injuries (Carrasco-Lopez et al., 2016). Amongst the several resources available, standardised manual tests are extensively used during the evaluations of hand function to assess the upper limb coordination and skill through a series of tasks involving the manipulation of objects in established patterns (Ekstrand et al., 2016; Srikesavan et al., 2015 ;  van de Ven-Stevens et al., 2016).

Despite focusing on the measurements of body functions and structures, standardised dexterity tests provide valid and reliable data that aids therapists in understanding the impact of hand injuries on patients’ activities of daily life. Commonly used standardised tests have high inter-rater and test-retest reliability, usually with an intraclass correlation coefficient (ICC) greater than 0.85 (Aaron and Jansen, 2003; Desrosiers et al., 1994 ;  Earhart et al., 2011).

However, given the existence of multiple standardised dexterity tests and an even greater variety of structured tasks involved in each assessment, there is no consensus on which test is more suitable for evaluating the entire function of upper extremities (van de Ven-Stevens et al., 2016). Moreover, there is an increasing concern regarding the way by which the scores assigned to hand dexterity can accurately measure hand function required for daily activities (Rallon and Chen, 2008; Rand and Eng, 2010 ;  van de Ven-Stevens et al., 2016).

The study of muscle activation through surface electromyography (sEMG) allows a real-time, noninvasive assessment of the activation pattern of muscles during the activity performance (Gurney et al., 2016). Although sEMG has been used to evaluate the muscle activation patterns in several self-care (Meijer et al., 2014), productivity (Almeida et al., 2013 ;  Ferrigno et al., 2009), and leisure activities (Donoso Brown, McCoy, Fechko, Price, Gilbertson, & Moritz, 2014), few studies have analysed the different recruitment of muscle fibres during the performances of different hand function tests (Brorsson et al., 2014 ;  Calder et al., 2011).

Considering the lack of studies describing the muscle activities of the upper extremities in standardised hand assessments, this study aimed to evaluate and compare the differences in muscle activation patterns during the performance of the box and blocks test (BBT), nine-hole peg test (9HPT), and functional dexterity test (FDT)—the three hand dexterity tests used by occupational therapists during hand function evaluation.

Continue —> Electromyographic Activity of the Upper Limb in Three Hand Function Tests

Experimental setting. (A) Box and blocks test; (B) Nine-hole peg test; (C) ...

Figure 1. Experimental setting. (A) Box and blocks test; (B) Nine-hole peg test; (C) functional dexterity test.

, , , , , , ,

Leave a comment

[BOOK CHAPTER] Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User’s Intentionality

Abstract

In the last years there has been a noticeable progress in motor learning, neuroplasticity and functional recovery after the occurrence of brain lesion. Rehabilitation of motor function has been associated to motor learning that occurs during repetitive, frequent and intensive training. Neuro-rehabilitation is based on the assumption that motor learning principles can be applied to motor recovery after injury, and that training can lead to permanent improvements of motor functions in patients with muscle deficits. The emergent research field of Rehabilitation Engineering may provide promise technologies for neuro-rehabilitation therapies, exploiting the motor learning and neural plasticity concepts. Among those technologies, the FES-assisted systems could provide repetitive training-based therapies and have been developed to aid or control the upper and lower limbs movements in response to user’s intentionality. Surface electromyography (SEMG) reflects directly the human motion intention, so it can be used as input information to control an active FES-assisted system. The present work describes a neurorehabilitation platform at the upper-limb level, based on bilateral coordination training (i.e. mirror movements with the unaffected arm) using a close-loop active FES system controlled by user. In this way, this work presents a novel myoelectric controller for decoding movements of user to be employed in a neurorehabilitation platform. It was carried out a set of experiments to validate the myoelectric controller in classification of seven human upper-limb movements, obtaining an average classification error of 4.3%. The results suggest that the proposed myoelectric pattern recognition method may be applied to control close-loop FES system.

more —>  Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User’s Intentionality – Springer.

Detect language
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish
Afrikaans
Albanian
Arabic
Armenian
Azerbaijani
Basque
Bengali
Belarusian
Bulgarian
Catalan
Chinese (Simp)
Chinese (Trad)
Croatian
Czech
Danish
Dutch
English
Esperanto
Estonian
Filipino
Finnish
French
Galician
Georgian
German
Greek
Gujarati
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Kannada
Korean
Lao
Latin
Latvian
Lithuanian
Macedonian
Malay
Maltese
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Tamil
Telugu
Thai
Turkish
Ukrainian
Urdu
Vietnamese
Welsh
Yiddish

, , , , , ,

Leave a comment

[ARTICLE] A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients – Full Text HTML/PDF

 Abstract  

Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique.

Full Text HTML –> A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients Huang Z, Wang Z, Lv X, Zhou Y, Wang H, Zong S – Neural Regen Res.

, , , , , , ,

Leave a comment

[ARTICLE] REAL TIME BIOSIGNAL-DRIVEN ILLUSION SYSTEM FOR UPPER LIMB REHABILITATION

Abstract

This paper presents design and development of real time biosignal-driven illusion system: Augmented Reality based Illusion System (ARIS) for upper limb motor rehabilitation. ARIS is a hospital / home based self- motivated whole arm rehabilitation system that aims to improve and restore the lost upper limb functions due to Cerebrovascular Accident (CVA) or stroke.

Taking the advantage of human brain plasticity nature, the system incorporates with number of technologies to provide fast recovery by re-establishing the neural pathways and synapses that able to control the mobility. These technologies include Augmented Reality (AR) where illusion environment is developed, computer vision technology to track multiple colors in real time, EMG acquisition system to detect the user intention in real time and 3D modelling library to develop Virtual Arm (VA) model where human biomechanics are applied to mimic the movement of real arm. The system operates according to the user intention via surface electromyography (sEMG) threshold level. In the case of real arm cannot reach to the desired position, VA will take over the job of real arm to complete the exercise.

The effectiveness of the developed ARIS has evaluated via questionnaire, graphical and analytical measurements which provided with positive results.

via [Abstract] REAL TIME BIOSIGNAL-DRIVEN ILLUSION SYSTEM FOR UPPER LIMB REHABILITATION.

, , , , , , , , , ,

Leave a comment

[ARTICLE] Therapeutic effects of functional electrical stimulation on gait, motor recovery, and motor cortex in stroke survivors – Full Text HTML

Abstract

The purpose of this parallel group controlled clinical trial was to investigate the therapeutic effect of functional electrical stimulation (FES) on gait, motor recovery, and motor cortex activity.

Adults experiencing foot drop <6 months poststroke were allocated to the FES group (physiotherapy and FES stimulation, n = 14) or the control group (physiotherapy, n = 14). Each group received their respective therapy 5 days/week for 12 weeks. Gait, surface electromyography (sEMG) of the tibialis anterior muscle in the affected leg, and electroencephalogram (EEG) signals from the foot motor area were assessed at baseline and again after the 12-week intervention.

The results showed that the FES intervention induced significantly more changes in various gait swing parameters such as foot pulling acceleration (measured in unit of gravitational constant G; net between-group difference: 0.11 ± 0.02 G, p = 0.021), swing power (0.11 ± 0.03 G, p = 0.027) and ground impact (0.12 ± 0.04 G, p = 0.046) than the control group. EEG analysis revealed that the FES group had significantly altered beta-3 mean (0.50 ± 0.09, p = 0.021), beta-4 mean (0.60 ± 0.05, p = 0.024) and alpha peak frequency (0.15 ± 0.02, p = 0.035). Finally, analysis of sEMG data showed a significantly greater increase in amplitude (in root mean square; 13.2 ± 2.11 μV, p = 0.033), mean power frequency (5.5 ± 0.80 Hz, p = 0.024) and median power frequency (6.5 ± 0.90 Hz, p = 0.021) of the tibialis anterior muscle on the affected side in the FES group.

We concluded that the FES combined with physiotherapy induced better outcomes in the swing phase of the gait cycle, activation of the affected ankle dorsiflexor muscles, and cortical function, when compared with conventional physiotherapy alone.

Full Text HTML–>  Therapeutic effects of functional electrical stimulation on gait, motor recovery, and motor cortex in stroke survivors – Hong Kong Physiotherapy Journal.

, , , , , ,

Leave a comment

%d bloggers like this: