Posts Tagged telerehabilitation

[ARTICLE] Preliminary Analysis of Perception, Knowledge and Attitude of Home Health Patients Using Tele Rehabilitation in Riyadh, Saudi Arabia – Full Text

ABSTRACT

Telerehabilitation is defined as delivery of rehabilitation services over telecommunication networks and the internet, which comprise of clinical assessment (the patient’s functional abilities in his or her environment) and clinical therapy.This new area  of medical advancement, using state of the art technology is developing at a great speed and is  definitely going to be the next milestone in health care revolution.The objective of this study was to explore the awareness, knowledge and perception of the patients for using telerehabilitation as a medium to provide physiotherapy services as a part of home healthcare services.  A pretest-post test design was used where the home healthcare patients (n = 90) aged between 50 -75 years were asked to express views by given a validated modified TUQ questionnaire followed by an indepth interviewing to develop a key understanding regarding the themes. Interviews were transcribed and a qualitative thematic analysis was conducted. The awareness level regarding the  telerehabilitation changed significantly from 57% to 96% post session(p<0.05). Similarly, the knowledge of the participants regarding  online consultation, followup and online therapy  changed significantly from 50%, 47% and 57% to 96%, 76% and 96% respectively post session of rehabilitation(p<0.05). The perception level regarding the key benefits including  its usage in emergency(83%), convenience of no travel(84%), ease of getting treated at home(97%) and  availability of specialist consultation (84%) were the prime ideas for excellent rating among 95% participants (p<0.05) post session. Findings are helpful to health practitioners in designing their intervention programs across the kingdom. However the actual impact could be only derived from future studies which has to conducted based on different clinical conditions.

Introduction

Telerehabilitation is defined as the provision and delivery of rehabilitation health services at a distance using information and communication technologies and tools (Tan 2005; Russell 2007). Throughout the world, the health care practices is going through major transformation as it is driven through sea change because of the increased use of technology. The kingdom of Saudi Arabia too is witnessing a massive change with significant restructuring of healthcare systems with some major high-end technology driven development solutions. The increased demand is created on account of rapidly increasing saudi population including the growing elderly community, changing disease patterns, global climatic changes and financial inequity (Mahmood 2018).  According to a United nations report the elderly population of Saudi Arabia  those aged 60 and above is projected to increase from 3% in 2010 to 9.5% and 18.4% in 2035 and 2050, respectively (UN Report, 2018).

Similarly, comparing this phenomenon to an average life expectancy of the population in Saudi Arabia, the latest WHO data published in 2018, suggests that Saudi male and female have an average of 73.5 and female 76.5 life years with an average life expectancy of 74.8 years as against an average world life expectancy of 84 years.The increased demand in kingdom also raised because of immense economic pressure with steep fall in global oil prices in 2015-16 affecting the GDP significantly thereby been one of the key stimulus for the government to take timely corrective actions and diversify the economy from heavily oil dependent to develop other verticals for revenue generation (MoH Report, 2018).

Brian child of Crown Prince HH Mohammad Bin Salman, Vision 2030 was adopted in April 2016 and has identified its priorities across all economic sectors and serves as a roadmap for the economic development of the KSA with development of health services been one of the most important key themes. Therefore, as a part of realization of this vision the government strongly supports the partnership of private and public sectors and been seen as a strong indication of the Government’s commitment for making healthcare accessible to its citizens irrespective of the disparities available in the Saudi society (Vision 2030 Report, 2016). Access to healthcare generally relates to people’s ability to use health services when and where they are needed. Determinants of healthcare access are the types and quality of services, including the costs, time, distance (ease of travel) as well as regular interface between service users and healthcare providers. Saudi Arabia is the largest and fastest growing health care market in the region and is estimated to reach $40 billion by 2020 (NTP 2020 Report, 2016).

Moreover, the steep increase in the number of hospitals across all major cities of KSA are run by both government and private organizations which use  corporate business strategies and technology driven specializations, which aim to create demand as well as attract high number patients as the facilities in majority of these hospitals are world class.Among the various strategies listed in the NTP Report 2020, one of the key components of making healthcare accessible across the kingdom is the enhanced use of telemedicine (NTP 2020 Report, 2016). In the last one decade the health services across the kingdom have taken gigantic leap jumps with private healthcare taking lead and using innovations in delivering healthcare. One of such innovations is using Home Healthcare for delivering physiotherapy and other rehabilitation based services for the patients at home (Pulse Report 2018).

Rehabilitation is a very important component in medical care and helps in propelling patient to preinjury level. It is a well known fact that in all long term cases which requires follow-ups such as in surgical cases and other debilitating disorders including Stroke, Cancer, Multiple Sclerosios, rehabilitation is time consuming and financially constraining. To add to this, patients travelling long distances for treatment, it is not only physically challenging but emotionally draining too and especially in case of geriatric patients.Therefore home tele rehabilitation programs, are winding up progressively as an elective method of service delivery. In the western countries, quite a number of research studies has been proved that the Telerehabilitation for the delivery of health services is quite effective, however the scope of using such services in the kingdom is still novice and requires a detailed study, (Hailey et al., 2010, Johansson and Wild 2011, Chang et al 2019     ).

There are scant studies to prove its efficacy in the developing countries as its successful will depends on a number of factors (Clemens et al 2018) . However, among all the variables, the two most important are the technological component and second been its implementation in real terms (Jackson and McClean 2012, Clemens et al 2018). Accordingly, these both are of extreme critical importance from the patient satisfaction point of view. The perceptions of the stakeholders, i.e. the patient and the members of the Rehabilitation team are of utmost importance for its use and wide spread application.The home healthcare services in Saudi Arabia is still in infancy stages with few delivery partners across the kingdom. The usage of telerehabilitation is even more nascent, as the perception of patients in using such a technology for delivering healthcare would be quite critical and important to understand the phenomenon which would be quite useful in framing the guidelines for its applications at a mass level, (Alaboudi et al 2016).

Therefore, this study is an attempt to study the awareness, knowledge and perceptions of  the home healthcare patients in using physiotherapy services delivered via cloud based telerehabilitation. This study, to our knowledge is the first of its kind in the kingdom especially from the perspective of home healthcare patients. It aims to explore the key ideas which might work in favour or against the successful implementation of telerehabilitation used for the home healthcare delivery.

Materials and Methods

The pretest-post test study design was conducted on home healthcare patients so as to obtain an in-depth understanding of the patients’ perception about telerehabilitation services which they will receive as a part of home health services. While a few studies  conducted earlier emphasized about telemedicine to be a key part in delivery of health services, however none of the studies emphasized on perception of patients to implement telerehabilitation as part of home healthcare (Clemens et al 2018, Khalil et al 2018).

Due necessary approval were taken from the ethical clearance committee of the respective organization, which is a reputed home healthcare organization based in Riyadh. In order to recruit participants for the study, sample population were selected from a pool of home healthcare patients who were undergoing treatment under one of the most prominent home healthcare organizations in the kingdom, which incidentally was the only first licensed stand-alone home healthcare services company in Riyadh province.

The study was conducted from Jan 15 to May 30, 2019. In this context, non-probability sampling method was used. Out of 113 home healthcare patients who underwent treatment for different ailments, 90 were randomly selected who also gave their consent to participate in the study out of which 57 were males and 33 were females. Those patients who suffered from orthopedic problems such as Knee pain, low back ache, disc prolapse etc. or underwent orthopedic surgeries such as knee replacement or meniscectomy etc. participated in the study. The study mainly included common geriatric patients for the study who were willing to participate but excluded the pediatric and the critical care, neurological and cardiac patients as they underwent major surgeries such as for stroke or CABG and also were unable to respond directly to answer the questions. The patients who were able respond in English or Arabic were recruited for the study.

Based on literature review and discussion with key stakeholders, a questionnaire and an the interview guide was prepared, modified from Telehealth Usability Questionnaire (TUQ) based on key themes of perceived usefulness, ease of use and learnability,  Interaction quality, Reliability and Satisfaction and future use (Langbecker et al 2017) . The questionnaire was converted to Arabic version adapted from the original English version and pilot tested for the home healthcare patients using both forward and backward translation methods and achieved very acceptable score of confirmatory factor analysis of 0.78 using SPSS. It was also pilot tested   for the members of the rehabilitation team. The questionnaires as given in Appendix 1 were responded by the patients and the members of the rehabilitation team followed by a semi structured individual interview from the patient as well as from the team members involved in providing home health services. The interviews were audio recorded and transcribed verbatim using Text Analysis Markup System (TAMS) Analyzer as suggested by Yin (Yin 2013).

The Tele-rehabilitation Technological solutions were a part of home health services which were delivered by the company. As a part of cloud based HIPAA compliant network, the telemedicine unit consists of a portal to track health metrics and rehabilitation treatment plan and progress by the PT specialists as well as the Case Managers. The system included case briefing, consultation by specialists as well as providing physiotherapy sessions both by Home health therapists or via health workers such as PTAs within the vicinity of home environment at patient’s ease as schematically represented in Fig. no.1.

Figure 1: Set-up for in-home telerehabilitation: (A) Framework system; (B) dashboard Screen (C) Integrated loop with benefits

The participants were given a pre and post session modified TUQ and asked to reflect on their entire rehabilitation experience using the Telerehabilitation platform so as to get relevant information about telemedicine services including key events such as finding out they would receive services at home by videoconference, having the internet and videoconferencing equipment installed at home and receiving services by videoconference including dealing with technical issues. Following the same detailed interview was taken using the TAMS so as to identify key ideas which can affect usage of telerehabilitation. . Statistical tests was conducted  using SPSS for Pre-post differences evaluation. using paired  t-tests to assess factors associated with awareness, knowledge and perception. Significance was set a priori at p < 0.05. […]

Continue —> Preliminary Analysis of Perception, Knowledge and Attitude of Home Health Patients Using Tele Rehabilitation in Riyadh, Saudi Arabia

, , ,

Leave a comment

[Abstract] Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial.

Abstract

IMPORTANCE:

Many patients receive suboptimal rehabilitation therapy doses after stroke owing to limited access to therapists and difficulty with transportation, and their knowledge about stroke is often limited. Telehealth can potentially address these issues.

OBJECTIVES:

To determine whether treatment targeting arm movement delivered via a home-based telerehabilitation (TR) system has comparable efficacy with dose-matched, intensity-matched therapy delivered in a traditional in-clinic (IC) setting, and to examine whether this system has comparable efficacy for providing stroke education.

DESIGN, SETTING, AND PARTICIPANTS:

In this randomized, assessor-blinded, noninferiority trial across 11 US sites, 124 patients who had experienced stroke 4 to 36 weeks prior and had arm motor deficits (Fugl-Meyer [FM] score, 22-56 of 66) were enrolled between September 18, 2015, and December 28, 2017, to receive telerehabilitation therapy in the home (TR group) or therapy at an outpatient rehabilitation therapy clinic (IC group). Primary efficacy analysis used the intent-to-treat population.

INTERVENTIONS:

Participants received 36 sessions (70 minutes each) of arm motor therapy plus stroke education, with therapy intensity, duration, and frequency matched across groups.

MAIN OUTCOMES AND MEASURES:

Change in FM score from baseline to 4 weeks after end of therapy and change in stroke knowledge from baseline to end of therapy.

RESULTS:

A total of 124 participants (34 women and 90 men) had a mean (SD) age of 61 (14) years, a mean (SD) baseline FM score of 43 (8) points, and were enrolled a mean (SD) of 18.7 (8.9) weeks after experiencing a stroke. Among those treated, patients in the IC group were adherent to 33.6 of the 36 therapy sessions (93.3%) and patients in the TR group were adherent to 35.4 of the 36 assigned therapy sessions (98.3%). Patients in the IC group had a mean (SD) FM score change of 8.36 (7.04) points from baseline to 30 days after therapy (P < .001), while those in the TR group had a mean (SD) change of 7.86 (6.68) points (P < .001). The covariate-adjusted mean FM score change was 0.06 (95% CI, -2.14 to 2.26) points higher in the TR group (P = .96). The noninferiority margin was 2.47 and fell outside the 95% CI, indicating that TR is not inferior to IC therapy. Motor gains remained significant when patients enrolled early (<90 days) or late (≥90 days) after stroke were examined separately.

CONCLUSIONS AND RELEVANCE:

Activity-based training produced substantial gains in arm motor function regardless of whether it was provided via home-based telerehabilitation or traditional in-clinic rehabilitation. The findings of this study suggest that telerehabilitation has the potential to substantially increase access to rehabilitation therapy on a large scale.

 

via Efficacy of Home-Based Telerehabilitation vs In-Clinic Therapy for Adults After Stroke: A Randomized Clinical Trial. – PubMed – NCBI

, , , , , , , ,

Leave a comment

[ARTICLE] Factors That Contribute to the Use of Stroke Self-Rehabilitation Technologies: A Review – Full Text

ABSTRACT

Background: Stroke is increasingly one of the main causes of impairment and disability. Contextual and empirical evidence demonstrate that, mainly due to service delivery constraints, but also due to a move toward personalized health care in the comfort of patients’ homes, more stroke survivors undergo rehabilitation at home with minimal or no supervision. Due to this trend toward telerehabilitation, systems for stroke patient self-rehabilitation have become increasingly popular, with many solutions recently proposed based on technological advances in sensing, machine learning, and visualization. However, by targeting generic patient profiles, these systems often do not provide adequate rehabilitation service, as they are not tailored to specific patients’ needs.

Objective: Our objective was to review state-of-the-art home rehabilitation systems and discuss their effectiveness from a patient-centric perspective. We aimed to analyze engagement enhancement of self-rehabilitation systems, as well as motivation, to identify the challenges in technology uptake.

Methods: We performed a systematic literature search with 307,550 results. Then, through a narrative review, we selected 96 sources of existing home rehabilitation systems and we conducted a critical analysis. Based on the critical analysis, we formulated new criteria to be used when designing future solutions, addressing the need for increased patient involvement and individualism. We categorized the criteria based on (1) motivation, (2) acceptance, and (3) technological aspects affecting the incorporation of the technology in practice. We categorized all reviewed systems based on whether they successfully met each of the proposed criteria.

Results: The criteria we identified were nonintrusive, nonwearable, motivation and engagement enhancing, individualized, supporting daily activities, cost-effective, simple, and transferable. We also examined the motivation method, suitability for elderly patients, and intended use as supplementary criteria. Through the detailed literature review and comparative analysis, we found no system reported in the literature that addressed all the set criteria. Most systems successfully addressed a subset of the criteria, but none successfully addressed all set goals of the ideal self-rehabilitation system for home use.

Conclusions: We identified a gap in the state-of-the-art in telerehabilitation and propose a set of criteria for a novel patient-centric system to enhance patient engagement and motivation and deliver better self-rehabilitation commitment.

Introduction

Background

Stroke has become a global problem [1]. One new case is reported every 2 seconds, and the number of stroke patients is predicted to increase by 59% over the next 20 years [2]. In the United Kingdom alone, more than 100,000 stroke cases are reported annually [1], with impairment or disability affecting two-thirds of the 1.2 million stroke survivors [1]. In the United Kingdom, only 77% of stroke survivors are taken directly to the stroke unit. Due to the high number of patients, in England, for example, the social care costs are almost £1.7 billion per annum. The social care cost varies with the age of the patient: the older the patient, the higher the cost. The cost for a person who has had a stroke was reported in 2017 to be around £22,000 per annum. Thus, cost is one of the main drives for service delivery practices. In that respect, early discharge units have been used due to better outcomes and greater success on rehabilitation. Early discharge units consist of specialized personnel who offer an intensive rehabilitation program to the patient. However, after this intensive program of relatively short duration, the patient is discharged and continues the rehabilitation at home. This is expected to reduce costs by £1600 over 5 years for every patient, according to a 2017 report [1].

Due to increasing pressure to discharge patients early from hospital [3], they rely increasingly on home rehabilitation to improve their condition after discharge. As a result, the need has been increasing for home rehabilitation systems that are not dependent on specialist or clinician operators [1,4,5] while providing service similar to a clinical environment. Technological advances in home rehabilitation have been mainly focused on motor control impairments due to their prevalence in the patient population (85% worldwide [1]).

Rehabilitation in a home environment can prove more efficient than that in a clinical environment, as the home environment supports patient empowerment through self-efficacy [6,7]. The presence of supportive family members and a familiarity with the space are significant contributors to motivation. Additionally, rehabilitation in cooperation or in competition with family members demonstrates higher level of engagement [8].

Though rehabilitation in the comfort of a patient’s home seems an attractive option, home environments have limitations that can affect the use of clinical devices. The most prevalent limitations are related to space and the lack of qualified personnel to operate devices. The number of occupants; the patient’s mobility, individual personality, and mood disorders following stroke; and sound insulation, home modification requirements, and cost [9,10] also contribute to limitations of home rehabilitation. Finally, different age groups react differently to technology and devices; for example, elderly survivors often do not engage with wearable devices or video games [11]. As a result, stroke rehabilitation requires a person-centric approach that is suitable for the home environment and that does not require infrastructure change in the home.

Enhancing Motivation

The success of stroke rehabilitation depends heavily on personal commitment and effort. Recent studies, for example, on applied psychology in behavior change theories for stroke rehabilitation [1214], do support that the self-esteem of the patient is limited after stroke. In addition, there is an extended sedentary period due to disability and, thus, different programs of activities are set to motivate the patients. Thus, the patient’s motivation and engagement have a critical impact on the success of any routine that is to be encouraged [15]. This is especially critical for devices used at home, since patients are usually interacting with them alone without frequent checks. Indeed, if a device does not provide a high level of engagement or motivation enhancement, it is more likely to be abandoned within 90 days [16]. Motivation levels depend on the individual, their achievements, and their needs at each given point in time. For example, once the patients achieve their physiotherapy exercise targets, they lose motivation for further practice. There are 3 main approaches to enhancing patients’ motivation: (1) goal-setting theory, (2) self-efficacy improvement theory, and (3) possible selves theory.

Goal-Setting Theory

This approach has been proved effective for stroke survivors. According to the goal-setting theory, the patient’s motivation can be increased through setting small goals or targets. These need to be realistic, manageable, and well defined for the individual patient. However, they also need to be sufficiently challenging for the patient to be engaged [15,1719]. Figure 1 presents the main components contributing to motivation enhancement based on the goal-setting theory.

Figure 1. The main components of goal-setting theory.

[…]

Continue —>  JBME – Factors That Contribute to the Use of Stroke Self-Rehabilitation Technologies: A Review | Vourganas | JMIR Biomedical Engineering

, , , , , , , ,

Leave a comment

[WEB SITE] Telerehab vs In-Clinic for Post-Stroke Arm Weakness: Which One Wins?

Old woman training at home

Telerehabilitation was not inferior to in-clinic rehabilitation therapy in helping to improve arm function after stroke but could substantially increase access to therapy for those who are unable to access a rehabilitation clinic, researchers opine.

“Few patients fully recover from arm weakness after a stroke. The remainder demonstrate persistent arm impairments that are directly linked to activity limitations, participation restrictions, reduced quality of life, and decreased well-being,” Steven C. Cramer, MD, from the department of neurology at the University of California, Irvine, and colleagues write, in a study published in JAMA Neurology.

“Some rehabilitation therapies can improve these deficits, with higher doses associated with better outcomes. However, many patients do not receive high doses of rehabilitation therapy, for reasons that include cost, difficulty traveling to the location where therapy is provided, shortage of regional rehabilitation care, and poor adherence with assignments,” they continue, in a media release from Healio.

Cramer and colleagues conducted a randomized, assessor-blinded, noninferiority clinical trial to compare telerehabilitation and in-clinic rehabilitation therapy outcomes for patients who had a stroke that resulted in arm motor deficit.

Patients were enrolled in the study at 4 to 36 weeks after experiencing an ischemic stroke or intracerebral hemorrhage that resulted in arm weakness. After enrollment, participants were randomly assigned to receive intensive arm motor therapy in a rehabilitation clinic or in their home using telerehabilitation delivery services with a computer connected to the internet. Scores on the Fugl-Myer arm motor scale were measured at the baseline and after treatment to determine changes in arm motor function.

All patients received 36 treatment sessions (70 minutes) in a 6- to 8-week period, which included 18 supervised and 18 unsupervised sessions. The content of therapy was carefully matched, with each group using the same exercises and standard exercise equipment.

A total of 124 participants were included in the study. Participants had a mean age of 61 years, a mean baseline Fugl-Meyer score of 43 points and were enrolled for a mean 18.7 weeks following stroke, the release explains.

Patients in the in-clinic group were adherent to 33.6 of 36 therapy sessions (93.3%), and those who received telerehabilitation at home were adherent to 35.4 of 36 therapy sessions (98.3%).

Both groups experienced significant changes in Fugl-Meyer scores from the baseline period to 30 days after treatment, with a mean change of 8.36 points in patients who received in-clinic therapy and 7.86 points in those who received telerehabilitation therapy.

The noninferiority margin was 2.47 and fell outside the 95% confidence interval, suggesting that telerehabilitation was not inferior to in-clinic therapy.

“Our study found that a 6-week course of daily home-based [telerehabilitation] is safe, is rated favorably by patients, is associated with excellent treatment adherence, and produces substantial gains in arm function that were not inferior to dose-matched interventions delivered in the clinic,” Cramer and colleagues conclude, in the release.

[Source: Healio Primary Care]

 

via Telerehab vs In-Clinic for Post-Stroke Arm Weakness: Which One Wins? – Physical Therapy Products

, , , , , ,

Leave a comment

[WEB SITE] Telerehab Program Works as Well as Clinic-Based Program for Improved Arm Function Poststroke – JAMA Neurology

It’s probably not news to physical therapists (PTs) when research backs up the idea that patients who experience arm impairments poststroke will tend to make greater functional improvements with larger and longer doses of rehabilitation. Unfortunately, PTs are also familiar with the fact that what’s optimal isn’t necessarily what’s typical, with challenges such as payment systems, logistics, and clinic access making it difficult to achieve the best possible results. That’s where telerehabilitation could make a big difference, say authors of a new study that found an entirely remotely delivered rehab program to be as effective as an equal amount of clinic-based sessions.

The findings lend further support to the ideas behind APTA’s efforts to increase telehealth opportunities for PTs and their patients—a significant component of the association’s current public policy priorities. In addition, APTA provides multiple telehealth resources on a webpage devoted to the topic, and has created the Frontiers in Research, Science, and Technology Council that provides interested members and other stakeholders with an online community to discuss technology’s role in physical therapy.

The study, published in JAMA Neurology (abstract only available for free), involved 124 participants who experienced arm motor deficits poststroke. All participants were enrolled in a rehabilitation therapy program that included 36 70-minute treatment sessions, half of which were supervised, over a 6- to 8-week period. The only major difference: one group’s supervised sessions were face-to-face with a physical therapist (PT) or occupational therapist (OT), while the other group received telerehab from a PT or OT via a computer with video capabilities, accompanied by the use of a gaming system.

Researchers were interested in finding out how patients fared in each approach, using scores from the Fugl Meyer (FM) assessment of motor recovery poststroke as their primary measure. Authors of the study also measured patient adherence with therapy as well as levels of patient motivation related to how well they liked the therapy they were receiving and their degree of dedication to treatment goals.

Using a treatment approach “based on an upper-extremity task-specific training manual and Accelerated Skill Acquisition Program,” researchers set up matched programs that included at least 15 minutes per session of arm exercises from a common set of 88 possible exercises, at least 15 minutes of functional training, and 5 minutes of stroke education. The clinic-based participants received in-person instruction on the exercises and used “standard exercise hardware”; the telerehab patients received instructions via video link and engaged in functional exercise via a videogame interface. Here’s what the researchers found:

  • Both groups improved at about the same rate, with the telerehab participants averaging a 7.86 FM gain, compared with an average gain of 8.36 points for the clinic-based group.
  • Improvements were also about the same for the subgroup of participants who entered rehabilitation more than 90 days poststroke, with these “late” participants averaging a 6.6-point gain for the telerehab group and a 7.4-point increase for the clinic-based group.
  • While both groups reported high levels of dedication to treatment goals, the clinic-based group tended to report better levels of motivation and satisfaction. Adherence was also high for both groups, with a 93.4% adherence rate for the clinic-based group and a rate of 98.3% for the telerehab group.
  • Both groups increased their knowledge of stroke at similar rates.

As for the technical details of the telerehab sessions, the system included a computer linked to the internet, a table, a chair, and 12 “gaming input devices.” Keyboards were not necessary. The supervised sessions began with a 30-minute videoconference between the patient and therapist, and the functional training games used were designed to match the functional task work being done with the clinic-based participants. Unsupervised sessions adhered to the same content but didn’t include contact with the therapist.

“In an era when prescribed doses of poststroke rehabilitation therapy are declining, adversely affecting patient outcomes, these and prior findings suggest that outcomes could be improved for many patients…if larger doses of rehabilitation therapy were prescribed,” authors write. “Our study found that a 6-week course of daily home-based [telerehab] is safe, is rated favorably by patients, is associated with excellent treatment adherence, and produces substantial gains in arm function that were not inferior to dose-matched interventions delivered in the clinic.”

Authors acknowledged that patient satisfaction with telerehab might be improved by increasing the amount of time spent with the therapist—providing that therapist is properly trained. “Current results underscore the importance of maintaining a licensed therapist’s involvement during [telerehab],” they write.

Ultimately, it’s still too early to determine just how generalizable the findings are to other populations and conditions, the researchers say, but all indicators seem to point to the need for increasing the availability of telerehab and its inclusion in health plans.

“The US Bipartisan Budget Act of 2018 expanded telehealth benefits,” authors write. “Eventually, home-based [telerehab] may plan an ascendant role for improving patient outcomes.”

Research-related stories featured in PT in Motion News are intended to highlight a topic of interest only and do not constitute an endorsement by APTA. For synthesized research and evidence-based practice information, visit the association’s PTNow website.

via JAMA Neurology: Telerehab Program Works as Well as Clinic-Based Program for Improved Arm Function Poststroke

, , , , , , ,

Leave a comment

[ARTICLE] Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial – Full Text

Abstract

Background

Virtual reality training (VRT) uses computer software to track a user’s movements and allow him or her to interact with a game presented on a television screen. VRT is increasingly being used for the rehabilitation of arm function, balance and walking after stroke. Patients often require ongoing therapy post discharge from inpatient rehabilitation. Outpatient therapy may be limited or inaccessible due to waiting lists, transportation issues, distance etc.; therefore, home-based VRT could provide the required therapy in a more convenient and accessible setting. The objectives of this parallel randomized feasibility trial are to determine (1) the feasibility of using VRT in the home post stroke and (2) the feasibility of a battery of quantitative and qualitative outcome measures of stroke recovery.

Methods

Forty patients who can stand for at least 2 min and are soon to be discharged from inpatient or outpatient rehabilitation post stroke are being recruited in Ottawa, Canada and being randomized to control and experimental groups. Participants in the experimental group use home-based VRT to do rehabilitative exercises for standing balance, stepping, reaching, strengthening and gentle aerobic fitness. Control group participants use an iPad with apps selected to rehabilitate cognition, hand fine motor skills and visual tracking/scanning. Both groups are instructed to perform 30 min of exercise 5 days a week for 6 weeks. VRT intensity and difficulty are monitored and adjusted remotely. Weekly telephone contact is made with all participants. Ability to recruit participants, ability to handle the technology and learn the activities, compliance, safety, enjoyment, perceived efficacy and cost of program delivery will be assessed. A battery of assessments of standing balance, gait and community integration will be assessed for feasibility of completion within this population and potential for improvement following the intervention. Effect sizes will be calculated.

Discussion

The results of this study will be used to support the creation of a definitive randomized controlled trial on the efficacy of home-based VRT for rehabilitation post stroke.

Introduction and objectives

Stroke causes approximately 17,600 hospital admissions per year in Ontario and 50% of individuals who have had a stroke are left with moderate to severe impairment [12]. Most patients who are discharged from inpatient stroke rehabilitation are only 8–10 weeks post stroke and have not completely recovered. Their central nervous systems are still in a period of enhanced neuroplasticity, during which great functional change can be made [34]. Therapy outcomes are dose-dependent; intensive, high-repetition, task-oriented and task-specific therapies are most effective [56]. Therefore, for the greatest recovery possible, these patients require ongoing, intensive therapy. Most are offered this on an outpatient basis. However, for many reasons (transportation difficulties, distance from the rehabilitation center, weather etc.), not all eligible patients are able to attend outpatient therapy. Also, there is a waiting list and a limited number of outpatient therapy sessions are offered to each patient. Home-based therapy may fill an important role towards increasing the availability of rehabilitation, enabling patients to enhance or prolong their therapy and potentially improving outcomes.

Non-immersive virtual reality training (VRT) uses computer software to track the user’s movements and allow him or her to interact with a game or activity presented on a TV screen. It is convenient, timely, enjoyable and may be used for an unlimited period post stroke [78]. VRT has been shown to benefit upper extremity function, standing balance, gait and overall function in the sub-acute and chronic phases post stroke, at least as much as or more than conventional therapy [7910111213].

Home-based VRT offers a promising addition or alternative to existing rehabilitation programs that could make a significant difference in the lives of stroke survivors. A few preliminary studies have investigated the use of home-based VRT for standing balance and upper extremity recovery after stroke and shown potential feasibility of these systems for ongoing rehabilitation in the home [1415161718]. Some VRT platforms allow the user to interface via tactile devices (for example, a dynamic standing frame [14] or robotic glove [18]) while others use motion-tracking via a camera [16]. Some platforms use asynchronous monitoring to allow the therapist to monitor VRT usage and performance after the actual event [16] while others use synchronous monitoring to enable the therapist to watch in while the participant exercises; some even require constant real-time patient/therapist interaction [1719] throughout the therapy session. Users report high satisfaction with home-based VRT [1617], although actual usage can vary greatly [18]. Barriers to the use of home-based VRT include technical issues and lack of previous technical experience [18]. While some previous experience with computers is helpful, those who play video games regularly can become bored with VRT. Facilitators include the flexibility of home-based exercise, support from family and motivation from the VRT itself. Early results, available from a single randomized controlled trial (RCT) with 30 participants, suggest that home-based VRT improves standing balance and gait equally to in-clinic VRT, but that the costs are 44% lower [16].

We wish to add to these early studies of home-based VRT using a virtual reality system (Jintronix Inc.) that was initially developed for stroke rehabilitation and has also been used extensively with healthy and frail elderly individuals. The Jintronix system is marketed for institutional and home use and has a simple-to-use interface, but its home use has not yet been fully evaluated. The games are designed to incorporate motor learning principles such as multiple forms of feedback and task-specific practice that can be progressed to maintain an appropriate level of challenge. Unlike systems used in previous research, the Jintronix system includes a wide selection of games and exercises designed for the rehabilitation of sitting and standing balance, gait and upper extremity use. The system is simple to use and relatively inexpensive; a motion-tracking camera and software eliminates the need for gloves/controllers etc. It is straightforward enough for the patient to use independently; asynchronous monitoring is used to track usage and the therapist can change games and parameters remotely. The purpose of this study is to investigate the feasibility, acceptance and safety of this new, simple-to-use VRT system for use in the home, combined with asynchronous, remote support for the user. The results of this trial will support a definitive RCT in the future.

The primary objective is to assess the feasibility of using VRT in the home with patients post stroke, using quantitative and qualitative methods. Specific objectives are:

  1. 1.

    To estimate the recruitment rate of participants into the study;

  2. 2.

    To assess the ability and compliance of the participants with respect to the components of the research protocol (ability to learn VRT through the training program; ability to comply with the exercise protocol; participant retention);

  3. 3.

    To determine the safety of home-based VRT (presence of minor and major adverse events);

  4. 4.

    To assess the ability of stroke survivors and their study partners to use VRT technology in the home (i.e. technical difficulties, difficulty learning the games);

  5. 5.

    To assess the acceptability of the VRT intervention (enjoyment; perceived efficacy);

  6. 6.

    To estimate the cost for a future definitive RCT on in-home VRT.

The secondary objective is to assess the feasibility of the outcome measures, using quantitative and qualitative methods. Specific objectives are:

  1. 1.

    To assess the feasibility and acceptance of a battery of outcome measures, including physical assessments, questionnaires, an interview and a log book;

  2. 2.

    To assess the potential that home-based VRT might maintain or improve physical outcomes of standing balance, gait and general function and community integration after discharge from hospital-based stroke rehabilitation, compared to those who perform a program of iPad apps designed for fine hand motor skills and cognitive training;

  3. 3.

    To determine the sample size required for a future definitive RCT on in-home VRT.

This study is a prospective, single-site, single-blinded, parallel-group (1:1 ratio) randomized, superiority feasibility trial on the use of VRT for ongoing stroke rehabilitation after discharge from inpatient or outpatient stroke rehabilitation. A feasibility RCT was chosen in order to provide the most useful results to prepare for a future definitive RCT on the efficacy of home-based VRT. iPad apps were chosen as a comparator to VRT because they provide a control group that has equal contact with the researchers and equal time spent in an engaging activity. The use of an active control group (rather than providing control group participants with nothing) was also chosen to facilitate recruitment. The iPad apps chosen to work on hand fine motor control and cognition were not deemed to have any influence on the physical outcome measures of standing balance, gait and gross motor function. The Standard Protocol Items: Recommendation for Interventional Trials (SPIRIT) checklist is available as Additional file 1: Figure S1.[…]

 

Continue —>  Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial | Trials | Full Text

Fig. 1a  Experimental intervention – home-based virtual reality training targeting standing balance, stepping, reaching, strengthening and aerobic exercise. b Control intervention – iPad apps targeting cognition and hand fine motor control

, , , , , ,

Leave a comment

[WEB SITE] In-home therapy effective for stroke rehabilitation, study shows — ScienceDaily

A multisite US clinical trial compared home-based telerehabilitation program with traditional in-clinic rehabilitation therapy

Summary:
Stroke remains a leading cause of human disability and rehabilitation therapy can help. Supervised in-home rehabilitation therapy delivered via telemedicine can be as effective as in-clinic rehabilitation program as an alternative for stroke survivors who can’t sustain in-person visits for reasons that may include high cost, difficulty traveling to a provider or few regionally available care providers.     
FULL STORY

In-home rehabilitation, using a telehealth system and supervised by licensed occupational/physical therapists, is an effective means of improving arm motor status in stroke survivors, according to findings presented by University of California, Irvine neurologist Steven C. Cramer, MD, at the recent 2018 European Stroke Organisation Conference in Gothenburg, Sweden.

“Motor deficits are a major contributor to post-stroke disability, and we know that occupational and physical therapy improve patient outcomes in a supervised rehabilitation program,” said Cramer, a professor of neurology in the UCI School of Medicine. “Since many patients receive suboptimal therapy doses for reasons that include cost, availability, and difficulty with travel, we wanted to determine whether a comprehensive in-home telehealth therapy program could be as effective as in-clinic rehabilitation.”

In a study conducted at 11 U.S. sites, 124 stroke survivors underwent six weeks of intensive arm motor therapy, with half receiving traditional supervised in-clinic therapy and half undergoing an in-home rehabilitation program supervised via a videoconferenced telemedicine system.

Subjects were on average 61 years old, 4.5 months post-stroke, and had moderate arm motor deficits at study entry. When examined 30 days after the end of therapy, subjects in the in-clinic group improved by 8.4 points on the Fugl-Meyer scale, which measures arm motor status and ranges from 0 to 66, with higher numbers being better. Subjects in the telerehab group improved by 7.9 points, a difference that was not statistically significant.

“The current findings support the utility of a computer-based system in the home, used under the supervision of a licensed therapist, to provide clinically meaningful rehab therapy,” Cramer said. “Future applications might examine longer-term treatment, pair home-based telerehab with long-term dosing of a restorative drug, treat other neurological domains affected by stroke (such as language, memory, or gait), or expand the home treatment system to build out a smart home for stroke recovery.”

He said that the demand for rehabilitation services will likely increase, due to an aging population and increased stroke survival as a result of better access to advanced acute care. Telehealth, defined as the delivery of health-related services and information via telecommunication technologies, can potentially address this growing unmet need.

“We reasoned that telerehabilitation is ideally suited to efficiently provide a large dose of useful rehab therapy after stroke,” said Cramer, whose research team is part of the NIH StrokeNet consortium.

This research builds on the findings of a pilot study of 12 patients with late subacute stroke and arm-motor deficits who were provided 28 days of home-based telerehab program. The results, published in November 2017 in the journal Neurorehabilitation and Neural Repair, found that patient compliance was excellent (97.9%) and participants experienced significant arm-motor gains (Fugl-Meyer scale increase of 4.8 points). The study also found that patients did not need any additional computer skills training due to the design of the telerehab system.

“Getting patients to remain engaged and comply with therapy is a key measure of success of any rehabilitation program,” Cramer said. “Greater gains are associated with therapy that is challenging, motivating, accompanied by appropriate feedback, interesting and relevant. Telerehab achieves this because therapy is provided through games, provides user feedback, can be adjusted based on individual needs, is easy to use — and is fun.”

This study was supported by the Eunice Kennedy Shriver National Institute of Child Health & Human Development as well as the National Institute of Neurological Disorders and Stroke (grant U01 NS091951), the NIH StrokeNet Clinical Trials Network, the 11 US enrollment sites, the research team at the primary study site at the University of California, Irvine, and the patients and families who participated.

 

via In-home therapy effective for stroke rehabilitation, study shows: A multisite US clinical trial compared home-based telerehabilitation program with traditional in-clinic rehabilitation therapy — ScienceDaily

, , , , ,

Leave a comment

[ARTICLE] Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS) is an effective neuromodulation adjunct to repetitive motor training in promoting motor recovery post-stroke. Finger tracking training is motor training whereby people with stroke use the impaired index finger to trace waveform-shaped lines on a monitor. Our aims were to assess the feasibility and safety of a telerehabilitation program consisting of tDCS and finger tracking training through questionnaires on ease of use, adverse symptoms, and quantitative assessments of motor function and cognition. We believe this telerehabilitation program will be safe and feasible, and may reduce patient and clinic costs.

Methods

Six participants with hemiplegia post-stroke [mean (SD) age was 61 (10) years; 3 women; mean (SD) time post-stroke was 5.5 (6.5) years] received five 20-min tDCS sessions and finger tracking training provided through telecommunication. Safety measurements included the Digit Span Forward Test for memory, a survey of symptoms, and the Box and Block test for motor function. We assessed feasibility by adherence to treatment and by a questionnaire on ease of equipment use. We reported descriptive statistics on all outcome measures.

Results

Participants completed all treatment sessions with no adverse events. Also, 83.33% of participants found the set-up easy, and all were comfortable with the devices. There was 100% adherence to the sessions and all recommended telerehabilitation.

Conclusions

tDCS with finger tracking training delivered through telerehabilitation was safe, feasible, and has the potential to be a cost-effective home-based therapy for post-stroke motor rehabilitation.

Background

Post-stroke motor function deficits stem not only from neurons killed by the stroke, but also from down-regulated excitability in surviving neurons remote from the infarct [1]. This down-regulation results from deafferentation [2], exaggerated interhemispheric inhibition [3], and learned non-use [4]. Current evidence suggests that post-stroke motor rehabilitation therapies should encourage upregulating neurons and should target neuroplasticity through intensive repetitive motor practice [56]. Previously, our group has examined the feasibility and efficacy of a custom finger tracking training program as a way of providing people with stroke with an engaging repetitive motor practice [789]. In this program, the impaired index finger is attached to an electro-goniometer, and participants repeatedly move the finger up and down to follow a target line that is drawn on the display screen. In successive runs, the shape, frequency and amplitude of target line is varied, which forces the participant to focus on the tracking task. In one study, we demonstrated a 23% improvement in hand function (as measured by the Box and Block test; minimal detectable change is 18% [10]) after participants with stroke completed the tracking training program [9]. While our study did not evaluate changes in activity in daily life (ADL) or quality of life (because efficacy of the treatment was not the study objective), the Box and Block test is moderately correlated (r = 0.52) to activities in daily life and quality of life (r = 0.59) [11]. In addition, using fMRI, we showed that training resulted in an activation transition from ipsilateral to contralateral cortical activation in the supplementary motor area, primary motor and sensory areas, and the premotor cortex [9].

Recently, others have shown that anodal transcranial direct current stimulation (tDCS) can boost the beneficial effects of motor rehabilitation, with the boost lasting for at least 3 months post-training [12]. Also, bihemispheric tDCS stimulation (anodal stimulation to excite the ipsilateral side and cathodal stimulation to downregulate the contralateral side) in combination with physical or occupational therapy has been shown to provide a significant improvement in motor function (as measured by Fugl-Meyer and Wolf Motor Function) compared to a sham group [13]. Further, a recent meta-analysis of randomized-controlled trials comparing different forms of tDCS shows that cathodal tDCS is a promising treatment option to improve ADL capacity in people with stroke [14]. Compared to transcutaneous magnetic stimulation (TMS), tDCS devices are inexpensive and easier to operate. Improvement in upper limb motor function can appear after only five tDCS sessions [15], and there are no reports of serious adverse events when tDCS has been used in human trials for periods of less than 40 min at amplitudes of less than 4 mA [16].

Moreover, tDCS stimulation task also seems beneficial for other impairments commonly seen in people post-stroke. Stimulation with tDCS applied for 20 sessions of 30 min over a 4-week period has been shown to decrease depression and improve quality of life in people after a stroke [1718]. Four tDCS sessions for 10 min applied over the primary and sensory cortex in eight patients with sensory impairments more than 10 months post-stroke enhanced tactile discriminative performance [19]. Breathing exercises with tDCS stimulation seems to be more effective than without stimulation in patient with chronic stroke [20], and tDCS has shown promise in treating central post-stroke pain [21]. Finally, preliminary research on the effect of tDCS combined with training on resting-state functional connectivity shows promise to better understand the mechanisms behind inter-subject variability regarding tDCS stimulation [22].

Motor functional outcomes in stroke have declined at discharge from inpatient rehabilitation facilities [2324], likely a result of the pressures to reduce the length of stay at inpatient rehabilitation facilities as part of a changing and increasingly complex health care climate [2526]. Researchers, clinicians, and administrators continue to search for solutions to facilitate and post-stroke rehabilitation after discharge. Specifically, there has been considerable interest in low-cost stroke therapies than can be administered in the home with only a modest level of supervision by clinical professionals.

Home telerehabilitation is a strategy in which rehabilitation in the patient’s home is guided remotely by the therapist using telecommunication technology. If patients can safely apply tDCS to themselves at home, combining telerehabilitation with tDCS would be an easy way to boost therapy without costly therapeutic face-to-face supervision. For people with multiple sclerosis, the study of Charvet et al. (2017) provided tDCS combined with cognitive training, delivered through home telerehabilitation, and demonstrated greater improvement on cognitive measures compared to those who received just the cognitive training [27]. The authors demonstrated the feasibility of remotely supervised, at-home tDCS and established a protocol for safe and reliable delivery of tDCS for clinical studies [28]. Some evidence shows that telerehabilitation approaches are comparable to conventional rehabilitation in improving activities of daily living and motor function for stroke survivors [2930], and that telemedicine for stroke is cost-effective [3132]. A study in 99 people with stroke receiving training using telerehabilitation (either with home exercise program or robot assisted therapy with home program) demonstrated significant improvements in quality of life and depression [33].

A recent search of the literature suggests that to date, no studies combine tDCS with repetitive tracking training in a home telerehabilitation setting to determine whether the combination leads to improved motor rehabilitation in people with stroke. Therefore, the aim of this pilot project was to explore the safety, usability and feasibility of the combined system. For the tDCS treatment, we used a bihemispheric montage with cathodal tDCS stimulation to suppress the unaffected hemisphere in order to promote stroke recovery [34353637]. For the repetitive tracking training therapy, we used a finger tracking task that targets dexterity because 70% of people post-stroke are unable to use their hand with full effectiveness after stroke [38]. Safety was assessed by noting any decline of 2 points or more in the cognitive testing that persists over more than 3 days. We expect day to day variations of 1 digit. Motor decline is defined by a decline of 6 blocks on the Box and Block test due to muscle weakness. This is based on the minimal detectable change (5.5 blocks/min) [10]. The standard error of measurement is at least 2 blocks for the paretic and stronger side. We expect possible variations in muscle tone that could influence the scoring of the test. Usability was assessed through a questionnaire and by observing whether the participant, under remote supervision, could don the apparatus and complete the therapy sessions. Our intent was to set the stage for a future clinical trial to determine the efficacy of this approach.

Methods

Participants

Participants were recruited from a database of people with chronic stroke who had volunteered for previous post-stroke motor therapy research studies at the University of Minnesota. Inclusion criteria were: at least 6 months post-stroke; at least 10 degrees of active flexion and extension motion at the index finger; awareness of tactile sensation on the scalp; and a score of greater than or equal to 24 (normal cognition) on the Mini-Mental State Examination (MMSE) to be cognitively able to understand instructions to don and use the devices [39]. We excluded those who had a seizure within past 2 years, carried implanted medical devices incompatible with tDCS, were pregnant, had non-dental metal in the head or were not able to understand instructions on how to don and use the devices. The study was approved by the University of Minnesota IRB and all enrolled participants consented to be in the study.

Apparatus

tDCS was applied using the StarStim Home Research Kit (NeuroElectrics, Barcelona, Spain). The StarStim system consists of a Neoprene head cap with marked positions for electrode placement, a wireless cap-mounted stimulator and a laptop control computer. Saline-soaked, 5 cm diameter sponge electrodes were used. For electrode placement, we followed a bihemispheric montage [14] involving cathodal stimulation on the unaffected hemisphere with the anode positioned at C3 and the cathode at C4 for participants with left hemisphere stroke, and vice versa for participants with right hemisphere stroke. Stimulation protocols were set by the investigator on a web-based application that communicated with the tDCS control computer. A remote access application (TeamViewer) was also installed on the control computer, as was a video conferencing application (Skype).

The repetitive finger tracking training system was a copy of what we used in our previous stroke studies [789]. The apparatus included an angle sensor mounted to a lightweight brace and aligned with the metacarpophalangeal (MCP) joint of the index finger, a sensor signal conditioning circuit, and a target tracking application loaded on a table computer. Figure 1 shows a participant using the apparatus during a treatment session.

Fig. 1

Fig. 1 Participant with right hemiparesis receiving transcranial direct current magnetic stimulation (tDCS) in their home simultaneous while performing the finger movement tracking task on the tracking computer (left). The tDCS computer (right) shows the supervising investigator, located off-site, who communicated with the participant through the video conferencing application, controlled the tDCS stimulator through web-based software, and controlled the tracking protocols. (Permission was obtained from the participant for the publication of this picture)

[…]

Continue —> Home-based transcranial direct current stimulation plus tracking training therapy in people with stroke: an open-label feasibility study | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , , , , ,

Leave a comment

[Abstract] Understanding User Requirements for the Design of a Home-Based Stroke Rehabilitation System

Limitations following stroke make it one of the leading causes of disability. The current medical pathway provides intensive care in the acute stages, but rehabilitation services are commonly discontinued after one year. While written home exercise programs are regularly prescribed at the time of discharge, compliancy is an issue. The goal of this study was to inform the design of a home-based portable rehabilitation system based on feedback from individuals with stroke and clinicians. A main component under consideration is the type and format of information feedback provided to the user, as this is hypothesized to support compliance with the rehabilitation program. From a series of focus groups and usability testing, a set of design requirements for the hardware and software were constructed. Essential features mentioned for the feedback interface included: task completion time, quality of movement, a selection of exercises, goal tracking, and a display of historical data.

 

via Understanding User Requirements for the Design of a Home-Based Stroke Rehabilitation System – Lora A. Cavuoto, Heamchand Subryan, Matthew Stafford, Zhuolin Yang, Sutanuka Bhattacharjya, Wenyao Xu, Jeanne Langan, 2018

, ,

Leave a comment

[Abstract] Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances – PM&R

Abstract

Recent technologic advancements have enabled the creation of portable, low-cost, and unobtrusive sensors with tremendous potential to alter the clinical practice of rehabilitation. The application of wearable sensors to track movement has emerged as a promising paradigm to enhance the care provided to patients with neurologic or musculoskeletal conditions. These sensors enable quantification of motor behavior across disparate patient populations and emerging research shows their potential for identifying motor biomarkers, differentiating between restitution and compensation motor recovery mechanisms, remote monitoring, telerehabilitation, and robotics. Moreover, the big data recorded across these applications serve as a pathway to personalized and precision medicine. This article presents state-of-the-art and next-generation wearable movement sensors, ranging from inertial measurement units to soft sensors. An overview of clinical applications is presented across a wide spectrum of conditions that have potential to benefit from wearable sensors, including stroke, movement disorders, knee osteoarthritis, and running injuries. Complementary applications enabled by next-generation sensors that will enable point-of-care monitoring of neural activity and muscle dynamics during movement also are discussed.

 

via Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances – PM&R

, , , , , , , , ,

Leave a comment

%d bloggers like this: