Posts Tagged Tele-rehabilitation

[ARTICLE] A customized home-based computerized cognitive rehabilitation platform for patients with chronic-stage stroke: study protocol for a randomized controlled trial – Full Text

Abstract

Background

Stroke patients usually suffer primary cognitive impairment related to attention, memory, and executive functions. This impairment causes a negative impact on the quality of life of patients and their families, and may be long term. Cognitive rehabilitation has been shown to be an effective way to treat cognitive impairment and should be continued after hospital discharge. Computerized cognitive rehabilitation can be performed at home using exercise programs that advance with predetermined course content, interval, and pace. We hypothesize that computerized rehabilitation might be improved if a program could customize course content and pace in response to patient-specific progress. The present pilot study is a randomized controlled double-blind crossover clinical trial aiming to study if chronic stroke patients with cognitive impairment could benefit from cognitive training through a customized tele-rehabilitation platform (“Guttmann, NeuroPersonalTrainer”®, GNPT®).

Methods/design

Individuals with chronic-stage stroke will be recruited. Participants will be randomized to receive experimental intervention (customized tele-rehabilitation platform, GNPT®) or sham intervention (ictus.online), both with the same frequency and duration (five sessions per week over 6 weeks). After a washout period of 3 months, crossover will occur and participants from the GNPT® condition will receive sham intervention, while participants originally from the sham intervention will receive GNPT®. Patients will be assessed before and after receiving each treatment regimen with an exhaustive neuropsychological battery. Primary outcomes will include rating measures that assess attention difficulties, memory failures, and executive dysfunction for daily activities, as well as performance-based measures of attention, memory, and executive functions.

Discussion

Customized cognitive training could lead to better cognitive function in patients with chronic-stage stroke and improve their quality of life.

Background

Stroke, the most common cerebrovascular disease, is a focal neurological disorder of abrupt development due to a pathological process in blood vessels [1]. There are three main types of stroke, namely transient ischemic attack, characterized by a loss of blood flow in the brain and which reverts in less than 24 h without associated acute infarction [2]; ischemic stroke, characterized by a lack of blood reaching part of the brain due to the obstruction of blood vessels and causing tissue damage (infarction), wherein cells die in the immediate area and those surrounding the infarction area are at risk; and a hemorrhagic stroke, where either a brain aneurysm bursts or a weakened blood vessel leaks, resulting in blood spillage into or around the brain, creating swelling and pressure, and damaging cells and tissue in the brain [3].

In 2013, according to the World Health Organization (WHO) and the Global Burden of Disease study, worldwide, there were 11–15 million people affected by stroke and almost 1.5 million deaths from this cerebrovascular disease [45]. Moreover, in 2013, the total Disability-Adjusted Life Years (years of healthy life lost while living with a poor health condition) from all strokes was 51,429,440. In Spain, in 2011, the National Institute of Statistics reported 116,017 cases of stroke, corresponding to an incidence of 252 episodes per 100,000 inhabitants [6]. Although stroke incidence increases with advancing age, adults aged 20–64 years comprise 31% of the total global incidence.

Stroke often results in cognitive dysfunction, and medical treatment may cause great expense on a personal, family, economic, and social level. Depending on the area of the brain affected and the severity of lesions, stroke patients may suffer cognitive impairment, and alteration in emotional and behavioral regulation [7]. Generally, cognitive impairment derived from stroke includes alterations in attention, memory, and executive function [8].

Recent reports have begun to show positive results from the use of computerized cognitive rehabilitation systems (CCRS) for stroke patients to improve attention, memory, and executive functions. Nevertheless, more research is needed to better control variables and improve training designs in order to reduce heterogeneity and increase control of the intensity and level of performance during treatments [9101112].

CCRS allow adjustment of the type of exercises administered to the specific cognitive impairment profile of each patient, but within a fixed set of possible exercises such that heterogeneity of therapy choice is minimized. This can improve studies by allowing better categorization of patient groups that execute similar training sessions in a similar range of responses [13]. Further, CCRS offers the possibility of applying cognitive rehabilitation at home, while patient adherence and performance can be monitored online, so that patients do not need to live near, lodge near, or travel to a rehabilitation center to receive therapy. Because CCRS therapy is entirely digitized, it generates objective data that can be analyzed to determine the relative effectiveness of these interventions. We hypothesize that by allowing a trained professional to oversee an automated customization program that stratifies the level of difficulty, duration, and stimulus speed of presentation, we will reduce the heterogeneity of traditional cognitive training and improve the efficacy of intervention in chronic stroke patients.

The first objective of this pilot study is to assess if chronic stroke patients with cognitive impairment could benefit from cognitive training through a customized tele-rehabilitation platform (“Guttmann, NeuroPersonalTrainer”®, GNPT ® ) [14] intended to increase the control of experimental variables (cognitive impairment profile, adherence, and performance) traditionally identified as a source of experimental heterogeneity. The study aims to assess if this benefit could translate into an improvement of the trained cognitive domains (attention, memory, and executive functions).

The second objective is focused on generalization, namely the ability to use what has been learned in rehabilitation contexts and apply it in different environments [15]. Transfer of learning is included within the concept of generalization when specifically referring to the ability to apply specific strategies to related tasks [16]. Two types of transfer have been proposed – near transfer and far transfer [17]. By near transfer we mean that, through the training of a task within a given cognitive domain, improved function in other similar, untrained tasks may be observed in the same cognitive domain. For instance, a patient who performs selective attention exercises and improves execution through the training might improve their performance in other selective attention exercises too. By far transfer we mean that training in a given cognitive domain may improve performance of tasks in other cognitive domains. Such improvement will be observable in tasks that are structurally dissimilar from the ones used in the training. For instance, if a patient performs selective attention exercises, they may also improve their performance in memory tasks.

It has been demonstrated that computerized cognitive training can lead to the phenomenon of transfer, as previously studied in stroke patients [18]. Thus, our research aims to note whether the application of patient-customized tele-rehabilitation can give rise to an improvement in other functions that are based on cognitive domains related to those that have been trained (near transfer) as well as in different ones (far transfer).

Finally, the third objective is to assess the variables of demography (age, sex, years of education) and etiology (ischemic stroke or hemorrhage) and their impact on rehabilitation outcome, given the need to understand the patient characteristics that may influence treatment effectiveness [19].[…]

 

Continue —> A customized home-based computerized cognitive rehabilitation platform for patients with chronic-stage stroke: study protocol for a randomized controlled trial | Trials | Full Text

 

Fig. 4Sham intervention (ictus.online) screenshots. a To access to the platform, the user must enter their username and password. b Each exercise begins with an instruction screen. c The user watches a 10-min video. d When finished, the user accesses a three-question quiz with four response options. e When the quiz is finished, a results screen is displayed. In each session, three videos with their corresponding quiz are presented

Advertisements

, , , , , , ,

Leave a comment

[ARTICLE] Development of a robotic device for post-stroke home tele-rehabilitation – Full Text

This work deals with the complex mechanical design task of converting a large pneumatic rehabilitation robot into an electric and compact system for in-home post-stroke therapies without losing performance. It presents the new HomeRehab robot that supports rehabilitation therapies in three dimensions with an adaptive controller that optimizes patient recovery. A preliminary usability test is also conducted to show that its performance resembles that found in RoboTherapist 2D commercial system designed for hospitals. The mechanical design of a novel and smart two-dimensional force sensor at the end-effector is also described.

According to the World Health Organization, by 2050, the number of persons over 65 years old will increase by 73% in the industrialized countries and by 207% worldwide.1 This segment of population is particularly prone to suffer a cerebrovascular accident or stroke, since the relative incidence of stroke doubles every decade after age 55. Stroke survivors immediately experience hemiparesis, resulting in impairment of extremities associated with diminished health-related quality of life.2 Rehabilitation can help hemiparetic patients to learn new ways of using and moving their weak arms and legs. It is also possible with immediate therapy that people who suffer from hemiparesis may eventually regain movement. However, reductions in healthcare reimbursement place constant demands on rehabilitation specialists to reduce the cost of care and improve productivity.3 Service providers have responded by shortening the length of patient hospitalization.4,5 Additionally, early home supported discharge of subacute stroke patients has been proved to have a significant impact on motor recovery after stroke although it requires some level of innovation of methods and tools for service delivery to really become a sustainable solution for the healthcare system.6,7 All these reasons support the necessity of in-home rehabilitation systems as the one proposed in this work.

Socially, chronic stroke patients can highly benefit from innovative approaches based on home rehabilitation therapy.8 Technological and scientifically, only a few commercial systems are currently available for in-home use (e.g. HandMentor™,9 ReJoyce,10 and ArmeoBoom from Hocoma), and their performances are not comparable to in-person therapies.11 Key challenges not addressed properly for home systems include features such as affordability, autonomy, and high performance. Only if all requirements are satisfied, it will be possible to encourage national health systems, insurance companies, and patients to apply such platforms.

This work is part of an ongoing project called HomeRehab that will develop a new tele-rehabilitation robotic system for delivering therapy to stroke patients at home. Instead, Technologies has a robotic system called RoboTherapist 2D (Figure 1) developed to provide rehabilitation to patients who suffer from stroke and/or other neurological disorders.12 Currently, the system, as the majority of commercial devices, is only designed to be used in hospitals and medical centers in collaboration with nurses and medical staff.13

figure

Figure 1. RoboTherapist 2D system from Instead Technologies.

HomeRehab aims to modify and adapt the system so it can be used at home by patients easily and supporting the premise of tele-rehabilitation.14 This article describes in detail the mechanical design of the new HomeRehab system that adapts the RoboTherapist 2D for in-home use by making it smaller, lighter, and cheaper, but maintaining its high performance. Additionally, the system includes a third degree-of-freedom (DOF) plus a novel low-cost force sensor that were not considered for the original platform, but they are very interesting features for a complete in-home solution. Another key feature of the whole system is that it integrates patient monitoring techniques using wearable devices to monitor the physiological state of the patient and modify exercises based on that information.

The following section briefly summarizes the main requirements considered to develop a successful device, and afterward in section “Mechanical design,” the mechanical design of the new system is described in detail. Section “Robot controller” presents the controller of the robot as well as the adaptive controller implemented for the rehabilitation therapies. Section “Usability pilot study” carries out a validation phase by conducting several tests and surveys to compare the usability of RoboTherapist 2D with HomeRehab, and last section gathers main conclusions. […]

 

Continue —>   Development of a robotic device for post-stroke home tele-rehabilitationAdvances in Mechanical Engineering – Iñaki Díaz, José María Catalan, Francisco Javier Badesa, Xabier Justo, Luis Daniel Lledo, Axier Ugartemendia, Jorge Juan Gil, Jorge Díez, Nicolás García-Aracil, 2018

, , , , ,

Leave a comment

[ARTICLE] M-health and Physiotherapy – Full Text PDF

ABSTRACT
Rehabilitation exercises are those exercises that help in
improving joint and muscle function, helping people stand,
balance, walked. But these exercises work if done regularly
and done as proposed by the therapist. Sometimes the patients
has problems like scheduling their daily tasks, their
commitment for doing those exercises, and some other
difficultiessimilar to this. Thus failing to do the
movements and get benefit from the exercises. This paper
proposes a system that provides an intuitive way for
rehabilitation. This system contains use of pervasive health
technologies for addressing the over difficulty. The system
would provide a graphical interfacethat would help the
physiotherapist to create exercises in 3Denvironment, wherein
he would be animating a humanoid to showhow the exercise
is to be done.This would show to be more intuitive to patients
rather thanon paper. The system would also let therapist to
monitor patient while he/she is exercising.

1. INTRODUCTION
Physical therapy cures injuries and promotes movements of
injured body parts by examining the patient’s body, diagnosing
the patient and then treating the patient using mechanical
force and movements which is carried out by physical
therapists (also known as physiotherapist). Analysis aims to
extend, and restore maximum functional ability throughout
life action uses the patient history and the physical
examination to find out what really the patient needs to do, to
restore the mobility of the injured muscle. Physical therapy
has many types of specialities:
• Cardiopulmonary
• Geriatrics
• Neurological
• Sports
• Orthopaedic and
• Paediatrics
With the developing technology worldwide, people have
started using handheld devices to carry on their day-to-day
activities. With this advancement, the demand for pervasive
computing and 3D visualization of images and videos has
been raised. The area this paper focuses on is a tele-medicine
and tele-therapy system for helpingthe patient to get the help
of the doctors at their home. When a patient undergoes a
surgery, he may need a physiotherapy session to regain his/her
muscle functionality. For this purpose the patient may need to
take one-to-one session with the physiotherapist. The patient
requires to do these sessions again and again till he/she
regains the muscle functionality. Much man power, resources
and time is need to do all this.
In today’s life, it may be impossible for a patient to get
sometime from the busy schedule and go for these one-to-one
sessions.Also there are elderly people who get surgery but
aren’t able to goto the therapist for every day sessions, also
there are people that live inremote location and due to this
they are not able to get good healthcare services. To resolve
such problems we will be developing a telephysiotherapysystem,
which would help to cater patients at
theirdoorstep. The system would be developed in two stages.
In the firststage the doctor will be provided with an interface
where he/shecan animate a humanoid with the exercise the
patient needs to do.
This would be done using the mobile device the therapist
would behaving. After creating this animation, the therapist
would be ableto record the animation and send the animation
to the appropriatepatient. In the second stage we would be
using sensors and otherdevices to monitor the patient
exercises(If the first stage proves tobe successful).
As stated in the first stage, the therapist would be able to
create3D animations, for which we can use the 3D computer
graphicalrendering on mobile devices. This 3D visualization
would be moreintuitive than the printed paper counterpart.
Thus, it is hoped thatthis would help to improve the patient
health in less costly way.

Full Text PDF

, , , , ,

Leave a comment

[Abstract] Trial operation of a cloud service-based three-dimensional virtual reality tele-rehabilitation system for stroke patients

Abstract:

We developed a tele-rehabilitation system to improve community rehabilitation for patients who are discharged early from hospital. The developed tele-rehabilitation system consists of devices designed to reduce the physical and economic burden on users while promoting optimum user movement. A Backend-as-a-Service cloud computing service was used for the communication between terminals. A non-contact sensor, Kinect, was used to measure movement. In addition, we used a three-dimensional (3D) display to present 3D images using binocular parallax, to encourage smooth movement of patients. We used this system for stroke patients and found improvements in task-performance time, smoothness of movements, and range of motion in all patients. No major issues occurred during the tele-rehabilitation. These results demonstrated the high operability and efficacy of our cloud service-based 3D virtual reality tele-rehabilitation system.

Source: IEEE Xplore Document – Trial operation of a cloud service-based three-dimensional virtual reality tele-rehabilitation system for stroke patients

, , , , , , , , ,

Leave a comment

[ARTICLE] Preparing a neuropediatric upper limb exergame rehabilitation system for home-use: a feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 The portable YouGrabber system. a A patient playing the Airplane game on the portable YouGrabber system. b The complete data glove with sensor-“box”, bending sensors, and vibrating units attached to the size fit neoprene glove. c The complete equipment packed for “take away”

Abstract

Background

Home-based, computer-enhanced therapy of hand and arm function can complement conventional interventions and increase the amount and intensity of training, without interfering too much with family routines. The objective of the present study was to investigate the feasibility and usability of the new portable version of the YouGrabber® system (YouRehab AG, Zurich, Switzerland) in the home setting.

Methods

Fifteen families of children (7 girls, mean age: 11.3y) with neuromotor disorders and affected upper limbs participated. They received instructions and took the system home to train for 2 weeks. After returning it, they answered questions about usability, motivation, and their general opinion of the system (Visual Analogue Scale; 0 indicating worst score, 100 indicating best score; ≤30 not satisfied, 31–69 average, ≥70 satisfied). Furthermore, total pure playtime and number of training sessions were quantified. To prove the usability of the system, number and sort of support requests were logged.

Results

The usability of the system was considered average to satisfying (mean 60.1–93.1). The lowest score was given for the occurrence of technical errors. Parents had to motivate their children to start (mean 66.5) and continue (mean 68.5) with the training. But in general, parents estimated the therapeutic benefit as high (mean 73.1) and the whole system as very good (mean 87.4). Children played on average 7 times during the 2 weeks; total pure playtime was 185 ± 45 min. Especially at the beginning of the trial, systems were very error-prone. Fortunately, we, or the company, solved most problems before the patients took the systems home. Nevertheless, 10 of 15 families contacted us at least once because of technical problems.

Conclusions

Despite that the YouGrabber® is a promising and highly accepted training tool for home-use, currently, it is still error-prone, and the requested support exceeds the support that can be provided by clinical therapists. A technically more robust system, combined with additional attractive games, likely results in higher patient motivation and better compliance. This would reduce the need for parents to motivate their children extrinsically and allow for clinical trials to investigate the effectiveness of the system.

Keywords

Data glove, Pediatrics ,Neurorehabilitation, Upper extremities ,YouGrabber, Tele-rehabilitation, Game-based, Cerebral palsy, Children and adolescents, Clinical utility, User satisfaction

Continue —>  Preparing a neuropediatric upper limb exergame rehabilitation system for home-use: a feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , , , , ,

Leave a comment

[Conference Paper] Monitoring Game-Based Motor Rehabilitation of Patients at Home for Better Plans of Care and Quality of Life – Full Text PDF

Abstract

This paper describes the biomedical, remote monitoring infrastructure developed and currently tested in the EU REHAB@HOME project to support home rehabilitation of the upper extremity of persons post-stroke and in persons with other neurological disorders, such as Multiple Sclerosis patients, in order to track their progress over therapy and improve their Quality of Life. The paper will specifically focus on describing the initial testing of the tele-rehabilitation system’s components for patients’ biomedical monitoring over therapy, which support the delivery and monitoring of more personalized, engaging plans of care by rehabilitation centers and services.

Full Text PDF

, , , , , , , ,

Leave a comment

[ARTICLE] Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) trial: protocol of a randomized clinical trial on tele-rehabilitation for stroke patients – Full Text HTML

Abstract

Background: Most acute stroke patients with disabilities do not receive recommended rehabilitation following discharge to the community. Functional and social barriers are common reasons for non-adherence to post-discharge rehabilitation. Home rehabilitation is an alternative to centre-based rehabilitation but is costlier. Tele-rehabilitation is a possible solution, allowing for remote supervision of rehabilitation and eliminating access barriers. The objective of the Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) trial is to determine if a novel tele-rehabilitation intervention for the first three months after stroke admission improves functional recovery compared to usual care.

Methods/design: This is a single blind (evaluator blinded), parallel, two-arm randomised controlled trial study design involving 100 recent stroke patients. The inclusion criteria are age ≥40 years, having caregiver support and recent stroke defined as stroke diagnosis within 4 weeks. Consenting participants will be randomized with varying block size of 4 or 6 assuming a 1:1 treatment allocation with the participating centre as the stratification factor. The baseline assessment will be done within 4 weeks of stroke onset, followed by follow-up assessments at 3 and 6 months. The tele-rehabilitation intervention lasts for 3 months and includes exercise 5-days-a-week using an iPad-based system that allows recording of daily exercise with video and sensor data and weekly video-conferencing with tele-therapists after data review. Those allocated to the control group will receive usual care. The primary outcome measure is improvement in life task’s social activity participation at three months as measured by the disability component of the Jette Late Life Functional and Disability Instrument (LLFDI). Secondary outcome variables consist of gait speed (Timed 5-Meter Walk Test) and endurance (Two-Minute Walk test), performance of basic activities of daily living (Shah-modified Barthel Index), balance confidence (Activities-Specific Balance Confidence Scale), patient self-reported health-related quality-of-life [Euro-QOL (EQ-5D)], health service utilization (Singapore Stroke Study Health Service Utilization Form) and caregiver reported stress (Zarit Caregiver Burden Inventory).

Discussion: The goal of this trial is to provide evidence on the potential benefit and cost-effectiveness of this novel tele-rehabilitation programme which will guide health care decision-making and potentially improve performance of post-stroke community-based rehabilitation.

Trial Registration: This trial protocol was registered under ClinicalTrials.gov on 18 July 2013 as study title “The Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) Study” (ID: The STARS Study, ClinicalTrials.gov Identifier: NCT01905917).

 

Source: Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) trial: protocol of a randomized clinical trial on tele-rehabilitation for stroke patients | BMC Neurology | Full Text

, , ,

Leave a comment

[ARTICLE] New Generation Smartphone Models for Patient Rehabilitation Exercises – Full Text PDF

ABSTRACT

Patients with the frozen shoulder condition that limits their arm movement should seek rehabilitation assistance from a medical facility. The normal process is for the patients to travel from their home to a hospital or a medical center to see a physiotherapist. Such potentially cumbersome effort may reduce their motivation and determination to seek proper treatment. Our approach is to use a single smartphone with accelerometer, magnetic field, and gyroscope sensors to provide the necessary monitoring measurements to enable effective tele-rehabilitation. This work proposes a framework for such a system and has successful developed prototype based on the Android platform. Also, there are many different smartphones in the market. Therefore, we evaluated performance of three different smartphones, which are Samsung Google Nexus S, Samsung Galaxy Note 1, and Sony Xperia Z Ultra. According to the experimentation, we have shown that smartphones with the appropriate sensors are suitable for tele-rehabilitation. Also, a newer generation model would provide more precise measurements, as expected.

Continue —> Full Text PDF

, , , ,

Leave a comment

[SURVEY] Tele-Rehabilitation Games on the Cloud: A Survey and a Vision – Full Text PDF

ABSTRACT
Rehabilitation is an important branch of health care that aims to restore some or all of the patient’s physical, sensory, and/or mental capabilities that were lost due to injury, illness, or disease.

With the increasing number of people with disabilities, more specialized rehabilitation staff and facilities are needed. However, evidence suggests that people with disabilities face barriers in accessing the health and rehabilitation services they need in many settings.

Therefore, Telerehabilitation has emerged as an evolutionary field of tele-medicine to overcome this availability problem by providing a wide range of consultative, preventative, diagnostic, and therapeutic services via the internet. Pairing these practices with game-based therapy has proved to increase their potential impact specially with pediatric populations. This paper gives a survey on some existing studies and suggests moving these telerehabilitation games into the cloud for the sake of convenience and flexibility.

Full Text PDF

, , , ,

Leave a comment

[Systematic Review] Integration of emerging motion capture technologies and videogames for human upper-limb telerehabilitation – Full Text PDF

Abstract

Integrating emerging technologies has shown to have the potential to improve access to rehabilitation services and the adherence for physical therapy when they are applied into telemedicine environments.

This systematic review aims to explore telerehabilitation systems that use motion capture and video games for upper-limb rehabilitation purposes. Motion capture was focused on the information fusion from inertial sensors and other technologies. The search was limited to 2010-2013, from which 667 papers were obtained; afterwards,
duplicate papers were removed, thus, reducing the sample to 57 papers with full text availability. Finally, only 3 of them were selected by approaching the subject of this study.

We conclude that the fusion information from inertial sensors and other motion capture technologies appears to be a new tendency in remote monitoring of motor rehabilitation process. However, the combination of them with active video games in physiotherapy programs is only an emerging research area with promising results.

Full Text PDF

, , , , , ,

Leave a comment

%d bloggers like this: