Posts Tagged telerehabilitation

[REVIEW] Telerehabilitation: Review of the State-of-the-Art and Areas of Application – Full Text  


Background: Telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Various types of telerehabilitation treatments and their relative intensities and duration have been reported.

Objective: The objective of this review is to provide a detailed overview of the rehabilitation techniques for remote sites (telerehabilitation) and their fields of application, with analysis of the benefits and the drawbacks related to use. We discuss future applications of telerehabilitation techniques with an emphasis on the development of high-tech devices, and on which new tools and applications can be used in the future.

Methods: We retrieved relevant information and data on telerehabilitation from books, articles and online materials using the Medical Subject Headings (MeSH) “telerehabilitation,” “telemedicine,” and “rehabilitation,” as well as “disabling pathologies.”

Results: Telerehabilitation can be considered as a branch of telemedicine. Although this field is considerably new, its use has rapidly grown in developed countries. In general, telerehabilitation reduces the costs of both health care providers and patients compared with traditional inpatient or person-to-person rehabilitation. Furthermore, patients who live in remote places, where traditional rehabilitation services may not be easily accessible, can benefit from this technology. However, certain disadvantages of telerehabilitation, including skepticism on the part of patients due to remote interaction with their physicians or rehabilitators, should not be underestimated.

Conclusions: This review evaluated different application fields of telerehabilitation, highlighting its benefits and drawbacks. This study may be a starting point for improving approaches and devices for telerehabilitation. In this context, patients’ feedback may be important to adapt rehabilitation techniques and approaches to their needs, which would subsequently help to improve the quality of rehabilitation in the future. The need for proper training and education of people involved in this new and emerging form of intervention for more effective treatment can’t be overstated.


In the last few years, telemedicine applications have been increasing due to the development of new computer science technologies and of more advanced telemedical devices. Long-distance communication can be easily achieved by videoconferencing, email, and texting, to name a few. Today there is the possibility of controlling robots, robotic arms, or drones at a distance. Thanks to these advancements, the course of human action has been considerably transformed [1]. During the last 20 years, demographic changes and increased budget allocation in public health have improved new rehabilitative practices [2]. Rehabilitation is an old branch of medicine, but in the last few years, new telecommunication-based practices have been developed all over the world. These particular approaches in the field of rehabilitation are commonly defined as telerehabilitation, which should be considered as a telemedicine subfield consisting of a system to control rehabilitation at a distance [3].

Telerehabilitation has been developed to take care of inpatients, transferring them home after the acute phase of a disease to reduce patient hospitalization times and costs to both patients and health care providers. Telerehabilitation allows for treatment of the acute phase of diseases by substituting the traditional face-to-face approach in the patient-rehabilitator interaction [4]. Finally, it can cover situations in which it is complicated for patients to reach traditional rehabilitation infrastructures located far away from where they live.

Controlled studies on rehabilitation have demonstrated that quick management of an injury or a disease is critical to achieve satisfactory results in terms of increasing a patient’s self-efficacy. Hence, a rehabilitation program should start as soon as possible, be as intensive as possible, be prolonged, and continue during the recovery phase. A major factor is the initiation time, which, in general, should begin as soon as possible. In most cases, the initial stages of rehabilitation, after the occurrence of a disease or injury, could be performed by patients at home even if they need accurate and intensive treatment. For these reasons, telerehabilitation was developed to achieve the same results as would be achieved by the normal rehabilitation process at a hospital or face to face with a physiotherapist. Various types of telerehabilitation treatments and their relative intensities and duration have been reported [5].

The first scientific publication on telerehabilitation is dated 1998 and, in the last few years, the number of articles on the topic has increased, probably because of the emerging needs of people and due to the development of exciting new communication and computer technologies. Figure 1 shows the number of patients treated through telerehabilitation from 1998 to 2008 according to studies published in the international literature [2].

A remarkable increase in the number of patients treated by telerehabilitation is noticeable from 2002 to 2004. After a subsequent decrease, the number of patients assisted by telerehabilitation increased starting from 2007, probably due to the support of new technologies and the overcoming of the initial skepticism to which every new technology is subjected.

Telerehabilitation is primarily applied to physiotherapy [6,7], and neural rehabilitation is used for monitoring the rehabilitative progress of stroke patients [8]. Telerehabilitation techniques mimic virtual reality [912] and rehabilitation for neurological conditions by using robotics and gaming techniques [13]. Quite often, telerehabilitation has been associated with other nonrehabilitative technologies such as remote monitoring of cardiovascular parameters, including electrocardiogram (ECG), blood pressure, and oxygen saturation in patients with chronic diseases [14]. These technologies belong to another telemedicine branch called telemonitoring, which has been widely developed and used in recent years. A few studies were also centered on the economic aspects of the use of telerehabilitation to reduce the costs of hospitalization [15]. We reviewed the status and future perspectives of telerehabilitation by analyzing their impact on patients’ everyday life. The main topics taken into account were (1) the status of telerehabilitation and analysis of the main medical specialties where it is being applied, (2) quality-of-life improvement due to telerehabilitation, and (3) the future of telerehabilitation.

Figure 1. Number of patients treated from 1998 to 2008 through telerehabilitation techniques.


Continue —> JRAT-Telerehabilitation: Review of the State-of-the-Art and Areas of Application | Peretti | JMIR Rehabilitation and Assistive Technologies

, , , ,

Leave a comment

[ARTICLE] Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available) – Full Text

Telerehabilitation in older adults is most needed in the patient environments, rather than in formal ambulatories or hospitals. Supporting such practices brings significant advantages to patients, their family, formal and informal caregivers, clinicians, and researchers. Several techniques and technologies have been developed aiming at facilitating and enhancing the effectiveness of telerehabilitation. This paper gives a quick overview of the state of the art, investigating video-based, wear-able, robotic, distributed, and gamified telerehabilitation solutions. In particular, agent-based solutions are analyzed and discussed addressing strength, limitations, and future challenges. Elaborating on functional requirements expressed by professional physiotherapists and researchers, the need for extending multi-agent systems (MAS) peculiarities at the sensing level in wearable solutions establishes new research challenges. Employed in cyber-physical scenarios with users-sensors and sensors-sensors interactions, MAS are requested to handle timing constraints, scarcity of resources and new communication means, which are crucial for providing real-time feedback and coaching.
1 Introduction
Healthcare institutions are facing the strain of a significantly larger elderly population [1]. Lengthening life expectancy is met by an increasing demand for medical and technological contributions to extend the ”good-health”, and disability free period.
The major factor catalyzing the elderly’s impairing process is the progres-
sive reduction of mobility, due to the natural aging process, inactivity, dis-
eases such as osteoarthritis, stroke or other neurological conditions, falls with its consequences, such as fear of falls (leading to inactivity), or fractures (needing surgery).Despite the emergence of less-invasive surgical techniques, post-intervention rehabilitation still requires extended periods and tailored therapies, which usually involve complications. Performing traditional rehabilitative practices is leading to a significant increase in public-health costs and, in some cases a lack of resources, thus worsening the services’ quality. Rehabilitation is often a long process and needs to be sustained long after the end of the acute care. Simplifying the access to health services [2] can raise the number of patients, maintaining (or even increasing) the quality of care. For example, patients requiring support, such as continuous or selective monitoring, can benefit from systems that automatically transmit the information gathered in their domestic environment to the health clinics, thus enabling telemonitoring on their health conditions [3].
Although in traditional solutions telemonitoring is a self-contained practice
limited to passively observing the patients, the need for remote sensing is crucially coupled with the need for coaching older adults in their daily living [4,5].
For example, a critical activity such as telerehabilitation cannot be limited
to observing the patients’ behaviors. Indeed, patient adherence and acceptability of rehabilitative practices need to be actively enhanced, overcoming pitfalls due to motor (e.g., endurance), non-motor (e.g., fatigue, pain, dysautonomic symptoms, and motivational), and cognitive deficits. According to Rodriguez et al. [6], telerehabilitation can be formally defined as:
“the application of telecommunication, remote sensing and operation tech-
nologies, and computing technologies to assist with the provision of med-
ical rehabilitation services at a distance.”
Patients, physiotherapists, and health institutes can gain several benefits
from an extensive adoption of telerehabilitation systems [7]. Considering the
economical point of view, Mozaffarian et al. [8] figured out that the total cost
of stroke in the US was estimable to be 34.3 billion dollars in 2008, rising up to 69.1 billion dollars in 2016.
Even though to date they are not precisely quantifiable due to insufficient evidence [9], Mutingi et al. [10] presented as “inevitable advantages”
(i) a substantial cost saving primarily due to the reduction of specialized human resources,
(ii) an enhancement of patient comfort and lifestyle, and (iii) improvements of therapy and decision making processes. Moreover, Morreale et al. [11] mentioned one of the most appreciated benefits: the increase of adherence to rehabilitation protocols.
The multitude of scientific contributions fostering telerehabilitation exploits
new technologies and various architectures to better understand and serve user requirements. However, due to technological or technical limitations, physiotherapists’ needs have not yet been completely satisfied. To fill this gap, a system evolution is required. For example, telerehabilitation systems cannot offer the same behavior to users with diverse conditions. Viceversa, according to the environment condition, they must rather be able to adapt themselves to the user needs [6].
Telerehabilitation is characterized by a very delicate equilibrium between
environment, devices, and users. Thus, the capabilities such as self adaptation, flexibility, and ubiquity are crucial to facilitate and promote the usability and then the actual practices.
Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available). Available from: [accessed May 26, 2017].

Continue —> Agent-based systems for telerehabilitation: strengths, limitations and future challenges (PDF Download Available)

Fig. 2. Agent-based sensing: future challenge for telerehabilitation MAS. 

, , , , , ,

Leave a comment

[ARTICLE] Towards a New Wave of Telerehabilitation Applications – Full Text PDF


In recent years, new scenarios for experimenting telerehabilitation services have been opening thanks to the diffusion of the new technologies. The revolution brought about by the Internet of Things and Big Data Analytics is having an effect also in the field of telerehabilitation services. The literature has broadened in scope and grown in volume and, in certain aspects, the focus of research has changed in the last few years. This article examines the major changes that have come about in the field of telerehabilitation, which can essentially be divided into two main strands: low-cost end-user applications, and the integration of telerehabilitation services. We will briefly review the emerging investigations and experimentations in the field of telerehabilitation, analyzing the market trends in the sector and the commercial strategies of companies working in it, and aim to outline the most relevant challenges that exist for the delivery of effective and sustainable telerehabilitation services. Our opinion is that telerehabilitation currently represents a very promising field, although many questions still remain open, for which concrete and reliable answers are required. In this respect, we focus on a fundamental issue that underlies the field of telerehabilitation services, namely the influence that environment has on the effectiveness of treatment. In short, how can the type of environment affect the results of treatment?

The Telerehabilitation Scenario

Many different terms are used to designate the application of ICTs in the field of healthcare. The term medical informatics, first coined around 1970, was superseded at the end of the 1990s by eHealth, while, nowadays, telemedicine, tele health, and tele care are all used fairly interchangeably.

The main advantages of Telemedicine in healthcare are evident [1-3]. It is a form of secondary prevention encompassing services dedicated to persons classified as at risk or suffering from chronic diseases (e.g. diabetes or cardiovascular disease) who require a constant monitoring of vital parameters in order to reduce the risk of complications, such as that of blood glucose levels for diabetic patients. Meanwhile, Tele-diagnosis focuses on moving diagnostic information rather than the patient. Although a complete diagnosis cannot be performed exclusively through the use of ICT tools, computer-based systems can effectively support diagnostic processes, for example by giving the possibility of exchanging data amongst specialists and facilitating its communication.

Home health monitoring services utilise ITC-based technology to monitor patients in their homes by means of devices that measure vital data, such as blood pressure, glucose levels, pulse, blood oxygen levels, etc., and enable the transmission of this data to clinicians [4,5].

Recently, the concept of telerehabilitation has been introduced to refer to the provision of rehabilitation care at a distance. Telerehabilitation, or e-rehabilitation, is considered a subcomponent of the broader area of telemedicine [6], and can be divided into three main categories: image based telerehabilitation, sensor based telerehabilitation, and telerehabilitation based on virtual technologies [7]. Lately, the notion of social telerehabilitation has been introduced to distinguish the application of ICT to the social rehabilitation sphere [8,9].

Telerehabilitation is widely considered to be advantageous in the treatment of patients. Telerehabilitation services are seen as being a costeffective alternative to traditional rehabilitation services since they can be delivered at a distance, thus reducing the travel costs and difficulties for patients to receive care at a healthcare facility.

The increasing interest in telerehabilitation is closely related to the diffusion of the internet. Indeed, thanks to the internet, all traditional sectors, including healthcare, are going through processes of transformation in order to become more effective and accurate, as well as cheaper and more powerful.

Telerehabilitation solutions have been experimented in many areas, particularly that of rehabilitation following traumatic injury (for assessment, physical therapy, and monitoring). …

Full Text PDF

, , ,

Leave a comment

[ARTICLE] User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke – Full Text


Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient’s work station as part of a novel robot-based system for motor telerehabilitation.

1 Introduction

Stroke is one of the dominant causes of acquired disability [1] and it is the second leading cause of death worldwide [2]. The high incidence of the disease and the current demographic developments are likely to increase the number of stroke patients in the future. Most of the survivors have physical, cognitive and functional limitations and require intensive rehabilitation in order to resume independent everyday life [3]. Therefore, the main goal of motor rehabilitation is relearning of voluntary movement capability, a process which takes at least several months, some improvement can occur even after years. In the rehabilitation clinic, patients usually receive a daily intensive therapy program. However, for further improvement of motor abilities, severely affected patients are required to continue their rehabilitation training outside the rehabilitation settings, after being discharged from the rehabilitation clinic. Langhammer and Stanghelle [4] found that a lack of follow-up rehabilitation treatment at home leads to deterioration of activities of daily living (ADL) and to motor functions in general. A possible solution is an individualized and motivating telerehabilitation system in the patient’s domestic environment. Some studies [5], [6] have confirmed the advantage of home rehabilitation after stroke and showed that telerehabilitation received high acceptance and satisfaction, both from patients, as well as from health professionals [7]. Most of the existing telesystems [7], [8] are based on audio-visual conferencing or on virtual environments and contain rather simple software for monitoring patients’ condition. However, in neurological rehabilitation the sensorimotor loop needs to be activated by provision of physiological haptic feedback (touch and proprioception) [3].

Robot-based rehabilitation is currently one of the most prevalent therapeutic approaches. It is often applied in hospitals alongside conventional therapy and is beneficial for motor recovery [9]. Rehabilitation training including a haptic-therapy device may therefore be even more promising for home environments than non-haptic telerehabilitation. Several telerehabilitation systems, which include not only audio and visual, but also haptic modality, already exist [10], [11] . Most of these solutions use low-cost commercial haptic devices (e.g. joysticks) for therapy training, with the goal of cost minimization and providing procurable technology. Nonetheless, devices specifically developed for stroke rehabilitation, which are already established in clinical settings, may have greater impact on motor relearning and could therefore also be more effective at home, compared with existing home rehabilitation devices.

In a previous paper [12], we presented a concept and design overview of a haptic robot-based telerehabilitation system for upper extremities which is currently under development. In the present work, we describe therapeutic requirements, user-centred development [13] and implementation of the patient’s station of the telesystem.

Continue —> User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke : Current Directions in Biomedical Engineering

Figure 3 Implementation of the patient’s work station based on Reha-Slide (left) and Bi-Manu-Track (right).

, , , , , , , ,

Leave a comment

[Abstract] GEAR: A Mobile Game-Assisted Rehabilitation System


Rehabilitation exercises are an important means for gaining mobility and strength after injuries or surgery. Self-exercising in between physio-therapy sessions is vital for effective rehabilitation. Yet, many people do not follow exercise regimes, which can hamper their recovery. This study proposes GEAR – a mobile GamE Assisted Rehabilitation system – to engage users in self-exercising and to improve adherence to their exercise regime. The system consists of a wearable wristband to monitor users’ movements, a mobile game that incorporates the exercises, and a dashboard to monitor and visualize users’ exercise performance. GEAR has advantages of portability and lower cost as compared to PC or Kinect-based rehabilitation systems. This study describes GEAR and reports on a pilot assessment of its interface and system. The pilot test demonstrates the feasibility of GEAR and provides feedback that is being used to enhance the system prior to full-scale evaluation.

Source: GEAR: A Mobile Game-Assisted Rehabilitation System – IEEE Xplore Document

, , , , , , ,

Leave a comment

[VIDEO] HandTutor Introduction: 2017 Rehabilitation – YouTube

HandTutor Introduction: 2017 Rehabilitation – YouTube

Published on Dec 11, 2016

#1 Technology for Physical and Occupational therapists.

Enjoy the convenience and flexibility of treating your patients remotely with the state of the art MediTouch systems through TeleRehabilitation. TeleRehabilitation sessions enable the therapist to grade the intensity of treatment activities through remote access to their patient’s computer.

Patients are highly motivated by the visual biofeedback they receive. The challenging yet fun customized rehabilitation activities encourage full participation yielding noticeable improvements in range of motion, motor control and functional movements.
Want to know more?

, , , ,

Leave a comment

[Abstract] An interactive distance solution for stroke rehabilitation in the home setting – A feasibility study

Background: In this study an interactive distance solution (called the DISKO tool) was developed to enable home-based motor training after stroke. Objectives: The overall aim was to explore the feasibility and safety of using the DISKO-tool, customized for interactive stroke rehabilitation in the home setting, in different rehabilitation phases after stroke. Methods: Fifteen patients in three different stages in the continuum of rehabilitation after stroke participated in a home-based training program using the DISKO-tool. The program included 15 training sessions with recurrent follow-ups by the integrated application for video communication with a physiotherapist. Safety and feasibility were assessed from patients, physiotherapists, and a technician using logbooks, interviews, and a questionnaire. Qualitative content analysis and descriptive statistics were used in the analysis. Results: Fourteen out of 15 patients finalized the training period with a mean of 19.5 minutes spent on training at each session. The DISKO-tool was found to be useful and safe by patients and physiotherapists. Conclusions: This study demonstrates the feasibility and safety of the DISKO-tool and provides guidance in further development and testing of interactive distance technology for home rehabilitation, to be used by health care professionals and patients in different phases of rehabilitation after stroke.

Source: An interactive distance solution for stroke rehabilitation in the home setting – A feasibility study: Informatics for Health and Social Care: Vol 0, No 0

, , , , ,

Leave a comment

[Poster] Feasibility of Telerehabilitation in Stroke Recovery: A Survey on Access and Willingness to Use Low-Cost Consumer Technologies

To investigate the access to consumer technologies and willingness to use them to receive rehabilitation services among stroke survivors.

Source: Feasibility of Telerehabilitation in Stroke Recovery: A Survey on Access and Willingness to Use Low-Cost Consumer Technologies – Archives of Physical Medicine and Rehabilitation

, ,

Leave a comment

[Abstract] A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training


Although motor learning theory has led to evidence-based practices, few trials have revealed the superiority of one theory-based therapy over another after stroke. Nor have improvements in skills been as clinically robust as one might hope. We review some possible explanations, then potential technology-enabled solutions. Over the Internet, the type, quantity, and quality of practice and exercise in the home and community can be monitored remotely and feedback provided to optimize training frequency, intensity, and progression at home. A theory-driven foundation of synergistic interventions for walking, reaching and grasping, strengthening, and fitness could be provided by a bundle of home-based Rehabilitation Internet-of-Things (RIoT) devices. A RIoT might include wearable, activity-recognition sensors and instrumented rehabilitation devices with radio transmission to a smartphone or tablet to continuously measure repetitions, speed, accuracy, forces, and temporal spatial features of movement. Using telerehabilitation resources, a therapist would interpret the data and provide behavioral training for self-management via goal setting and instruction to increase compliance and long-term carryover. On top of this user-friendly, safe, and conceptually sound foundation to support more opportunity for practice, experimental interventions could be tested or additions and replacements made, perhaps drawing from virtual reality and gaming programs or robots. RIoT devices continuously measure the actual amount of quality practice; improvements and plateaus over time in strength, fitness, and skills; and activity and participation in home and community settings. Investigators may gain more control over some of the confounders of their trials and patients will have access to inexpensive therapies.

Source: A Rehabilitation-Internet-of-Things in the Home to Augment Motor Skills and Exercise Training

, , , , , , , , , , , ,

Leave a comment

[Abstract] The Present and Future of Robotic Technology in Rehabilitation – SpringerLink


Robotic technology designed to assist rehabilitation can potentially increase the efficiency of, and accessibility to, therapy by assisting therapists to provide consistent training for extended periods of time, and collecting data to assess progress. Automatization of therapy may enable many patients to be treated simultaneously and possibly even remotely, in the comfort of their own homes, through telerehabilitation. The data collected can be used to objectively assess performance and document compliance as well as progress. All of these characteristics can make therapists more efficient in treating larger numbers of patients. Most importantly for the patient, it can increase access to therapy which is often in high demand and rationed severely in today’s fiscal climate. In recent years, many consumer-grade low-cost and off-the-shelf devices have been adopted for use in therapy sessions and methods for increasing motivation and engagement have been integrated with them. This review paper outlines the effort devoted to the development and integration of robotic technology for rehabilitation.

Source: The Present and Future of Robotic Technology in Rehabilitation | SpringerLink

, , , , , , ,

Leave a comment

%d bloggers like this: