Posts Tagged systematic review

[ARTICLE] Complementary and alternative therapies for poststroke depression – Full Text

A protocol for systematic review and network meta-analysis

Abstract

Background: 

Poststroke depression (PSD) is an important complication of stroke, resulting in increased disability and mortality, which is a great threat to stroke survivors and public health. Complementary and alternative medicine (CAM) therapies is widely used in the treatment of PSD, However, the selection strategies of different CAM approaches in clinical practice is still not clear, and the purpose of this protocol is to compare the efficacy and acceptability of different CAM therapies using systematic review and network meta-analysis.

Methods: 

According to the strategy, the authors will retrieve a total of seven electronic databases by August 2020, including PubMed, the Cochrane Library, EMbase, China National Knowledge Infrastructure, China Biological Medicine, Chinese Scientific Journals Database, and Wan-fang databases. The network meta-analysis will be performed using Aggregate Data Drug Information System 1.16.8 and Stata 13.0 software. In addition, the Cochrane Collaboration’s tool is employed for the methodological quality, and the quality of evidence will be evaluated according to the Grading of Recommendations Assessment, Development, and Evaluation system.

Results: 

This study will provide a reliable evidence for the selection strategy of CAM therapies for PSD.

Conclusion: 

The results of this study will provide references for evaluating the effects of different CAM therapies on PSD, and provide decision-making references for clinical practitioners, patients, and health policy makers.

1 Introduction

Poststroke depression (PSD) is the most common neuropsychiatric consequences of stroke,[1] occurring in 29% to 33% of stroke survivors.[2,3] It is estimated that nearly 2 million individuals in the United States are dealing with PSD at any given time.[4] The major symptoms of early PSD (within the first 3 months after stroke) are dysphoria, melancholia, and vegetative signs.[5,6] The current evidence indicates that the neurobiological factors may be the main factors associated with PSD, specifically includes change in ascending monoamine pathways, excess of proinflammatory cytokines, dysfunction of the hypothalamic-pituitary adrenal axis and alterations in neuroplasticity.[7] Studies have demonstrated that PSD can significantly compromise quality of life, including affecting cognitive function, social activity, and stroke rehabilitation. Moreover, it is also associated with increase mortality risk.[8,9] Current research suggests that disability, personal and family history of a psychiatric illness, and high overall medical burden may be risk factors for PSD.[10,11] Due to the complexity of diagnosis and the uncertainty of various screening tools, consequently, only a small percentage of PSD patients can be accurately diagnosed and treated.[12] The main therapeutic strategies for PSD include pharmacological and nonpharmacological interventions (eg, psychotherapy, surgical therapy, electroconvulsive therapy). In the pharmacological interventions, it has been suggested that Selective Serotonin Reuptake Inhibitors is the first line treatment,[13] such as fuoxetine, sertraline, and citalopram.[14] There is no doubt that the pharmacological therapy for PSD has a positive effect. However, there was also a significant increase in adverse events,[15] such as gastroenterological symptoms, epilepsy/ seizures and hyponatremia.[7] In addition, intolerance of antidepressants by some stroke survivors, and poor treatment adherence may further reduce the impact of drugs in PSD treatment.[16] Thus, better strategies for effective PSD treatment are needed.

Complementary and alternative medicine (CAM) therapies refers to a diverse range of healing techniques that are not considered established or standard practices in western medicine.[17] Many CAM modalities have been used by stroke survivors all around the world,[18] including acupuncture, meridian acupressure, light therapy, exercise, repetitive transcranial magnetic stimulation (rTMS), music therapy, herbal medicines and so on. One study reports that 46% of stroke survivors engage in some form of complementary medicine.[19] In Korea, 54% of stroke patients used CAM therapies, and 16% who felt that it can effectively achieve psychological relaxation.[20] In recent years, CAM therapies has been increasingly sought by people with PSD.[21] It is reported that acupuncture is more effective than short-term use of antidepressants in patients with PSD.[22] Deng et al[23] found that rTMS is a beneficial therapeutic method for managing PSD and may even be superior in efficacy to selective serotonin reuptake inhibitors. Kim et al[24] reported the positive roles of music therapy on improvement of depressive mood and anxiety in stroke patients. A study from Kang et al[25] has proven Meridian acupressure benefits in improvement of PSD.

Despite the numerous CAM therapies for PSD has been evaluated in previous randomized controlled trials (RCTs), However, majority have not been quantitatively analyzed in head-to-head comparisons. Thus, we performed a network meta-analysis (NMA) of all RCTs involving CAM therapies for PSD, to compare and comprehensively rank all available CAM therapies, and assess efficacy and acceptability of different CAM therapies. […]

Continue —-> https://journals.lww.com/md-journal/Fulltext/2020/09180/Complementary_and_alternative_therapies_for.14.aspx?context=LatestArticles

, , , ,

Leave a comment

[Review] Complementary therapies for clinical depression: an overview of systematic reviews – Full Text

Abstract

Objectives

As clinical practice guidelines vary widely in their search strategies and recommendations of complementary and alternative medicine (CAM) for depression, this overview aimed at systematically summarising the level 1 evidence on CAM for patients with a clinical diagnosis of depression.

Methods

PubMed, PsycInfo and Central were searched for meta-analyses of randomised controlled clinical trials (RCTs) until 30 June 2018. Outcomes included depression severity, response, remission, relapse and adverse events. The quality of evidence was assessed according to Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) considering the methodological quality of the RCTs and meta-analyses, inconsistency, indirectness, imprecision of the evidence and the potential risk of publication bias.

Results

The literature search revealed 26 meta-analyses conducted between 2002 and 2018 on 1–49 RCTs in major, minor and seasonal depression. In patients with mild to moderate major depression, moderate quality evidence suggested the efficacy of St. John’s wort towards placebo and its comparative effectiveness towards standard antidepressants for the treatment for depression severity and response rates, while St. John’s wort caused significant less adverse events. In patients with recurrent major depression, moderate quality evidence showed that mindfulness-based cognitive therapy was superior to standard antidepressant drug treatment for the prevention of depression relapse. Other CAM evidence was considered as having low or very low quality.

Conclusions

The effects of all but two CAM treatments found in studies on clinical depressed patients based on low to very low quality of evidence. The evidence has to be downgraded mostly due to avoidable methodological flaws of both the original RCTs and meta-analyses not following the Consolidated Standards of Reporting Trials and Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Further research is needed.

Strengths and limitations of this study

  • This systematic overview included the comprehensive literature search of important complementary and alternative medicine topics defined by the Cochrane Collaboration.
  • The inclusion criteria were restricted to meta-analyses of randomised controlled clinical trials (RCTs) of patients with a clinical diagnosis of depression.
  • The quality of evidence from meta-analyses was assessed according to Grades of Recommendation, Assessment, Development, and Evaluation.
  • There is a possible lack of evidence of newer RCTs, which have not been analysed by the included meta-analyses.

Introduction

Depression is one of the most prevalent psychiatric disorders, with about 25% of women and 12% of men suffering from at least one depressive episode during their lifetime.1–3 According to the criteria for diagnosis recommended by the American Psychiatric Association (APA), depressive disorders can be distinguished by their degree of severity or duration and are also characterised by a high comorbidity and an increase of psychological strain for the affected person.4 It is evident that a strong comorbid connection to several chronic conditions like addictions,5 neurodegenerative diseases6 7 or different psychiatric diseases8–11 exists. This leads depressive disorders as one of the leading causes of disability worldwide.12

The most commonly used treatments for depression are antidepressants, psychotherapy or a combination of drugs and psychotherapy. While both treatment strategies (alone and in combination) have been shown to be effective,13–15 more recent meta-analyses also found high dropout and low remission rates16–21 as well as clinically significant differences between antidepressant drugs and placebos only for patients at the upper end of the very severely depressed category.22 This may lead patients to search for alternatives. Increasing mainstream use of complementary and alternative medicine (CAM) support this trend, particularly for different physical conditions with comorbid affective disorders.23–27 The NIH defines CAM as therapeutic approaches that are usually not included in conventional Western medicine systems.28 CAM therapies used in combination with conventional care are considered as complementary, those used instead of conventional care as alternative practices. Types of CAM approaches include natural products, such as herbs and dietary supplements (vitamins, minerals and probiotics) and mind and body practices, such as yoga, chiropractic and osteopathic manipulation, meditation, relaxation, acupuncture, tai chi, qi gong and hypnotherapy. Practices of traditional healers from Europe (naturopathy and homeopathy), Asia (Ayurveda and traditional Chinese medicine) and other continents are also classified as CAM.28 While some complementary therapies have become a promising adjunct in the standard treatment of depression,29 30 others are known for their possible side effects or interactions with standard drugs.30 Recent clinical practice guidelines, in addition, vary widely in their search strategies and resulting recommendations for CAM treatments. While the American College of Physicians (ACP),31 the American Psychiatric Association (APA)32 and the Canadian Network for Mood and Anxiety Treatments (CANMAT) guideline33 provide a more comprehensive overview and critical appraisal of CAM treatments, the Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN),34 the National Institute for Health and Care Excellence (NICE),35 and the World Federation of Societies of Biological Psychiatry (WFSBP)36 guidelines mainly focus on St. John’s Wort and light therapy. Possible effects and risks of further CAM therapies are not discussed. Thus, the purpose of this overview is to provide a comprehensive search strategy of relevant CAM terms and systematically summarise the existing level 1 evidence for clinical depression as a basis for further guideline recommendations on the efficacy, effectiveness and safety of CAM therapies.[…]

Continue —-> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686993/

, , , , , , ,

Leave a comment

[Abstract] The Effects of Vestibular Rehabilitation on Gait Performance in Patients with Stroke: A Systematic Review of Randomized Controlled Trials

Abstract

Background: Patients with post-stroke hemiparesis have poor postural stability; nevertheless, it is unclear whether vestibular rehabilitation affects gait performance after a stroke or not. We performed a systematic review of randomized controlled trials to investigate the effects of vestibular rehabilitation on gait performance in patients with post stroke.

Methods: The Medline, Cochrane Central Register of Controlled Trials, Physiotherapy Evidence Database, and Cumulative Index to Nursing and Allied Health Literature databases were comprehensively searched. All literature published from each source’s earliest date to June 2019 was included. Study selection and data extraction were performed independently by paired reviewers. Outcomes of gait performance were the 10-Meter Walking Test, Timed Up and Go Test, and Dynamic Gait Index. We applied the Physiotherapy Evidence Database scale to evaluate the risk of bias and the Grading of Recommendations Assessment, Development and Evaluation system to evaluate the quality of a body of evidence.

Results: Three studies were included, and two out of three trials showed beneficial effects of vestibular rehabilitation in post-stroke patients. Quality assessment using the Grading of Recommendations Assessment, Development and Evaluation criteria found very low-quality evidence of all included studies due to inadequate allocation concealment, low participant numbers, and lack of blinding.

Conclusion: This review found beneficial effects of vestibular rehabilitation on gait performance in patients with stroke. However, due to the very low-quality evidence of previous randomized controlled trials as assessed by the Grading of Recommendations Assessment, Development and Evaluation criteria, definitive conclusions on the effectiveness of vestibular rehabilitation cannot be made. Hence, more high-quality and large-scale randomized controlled trials of vestibular rehabilitation after stroke are needed.

, , , ,

Leave a comment

[Abstract + References] Antidepressant effect of vagal nerve stimulation in epilepsy patients: a systematic review

Abstract

Background

Vagal nerve stimulation (VNS) is an effective palliative therapy in drug-resistant epileptic patients and is also approved as a therapy for treatment-resistant depression. Depression is a frequent comorbidity in epilepsy and it affects the quality of life of patients more than the seizure frequency itself. The aim of this systematic review is to analyze the available literature about the VNS effect on depressive symptoms in epileptic patients.

Material and methods

A comprehensive search of PubMed, Medline, Scopus, and Google Scholar was performed, and results were included up to January 2020. All studies concerning depressive symptom assessment in epileptic patients treated with VNS were included.

Results

Nine studies were included because they fulfilled inclusion criteria. Six out of nine papers reported a positive effect of VNS on depressive symptoms. Eight out of nine studies did not find any correlation between seizure reduction and depressive symptom amelioration, as induced by VNS. Clinical scales for depression, drug regimens, and age of patients were broadly different among the examined studies.

Conclusions

Reviewed studies strongly suggest that VNS ameliorates depressive symptoms in drug-resistant epileptic patients and that the VNS effect on depression is uncorrelated to seizure response. However, more rigorous studies addressing this issue are encouraged.

References

  1. 1.Chen Z, Brodie MJ, Liew D, Kwan P (2018) Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs a 30-year longitudinal cohort study. JAMA Neurol 75:279–286. https://doi.org/10.1001/jamaneurol.2017.3949Article PubMed Google Scholar 
  2. 2.Spencer S, Huh L (2008) Outcomes of epilepsy surgery in adults and children. Lancet Neurol 7:525–537Article Google Scholar 
  3. 3.De Tisi J, Bell GS, Peacock JL et al (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378:1388–1395. https://doi.org/10.1016/S0140-6736(11)60890-8Article PubMed Google Scholar 
  4. 4.Rathore C, Radhakrishnan K (2015) Concept of epilepsy surgery and presurgical evaluation. In: Epileptic disorders
  5. 5.Benbadis SR, Geller E, Ryvlin P, Schachter S, Wheless J, Doyle W, Vale FL (2018) Putting it all together: options for intractable epilepsy. Epilepsy Behav 88:33–38. https://doi.org/10.1016/j.yebeh.2018.05.030Article Google Scholar 
  6. 6.Ben-Menachem E, Mañon-Espaillat R, Ristanovic R et al (1994) Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 35:616–626. https://doi.org/10.1111/j.1528-1157.1994.tb02482.xCAS Article PubMed Google Scholar 
  7. 7.George R, Salinsky M, Kuzniecky R et al (1994) Vagus nerve stimulation for treatment of partial seizures: 3. Long-term follow-up on first 67 patients exiting a controlled study. Epilepsia. https://doi.org/10.1111/j.1528-1157.1994.tb02484.x
  8. 8.Elliott RE, Morsi A, Kalhorn SP, Marcus J, Sellin J, Kang M, Silverberg A, Rivera E, Geller E, Carlson C, Devinsky O, Doyle WK (2011) Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: long-term outcomes and predictors of response. Epilepsy Behav 20:57–63. https://doi.org/10.1016/j.yebeh.2010.10.017Article PubMed Google Scholar 
  9. 9.Orosz I, McCormick D, Zamponi N, Varadkar S, Feucht M, Parain D, Griens R, Vallée L, Boon P, Rittey C, Jayewardene AK, Bunker M, Arzimanoglou A, Lagae L (2014) Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children. Epilepsia 55:1576–1584. https://doi.org/10.1111/epi.12762Article PubMed Google Scholar 
  10. 10.Helmers SL, Wheless JW, Frost M, Gates J, Levisohn P, Tardo C, Conry JA, Yalnizoglu D, Madsen JR (2001) Vagus nerve stimulation therapy in pediatric patients with refractory epilepsy: retrospective study. J Child Neurol 16:843–848. https://doi.org/10.1177/08830738010160111101CAS Article PubMed Google Scholar 
  11. 11.Boylan LS, Flint LA, Labovitz DL, Jackson SC, Starner K, Devinsky O (2004) Depression but not seizure frequency predicts quality of life in treatment-resistant epilepsy. Neurology 62:258–261. https://doi.org/10.1212/01.WNL.0000103282.62353.85CAS Article PubMed Google Scholar 
  12. 12.Kim M, Kim Y-S, Kim D-H, Yang TW, Kwon OY (2018) Major depressive disorder in epilepsy clinics: a meta-analysis. Epilepsy Behav 84:56–69. https://doi.org/10.1016/j.yebeh.2018.04.015Article PubMed Google Scholar 
  13. 13.Ajinkya S, Fox J, Lekoubou A (2020) Trends in prevalence and treatment of depressive symptoms in adult patients with epilepsy in the United States. Epilepsy Behav 105:106973. https://doi.org/10.1016/j.yebeh.2020.106973Article PubMed Google Scholar 
  14. 14.Tombini M, Assenza G, Quintiliani L, Ricci L, Lanzone J, Ulivi M, di Lazzaro V (2020) Depressive symptoms and difficulties in emotion regulation in adult patients with epilepsy: association with quality of life and stigma. Epilepsy Behav 107:107073Article Google Scholar 
  15. 15.Yuan T-F, Li A, Sun X, Arias-Carrión O, Machado S (2016) Vagus nerve stimulation in treating depression: a tale of two stories. Curr Mol Med 16:33–39. https://doi.org/10.2174/1566524016666151222143609CAS Article PubMed Google Scholar 
  16. 16.Harden CL, Pulver MC, Ravdin LD, Nikolov B, Halper JP, Labar DR (2000) A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav 1:93–99. https://doi.org/10.1006/ebeh.2000.0046Article PubMed Google Scholar 
  17. 17.Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE (2000) Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 42:203–210. https://doi.org/10.1016/S0920-1211(00)00181-9CAS Article PubMed Google Scholar 
  18. 18.Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, Howland R, Kling MA, Rittberg BR, Burke WJ, Rapaport MH, Zajecka J, Nierenberg AA, Husain MM, Ginsberg D, Cooke RG (2005) Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry 58:347–354. https://doi.org/10.1016/j.biopsych.2005.05.025Article PubMed Google Scholar 
  19. 19.Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RK Jr, Goodman R (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study∗∗See accompanying Editorial, in this issue. Biol Psychiatry 47:276–286. https://doi.org/10.1016/S0006-3223(99)00304-2CAS Article PubMed Google Scholar 
  20. 20.Rush AJ, Sackeim HA, Marangell LB, George MS, Brannan SK, Davis SM, Lavori P, Howland R, Kling MA, Rittberg B, Carpenter L, Ninan P, Moreno F, Schwartz T, Conway C, Burke M, Barry JJ (2005) Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 58:355–363. https://doi.org/10.1016/j.biopsych.2005.05.024Article PubMed Google Scholar 
  21. 21.Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62:e1–e34. https://doi.org/10.1016/j.jclinepi.2009.06.006Article PubMed Google Scholar 
  22. 22.Klinkenberg S, van den Bosch CNCJ, Majoie HJM, Aalbers MW, Leenen L, Hendriksen J, Cornips EMJ, Rijkers K, Vles JSH, Aldenkamp AP (2013) Behavioural and cognitive effects during vagus nerve stimulation in children with intractable epilepsy–a randomized controlled trial. Eur J Paediatr Neurol 17:82–90. https://doi.org/10.1016/j.ejpn.2012.07.003Article PubMed Google Scholar 
  23. 23.Ryvlin P, Gilliam FG, Nguyen DK, Colicchio G, Iudice A, Tinuper P, Zamponi N, Aguglia U, Wagner L, Minotti L, Stefan H, Boon P, Sadler M, Benna P, Raman P, Perucca E (2014) The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: the PuLsE (Open Prospective Randomized Long-term Effectiveness) trial. Epilepsia 55:893–900. https://doi.org/10.1111/epi.12611CAS Article PubMed Google Scholar 
  24. 24.Radloff LS (1977) The CES-D Scale. Appl Psychol Meas 1:385–401. https://doi.org/10.1177/014662167700100306Article Google Scholar 
  25. 25.Gilliam FG, Barry JJ, Hermann BP, Meador KJ, Vahle V, Kanner AM (2006) Rapid detection of major depression in epilepsy: a multicentre study. Lancet Neurol 5:399–405. https://doi.org/10.1016/S1474-4422(06)70415-XArticle PubMed Google Scholar 
  26. 26.Klinkenberg S, Majoie HJM, Van Der Heijden MMAA et al (2012) Vagus nerve stimulation has a positive effect on mood in patients with refractory epilepsy. Clin Neurol Neurosurg 114:336–340. https://doi.org/10.1016/j.clineuro.2011.11.016CAS Article PubMed Google Scholar 
  27. 27.Chavel SM, Westerveld M, Spencer S (2003) Long-term outcome of vagus nerve stimulation for refractory partial epilepsy. Epilepsy Behav 4:302–309. https://doi.org/10.1016/S1525-5050(03)00109-4Article PubMed Google Scholar 
  28. 28.Hoppe C, Helmstaedter C, Scherrmann J, Elger CE (2001) Self-reported mood changes following 6 months of vagus nerve stimulation in epilepsy patients. Epilepsy Behav 2:335–342. https://doi.org/10.1006/ebeh.2001.0194CAS Article PubMed Google Scholar 
  29. 29.Hallböök T, Lundgren J, Stjernqvist K, Blennow G, Strömblad LG, Rosén I (2005) Vagus nerve stimulation in 15 children with therapy resistant epilepsy; its impact on cognition, quality of life, behaviour and mood. Seizure 14:504–513. https://doi.org/10.1016/j.seizure.2005.08.007Article PubMed Google Scholar 
  30. 30.Spindler P, Bohlmann K, Straub H-B, Vajkoczy P, Schneider UC (2019) Effects of vagus nerve stimulation on symptoms of depression in patients with difficult-to-treat epilepsy. Seizure 69:77–79. https://doi.org/10.1016/j.seizure.2019.04.001Article PubMed Google Scholar 
  31. 31.Ettinger AB, Weisbrot DM, Nolan EE, Gadow KD, Vitale SA, Andriola MR, Lenn NJ, Novak GP, Hermann BP (1998) Symptoms of depression and anxiety in pediatric epilepsy patients. Epilepsia 39:595–599. https://doi.org/10.1111/j.1528-1157.1998.tb01427.xCAS Article PubMed Google Scholar 
  32. 32.Kerr MP, Mensah S, Besag F, de Toffol B, Ettinger A, Kanemoto K, Kanner A, Kemp S, Krishnamoorthy E, LaFrance WC Jr, Mula M, Schmitz B, van Elst L, Trollor J, Wilson SJ, International League of Epilepsy (ILAE) Commission on the Neuropsychiatric Aspects of Epilepsy (2011) International consensus clinical practice statements for the treatment of neuropsychiatric conditions associated with epilepsy. Epilepsia 52:2133–2138. https://doi.org/10.1111/j.1528-1167.2011.03276.xArticle PubMed Google Scholar 
  33. 33.Tombini M, Assenza G, Quintiliani L, Ricci L, Lanzone J, de Mojà R, Ulivi M, di Lazzaro V (2019) Epilepsy-associated stigma from the perspective of people with epilepsy and the community in Italy. Epilepsy Behav 98:66–72. https://doi.org/10.1016/j.yebeh.2019.06.026Article PubMed Google Scholar 
  34. 34.Dussaule C, Bouilleret V (2018) Psychiatric effects of antiepileptic drugs in adults. Gériatrie Psychol Neuropsychiatr du Viellissement 16:181–188. https://doi.org/10.1684/pnv.2018.0733Article Google Scholar 
  35. 35.Pisani LR, Nikanorova M, Landmark CJ, Johannessen SI, Pisani F (2018) Specific patient features affect antiepileptic drug therapy decisions: focus on gender, age, and psychiatric comorbidities. Curr Pharm Des 23:5639–5648. https://doi.org/10.2174/1381612823666170926103631CAS Article Google Scholar 
  36. 36.Assenza G, Lanzone J, Dubbioso R et al (2020) Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy. Clin Neurophysiol
  37. 37.Pellegrino G, Mecarelli O, Pulitano P, Tombini M, Ricci L, Lanzone J, Brienza M, Davassi C, di Lazzaro V, Assenza G (2018) Eslicarbazepine acetate modulates EEG activity and connectivity in focal epilepsy. Front Neurol 9. https://doi.org/10.3389/fneur.2018.01054
  38. 38.Rolle CE, Fonzo GA, Wu W, Toll R, Jha MK, Cooper C, Chin-Fatt C, Pizzagalli DA, Trombello JM, Deckersbach T, Fava M, Weissman MM, Trivedi MH, Etkin A (2020) Cortical connectivity moderators of antidepressant vs placebo treatment response in major depressive disorder. JAMA Psychiatry 94305:397. https://doi.org/10.1001/jamapsychiatry.2019.3867Article Google Scholar 
  39. 39.Vecchio F, Miraglia F, Curcio G, Della Marca G, Vollono C, Mazzucchi E, Bramanti P, Rossini PM (2015) Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: a study via graph theory. Clin Neurophysiol 126:1108–1116. https://doi.org/10.1016/j.clinph.2014.09.019Article PubMed Google Scholar 
  40. 40.Vecchio F, Miraglia F, Curcio G, Altavilla R, Scrascia F, Giambattistelli F, Quattrocchi CC, Bramanti P, Vernieri F, Rossini PM (2015) Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. J Alzheimers Dis 45:745–756. https://doi.org/10.3233/JAD-142484Article PubMed Google Scholar 
  41. 41.Parker CS, Clayden JD, Cardoso MJ, Rodionov R, Duncan JS, Scott C, Diehl B, Ourselin S (2018) Structural and effective connectivity in focal epilepsy. NeuroImage Clin 17:943–952. https://doi.org/10.1016/j.nicl.2017.12.020Article PubMed Google Scholar 
  42. 42.Saletu B, Anderer P, Saletu-Zyhlarz GM (2010) EEG topography and tomography (LORETA) in diagnosis and pharmacotherapy of depression. Clin EEG Neurosci 41:203–210CAS Article Google Scholar 
  43. 43.Zhdanov A, Atluri S, Wong W, Vaghei Y, Daskalakis ZJ, Blumberger DM, Frey BN, Giacobbe P, Lam RW, Milev R, Mueller DJ, Turecki G, Parikh SV, Rotzinger S, Soares CN, Brenner CA, Vila-Rodriguez F, McAndrews MP, Kleffner K, Alonso-Prieto E, Arnott SR, Foster JA, Strother SC, Uher R, Kennedy SH, Farzan F (2020) Use of machine learning for predicting escitalopram treatment outcome from electroencephalography recordings in adult patients with depression. JAMA Netw Open 3:e1918377–e1918377Article Google Scholar 
  44. 44.Romero-Osorio Ó, Gil-Tamayo S, Nariño D, Rosselli D (2018) Changes in sleep patterns after vagus nerve stimulation, deep brain stimulation or epilepsy surgery: systematic review of the literature. Seizure 56:4–8. https://doi.org/10.1016/j.seizure.2018.01.022Article PubMed Google Scholar 
  45. 45.Murray BJ, Matheson JK, Scammell TE (2001) Effects of vagus nerve stimulation on respiration during sleep. Neurology 57:1523–1524CAS Article Google Scholar 
  46. 46.Benca RM, Obermeyer WH, Thisted RA, Gillin JC (1992) Sleep and psychiatric disorders: a meta-analysis. Arch Gen Psychiatry 49:651–668CAS Article Google Scholar 
  47. 47.Wu JC, Bunney WE (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry
  48. 48.Tononi G, Cirelli C (2012) Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast 2012:1–12. https://doi.org/10.1155/2012/415250Article Google Scholar 
  49. 49.Assenza G, Pellegrino G, Tombini M, di Pino G, di Lazzaro V (2013) Delta waves increase after cortical plasticity induction during wakefulness. Clin Neurophysiol 124:e71–e72. https://doi.org/10.1016/j.clinph.2014.09.029Article Google Scholar 
  50. 50.Assenza G, Di Lazzaro V (2015) A useful electroencephalography (EEG) marker of brain plasticity: delta waves. Neural Regen Res 10:1216–1217. https://doi.org/10.4103/1673-5374.162698Article PubMed Google Scholar 
  51. 51.Wolf E, Kuhn M, Normann C, Mainberger F, Maier JG, Maywald S, Bredl A, Klöppel S, Biber K, van Calker D, Riemann D, Sterr A, Nissen C (2016) Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Med Rev 30:53–62Article Google Scholar 
  52. 52.Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437CAS Article Google Scholar 
  53. 53.Di Pino G, Pellegrino G, Capone F et al (2016) Val66Met BDNF polymorphism implies a different way to recover from stroke rather than a worse overall recoverability. Neurorehabil Neural Repair 30:3–8. https://doi.org/10.1177/1545968315583721Article PubMed Google Scholar 
  54. 54.Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532CAS Article Google Scholar 
  55. 55.Goldschmied JR, Gehrman P (2019) An integrated model of slow-wave activity and neuroplasticity impairments in major depressive disorder. Curr Psychiatry Rep 21:30Article Google Scholar 
  56. 56.O’Leary OF, Ogbonnaya ES, Felice D et al (2018) The vagus nerve modulates BDNF expression and neurogenesis in the hippocampus. Eur Neuropsychopharmacol 28:307–316. https://doi.org/10.1016/j.euroneuro.2017.12.004CAS Article PubMed Google Scholar 
  57. 57.Lang UE, Bajbouj M, Gallinat J, Hellweg R (2006) Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation. Psychopharmacology 187:56–59. https://doi.org/10.1007/s00213-006-0399-yCAS Article PubMed Google Scholar 
  58. 58.Hays SA, Rennaker RL, Kilgard MP (2013) Targeting plasticity with vagus nerve stimulation to treat neurological disease. Progress in brain research. Elsevier, In, pp 275–299Google Scholar 
  59. 59.Capone F, Assenza G, Di Pino G et al (2015) The effect of transcutaneous vagus nerve stimulation on cortical excitability. J Neural Transm 122:679–685. https://doi.org/10.1007/s00702-014-1299-7Article PubMed Google Scholar 
  60. 60.Kimberley TJ, Prudente CN, Engineer ND, Pierce D, Tarver B, Cramer SC, Dickie DA, Dawson J (2019) Study protocol for a pivotal randomised study assessing vagus nerve stimulation during rehabilitation for improved upper limb motor function after stroke. Eur Stroke J 4:363–377Article Google Scholar 

Source: https://link.springer.com/article/10.1007/s10072-020-04479-2

, , , ,

Leave a comment

[Abstract] Medical devices for self-help management: the case of stroke rehabilitation – Systematic Review

Abstract

Introduction: Self-help devices (SHD) have been used as an alternative to conventional treatment for post stroke rehabilitation. This review aims to look for evidence that a stroke survivor may have increased muscle strength with the use of SHD.

Methods: This article was conducted according to PRISMA, a statistical tool (state of the art by systematic review) and previously registered in PROSPERO (international prospective registry of systematic reviews) under number CRD42018091424. Studies addressing the use of SHD and its effect on muscle strength in stroke patients were included. The studies were read, selected and their metadata extracted. A Downs & Black scale was used to assess methodological quality.

Results: 41 publications were analyzed, of which only three met the proposed inclusion criteria. Two articles showed positive results in strength gain using SHD. One study presented a decrease in the mean reaching forces when compared to the intervention groups (subacute and chronic with assistance to grip) and controls but SHD assisted in performing the activity.

Conclusion: Studies using SHD suggest muscle strength improvement in stroke patients.

via Medical devices for self-help management: the case of stroke rehabilitation | International Journal of Advanced Engineering Research and Science

, , , , , , , ,

Leave a comment

[Abstract] Safe and Sound: meta-analyzing the Mozart Effect on epilepsy

Highlights

  • Our meta-analysis supports music therapy as a complementary intervention for epilepsy.
  • Mozart music may improve seizures and EEG after both short- and long-term music treatment
  • The therapeutic potential of music and the most effective protocols need further definition.

Abstract

Objective

The use of music-based neuro-stimulation for treating seizures and interictal epileptiform discharges (IED) (the so-called “Mozart effect”) remains a controversial issue. We have conducted an updated meta-analysis in order to systematically review literature evidence and provide further insights about the role of the Mozart effect in epilepsy.

Methods

Following the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) guidelines, we searched three bibliographic databases from their date of inception to January 2020. Nine meta-analyses were performed according to both music stimulation protocols and outcome measures. We applied the Cochrane Q-test and the I2-index for heterogeneity evaluation, and either fixed-effect or random-effect models to compute mean differences and pool data.

Results

Of 147 abstracts, 12 studies were included and grouped according to stimulation protocols and outcome measures. The nine meta-analyses showed significant reductions in seizures and IED frequencies after long-term music treatment, and in IED frequency during and after a single music stimulus.

Conclusions

Music-based neurostimulation may improve the clinical outcome of individuals with epilepsy, by reducing the frequency of seizures and IED. Further and stronger evidence will allow defining its potential in the different forms of epilepsy, and the most effective stimulation protocols.

Significance

Music therapy should be considered as a complementary, non-invasive approach for treating epilepsy and epileptiform discharges.

via Safe and Sound: meta-analyzing the Mozart Effect on epilepsy – ScienceDirect

, , , ,

Leave a comment

[Abstract] Pharmacological and Non-Pharmacological Interventions for Depression after Moderate-to-Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis

The objective of this study was to systematically review the literature and perform a meta-analysis of randomized controlled trials (RCTs) on the effectiveness of pharmacological and non-pharmacological interventions for depression in patients with moderate-to-severe traumatic brain injury.

Databases searched were: Embase, PubMed, PsycInfo, Cochrane Central, Web of Science, and Google Scholar. Depression score on a self-report questionnaire was the outcome measure. Outcomes were collected at baseline and at the first follow-up moment. Data extraction was executed independently by two researchers. Thirteen RCTs were identified: five pharmacological and eight non-pharmacological. Although not all individual studies had significant results, the overall standardized mean difference (SMD) was −0.395, p ≤ 0.001, indicating that interventions improved the depression scores in patients with TBI.

The difference in effectiveness between pharmacological interventions and non-pharmacological interventions was not significant (ΔSMD: 0.203, p = 0.238). Further subdivision into methylphenidate, sertraline, psychological, and other interventions showed a significant difference in effectiveness between methylphenidate (ΔSMD: −0.700, p = 0.020) and psychological interventions (reference). This difference was not found if other depression outcomes in four of the included studies were analyzed. The SMD of low-quality studies did not differ significantly from moderate- and high-quality studies (ΔSMD: 0.321, p = 0.050).

Although RCTs targeting interventions for depression after TBI are scarce, both pharmacological and non-pharmacological interventions appear to be effective in treating depressive symptoms/depression after moderate-to-severe TBI. There is a need for high-quality RCTs in which the add-on effects of pharmacological and non-pharmacological interventions are investigated.

via Pharmacological and Non-Pharmacological Interventions for Depression after Moderate-to-Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis | Journal of Neurotrauma

 

 

, , , , , , , ,

Leave a comment

[Abstract] Effectiveness of home-based virtual reality on vestibular rehabilitation outcomes: a systematic review

Background: A 2015 systematic review evaluated the efficacy of utilizing virtual reality in vestibular rehabilitation programs. However, the biggest limitation with most of the included virtual reality systems was the associated cost of the equipment. In addition, home-based exercises are the preferred method of vestibular rehabilitation treatments.

Objectives: The purpose of this systematic review was to examine the effectiveness of home-based virtual reality systems on vestibular rehabilitation outcomes.

Methods: The following databases were examined: CINAHL Complete, ProQuest Medical Database, and PubMed. The following search terms were utilized: ‘video OR computer’ AND ‘vestibular’ AND ‘home’. The evidence level for all of the included articles was evaluated using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence and the methodological rigor for all of the included articles was evaluated using a 10-item tool created by Medlicott and Harris.

Results: Based on the inclusion and exclusion criteria, seven articles were selected for inclusion in this systematic review. This systematic review found that home-based virtual reality interventions were able to effectively achieve the primary objectives of vestibular rehabilitation and that the use of these interventions was equally as effective as the use of a traditional vestibular rehabilitation program. In addition, it may be most beneficial to combine virtual reality with traditional vestibular rehabilitation.

Conclusions: Clinicians should consider using a combination of virtual reality and traditional vestibular rehabilitation when treating individuals who have been diagnosed with a vestibular dysfunction.

via Effectiveness of home-based virtual reality on vestibular rehabilitation outcomes: a systematic review: Physical Therapy Reviews: Vol 24, No 6

, , , ,

Leave a comment

[Abstract + References] The effects of ankle-foot orthoses on walking speed in patients with stroke: a systematic review and meta-analysis of randomized controlled trials

Abstract

Objective:

The aim of this study was to evaluate the effects of ankle-foot orthoses on speed walking in patients with stroke.

Data sources:

PubMed, Embase, Web of Science, Scopus, CENTRAL, PEDro, RehabData, RECAL, and ProQuest were searched from inception until 30 September 2019.

Review methods:

This study was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline statement. Risk of bias assessment was performed using the Cochrane Risk of Bias Tool. Begg’s test and Egger’s regression method were used to assess the publication bias. Trim and fill analysis was also used to adjust any potential publication bias. Sensitivity analysis was performed to evaluate the effect of individual studies. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria.

Results:

Overall, 14 studies were included with a total of 1186 participants. A small-to-moderate and non-significant improvement in favor of the ankle-foot orthosis versus without ankle-foot orthosis (standardized mean difference (SMD) = 0.41, 95% confidence interval = −0.15 to 0.96), similar effects of ankle-foot orthosis and functional electrical stimulation (SMD = 0.00, 95% confidence interval = −0.16 to 0.16), and a small and non-significant improvement in favor of ankle-foot orthosis versus another type of ankle-foot orthosis (SMD = 0.22, 95% confidence interval = −0.05 to 0.49) in walking speed were found. However, the quality of evidence for all comparisons was low or very low.

Conclusion:

Despite reported positive effects in some studies, there is no firm evidence of any benefit of ankle-foot orthoses on walking speed.

References

1.Kelly-Hayes, M, Beiser, A, Kase, CS, et al. The influence of gender and age on disability following ischemic stroke: the Framingham study. J Stroke Cerebrovasc Dis 2003; 12(3): 119–126.
Google Scholar | Crossref | Medline
2.Patterson, SL, Forrester, LW, Rodgers, MM, et al. Determinants of walking function after stroke: differences by deficit severity. Arch Phys Med Rehabil 2007; 88(1): 115–119.
Google Scholar | Crossref | Medline | ISI
3.Hyndman, D, Ashburn, A, Stack, E. Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch Phys Med Rehabil 2002; 83(2): 165–170.
Google Scholar | Crossref | Medline
4.Graham, J . Foot drop: explaining the causes, characteristics and treatment. Br J Neurosci Nurs 2010; 6: 168–172.
Google Scholar | Crossref
5.Hebert, D, Lindsay, MP, McIntyre, A, et al. Canadian stroke best practice recommendations: stroke rehabilitation practice guidelines, update 2015. Int J Stroke 2016; 11(4): 459–484.
Google Scholar | SAGE Journals | ISI
6.Winstein, CJ, Stein, J, Arena, R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 47: e98–e169.
Google Scholar | Crossref | Medline | ISI
7.Dworzynski, K, Ritchie, G, Fenu, E, et al. Rehabilitation after stroke: summary of NICE guidance. BMJ 2013; 346: f3615.
Google Scholar | Crossref | Medline
8.Daryabor, A, Arazpour, M, Aminian, G. Effect of different designs of ankle-foot orthoses on gait in patients with stroke: a systematic review. Gait Posture 2018; 62: 268–279.
Google Scholar | Crossref | Medline
9.Everaert, DG, Thompson, AK, Chong, SL, et al. Does functional electrical stimulation for foot drop strengthen corticospinal connections. Neurorehabil Neural Repair 2010; 24(2): 168–177.
Google Scholar | SAGE Journals | ISI
10.Tyson, SF, Kent, RM. Effects of an ankle-foot orthosis on balance and walking after stroke: a systematic review and pooled meta-analysis. Arch Phys Med Rehabil 2013; 94(7): 1377–1385.
Google Scholar | Crossref | Medline | ISI
11.Prenton, S, Hollands, KL, Kenney, LPJ, et al. Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: a meta-analysis providing direction for future research. J Rehabil Med 2018; 50(2): 129–139.
Google Scholar | Crossref | Medline
12.Prenton, S, Hollands, KL, Kenney, LP. Functional electrical stimulation versus ankle foot orthoses for foot-drop: a meta-analysis of orthotic effects. J Rehabil Med 2016; 48(8): 646–656.
Google Scholar | Crossref | Medline
13.Moher, D, Liberati, A, Tetzlaff, J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264–269.
Google Scholar | Crossref | Medline | ISI
14.Shea, BJ, Reeves, BC, Wells, G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017; 358: j4008.
Google Scholar | Crossref | Medline
15.Tomioka, K, Matsumoto, S, Ikeda, K, et al. Short-term effects of physiotherapy combining repetitive facilitation exercises and orthotic treatment in chronic post-stroke patients. J Phys Ther Sci 2017; 29(2): 212–215.
Google Scholar | Crossref | Medline
16.Higgins, JP, Altman, DG. Assessing risk of bias in included studies. In: Higgins, JPT, Green, S (eds) Cochrane handbook for systematic reviews of interventions (Cochrane Book Series). West Sussex, UK: Wiley, 2008, pp.187–241.
Google Scholar | Crossref
17.Verhagen, AP, de Vet, HC, de Bie, RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 1998; 51(12): 1235–1241.
Google Scholar | Crossref | Medline | ISI
18.Altman, D . Practical statistics for medical research. London: Chapman & Hall, 1991.
Google Scholar
19.Wan, X, Wang, W, Liu, J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135.
Google Scholar | Crossref | Medline | ISI
20.DerSimonian, R, Laird, N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.
Google Scholar | Crossref | Medline
21.Cohen, J . A power primer. Psychol Bull 1992; 112: 155–159.
Google Scholar | Crossref | Medline | ISI
22.Hatala, R, Keitz, S, Wyer, P, et al. Tips for learners of evidence-based medicine: 4. Assessing heterogeneity of primary studies in systematic reviews and whether to combine their results. CMAJ 2005; 172(5): 661–665.
Google Scholar | Crossref | Medline | ISI
23.Begg, CB, Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088–1101.
Google Scholar | Crossref | Medline | ISI
24.Egger, M, Smith, GD, Schneider, M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.
Google Scholar | Crossref | Medline
25.Duval, S, Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56(2): 455–463.
Google Scholar | Crossref | Medline | ISI
26.Schunemann, H . GRADE handbook for grading quality of evidence and strength of recommendation (version 3.2.), 2008, http://www.cc-ims.net/gradepro
Google Scholar
27.Bethoux, F, Rogers, HL, Nolan, KJ, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair 2014; 28(7): 688–697.
Google Scholar | SAGE Journals | ISI
28.De Seze, MP, Bonhomme, C, Daviet, JC, et al. Effect of early compensation of distal motor deficiency by the Chignon ankle-foot orthosis on gait in hemiplegic patients: a randomized pilot study. Clin Rehabil 2011; 25(11): 989–998.
Google Scholar | SAGE Journals | ISI
29.Erel, S, Uygur, F, Engin Simsek, I, et al. The effects of dynamic ankle-foot orthoses in chronic stroke patients at three-month follow-up: a randomized controlled trial. Clin Rehabil 2011; 25(6): 515–523.
Google Scholar | SAGE Journals | ISI
30.Everaert, DG, Stein, RB, Abrams, GM, et al. Effect of a foot-drop stimulator and ankle-foot orthosis on walking performance after stroke: a multicenter randomized controlled trial. Neurorehabil Neural Repair 2013; 27(7): 579–591.
Google Scholar | SAGE Journals | ISI
31.Farmani, F, Mohseni Bandpei, MA, Bahramizadeh, M, et al. The effect of different shoes on functional mobility and energy expenditure in post-stroke hemiplegic patients using ankle-foot orthosis. Prosthet Orthot Int 2016; 40(5): 591–597.
Google Scholar | SAGE Journals | ISI
32.Kluding, PM, Dunning, K, O’Dell, MW, et al. Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 2013; 44(6): 1660–1669.
Google Scholar | Crossref | Medline | ISI
33.Kottink, AI, Tenniglo, MJ, de Vries, WH, et al. Effects of an implantable two-channel peroneal nerve stimulator versus conventional walking device on spatiotemporal parameters and kinematics of hemiparetic gait. J Rehabil Med 2012; 44(1): 51–57.
Google Scholar | Crossref | Medline
34.Morone, G, Fusco, A, Di Capua, P, et al. Walking training with foot drop stimulator controlled by a tilt sensor to improve walking outcomes: a randomized controlled pilot study in patients with stroke in subacute phase. Stroke Res Treat 2012; 2012: 523564.
Google Scholar | Medline
35.Nikamp, CD, Buurke, JH, van der Palen, J, et al. Early or delayed provision of an ankle-foot orthosis in patients with acute and subacute stroke: a randomized controlled trial. Clin Rehabil 2017; 31: 798–808.
Google Scholar | SAGE Journals | ISI
36.Salisbury, L, Shiels, J, Todd, I, et al. A feasibility study to investigate the clinical application of functional electrical stimulation (FES), for dropped foot, during the sub—acute phase of stroke—a randomized controlled trial. Physiother Theory Pract 2013; 29(1): 31–40.
Google Scholar | Crossref | Medline | ISI
37.Sheffler, LR, Taylor, PN, Bailey, SN, et al. Surface peroneal nerve stimulation in lower limb hemiparesis: effect on quantitative gait parameters. Am J Phys Med Rehabil 2015; 94(5): 341–357.
Google Scholar | Crossref | Medline
38.Tyson, SF, Vail, A, Nessa, T, et al. Bespoke versus off-the-shelf ankle-foot orthosis for people with stroke: randomized controlled trial. Clin Rehabil 2018; 32: 367–376.
Google Scholar | SAGE Journals | ISI
39.Yamamoto, S, Tanaka, S, Motojima, N. Comparison of ankle-foot orthoses with plantar flexion stop and plantar flexion resistance in the gait of stroke patients: a randomized controlled trial. Prosthet Orthot Int 2018; 42(5): 544–553.
Google Scholar | SAGE Journals | ISI
40.Karniel, N, Raveh, E, Schwartz, I, et al. Functional electrical stimulation compared with ankle-foot orthosis in subacute post stroke patients with foot drop: a pilot study. Assist Technol. Epub ahead of print 4 April 2019. DOI: 10.1080/10400435.2019.1579269.
Google Scholar | Crossref
41.Bethoux, F, Rogers, HL, Nolan, KJ, et al. Long-term follow-up to a randomized controlled trial comparing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. Neurorehabil Neural Repair 2015; 29(10): 911–922.
Google Scholar | SAGE Journals | ISI
42.Kottink, AI, Hermens, HJ, Nene, AV, et al. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabil 2007; 88(8): 971–978.
Google Scholar | Crossref | Medline
43.Nikamp, CDM, van der Palen, J, Hermens, HJ, et al. The influence of early or delayed provision of ankle-foot orthoses on pelvis, hip and knee kinematics in patients with sub-acute stroke: a randomized controlled trial. Gait Posture 2018; 63: 260–267.
Google Scholar | Crossref | Medline
44.Nikamp, CDM, Buurke, JH, van der Palen, J, et al. Effect of providing ankle-foot orthoses in patients with acute and subacute stroke: a randomized controlled trial. In: Ibáñez, J, González-Vargas, J, Azorín, J, et al. (eds) Converging clinical and engineering research on neurorehabilitation II (Biosystems & Biorobotics). Cham: Springer, 2017, pp.305–309.
Google Scholar | Crossref
45.Sheffler, LR, Bailey, SN, Wilson, RD, et al. Spatiotemporal, kinematic, and kinetic effects of a peroneal nerve stimulator versus an ankle foot orthosis in hemiparetic gait. Neurorehabil Neural Repair 2013; 27(5): 403–410.
Google Scholar | SAGE Journals | ISI
46.Perry, J, Garrett, M, Gronley, JK, et al. Classification of walking handicap in the stroke population. Stroke 1995; 26(6): 982–989.
Google Scholar | Crossref | Medline | ISI
47.Ferreira, LA, Neto, HP, Grecco, LA, et al. Effect of ankle-foot orthosis on gait velocity and cadence of stroke patients: a systematic review. J Phys Ther Sci 2013; 25(11): 1503–1508.
Google Scholar | Crossref | Medline
48.Fatone, S, Gard, SA, Malas, BS. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Arch Phys Med Rehabil 2009; 90(5): 810–818.
Google Scholar | Crossref | Medline | ISI
49.Berenpas, F, Schiemanck, S, Beelen, A, et al. Kinematic and kinetic benefits of implantable peroneal nerve stimulation in people with post-stroke drop foot using an ankle-foot orthosis. Restor Neurol Neurosci 2018; 36: 547–558.
Google Scholar | Crossref | Medline
50.Pereira, S, Mehta, S, McIntyre, A, et al. Functional electrical stimulation for improving gait in persons with chronic stroke. Top Stroke Rehabil 2012; 19(6): 491–498.
Google Scholar | Crossref | Medline | ISI
51.Robbins, SM, Houghton, PE, Woodbury, MG, et al. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: a meta-analysis. Arch Phys Med Rehabil 2006; 87(6): 853–859.
Google Scholar | Crossref | Medline | ISI
52.Haruna, H, Sugihara, S, Kon, K, et al. Change in the mechanical energy of the body center of mass in hemiplegic gait after continuous use of a plantar flexion resistive ankle-foot orthosis. J Phys Ther Sci 2013; 25(11): 1437–1443.
Google Scholar | Crossref | Medline
53.Kobayashi, T, Orendurff, MS, Singer, ML, et al. Contribution of ankle-foot orthosis moment in regulating ankle and knee motions during gait in individuals post-stroke. Clin Biomech 2017; 45: 9–13.
Google Scholar | Crossref | Medline

Via https://journals.sagepub.com/doi/abs/10.1177/0269215519887784

, , , , ,

Leave a comment

[Abstract] Contraceptive knowledge and use among women with intellectual, physical, or sensory disabilities: A systematic review

Abstract

Background

Women spend most of their reproductive years avoiding pregnancy. However, we know little about contraceptive knowledge and use among women with disabilities, or about strategies to improve contraceptive knowledge and decision-making in this population.

Objective

To systematically review published literature on women with disabilities and: 1) contraceptive knowledge; 2) attitudes and preferences regarding contraception; 3) contraceptive use; 4) barriers and facilitators to informed contraceptive use; and 5) effectiveness of interventions to improve informed contraceptive decision-making and use.

Methods

We searched MEDLINE, PsychINFO, the Cochrane Library, CINAHL, and ERIC databases from inception through December 2017. Two reviewers independently reviewed studies for eligibility, abstracted study data, and assessed risk of bias following PRISMA guidance.

Results

We reviewed 11,659 citations to identify 62 publications of 54 unique studies (total n of women with disabilities = 21,246). No standard definition of disability existed across studies. The majority of studies focused on women with intellectual disabilities (ID). Women with ID and those who were deaf or hard-of-hearing had lower knowledge of contraceptive methods than women without disabilities. Estimates of contraceptive use varied widely, with some evidence that women with disabilities may use a narrower range of methods. Five of six studies evaluating educational interventions to increase contraceptive knowledge or use reported post-intervention improvements.

Conclusions

Women with disabilities may use a more narrow mix of contraceptive methods and are often less knowledgeable about contraceptives than women without disabilities. Interventions to improve knowledge show some promise. A lack of data exists on contraceptive preferences among women with disabilities.

 

via Contraceptive knowledge and use among women with intellectual, physical, or sensory disabilities: A systematic review – ScienceDirect

, , , , , , , ,

Leave a comment

%d bloggers like this: