Posts Tagged Tetraplegia

[WEB SITE] MoreGrasp: Getting a better grip on things

September 18, 2018 by Barbara Gigler, Graz University of Technology

The goal of the MoreGrasp project was to develop a sensoric grasp neuroprosthesis to support the daily life activities of people living with severe to completely impaired hand function due to spinal cord injuries. The motor function of a neuroprosthesis was to be intuitively controlled by means of a brain-computer interface with emphasis on natural motor patterns. After three years, the breakthrough was reported by the members of the project consortium led by Gernot Müller-Putz, head of the Institute of Neural Engineering at TU Graz, which include the University of Heidelberg, the University of Glasgow, the two companies Medel Medizinische Elektronik and Bitbrain as well as the Know Center.

Gernot Müller-Putz says, “In , all the circuits in the brain and muscles in the body parts concerned are still intact, but the neurological connection between the brain and limbs is interrupted. We bypass this by communicating via a computer, which in turn, passes on the command to the muscles.” The muscles are controlled and encouraged to move by electrodes that are attached to the outside of the arm and can, for example, trigger the closing and opening of the fingers. The key was the sufficient distinguishability of the brainwaves to control the neuroprosthesis. For instance, if the participant thought about raising and lowering their foot and the signal measured by the EEG opened the right hand, the subject then—for instance—would think of a movement of the left hand and the right hand would close again.

The MoreGrasp consortium developed this technique further. This mental ‘detour’ of any distinguishable movement pattern is no longer necessary, as Müller-Putz explains: “We now use so-called ‘attempted movement.'” In doing so, the test subject attempts to carry out a movement like grasping a glass of water. Due to the tetraplegia, the brain signal is not passed on, but can be measured by means of an EEG and processed by the computer system. Müller-Putz is extremely pleased with the success of the research. He says, “We are now working with signals that only differ from each other very slightly. Nevertheless, we have managed to control the neuroprosthesis successfully. For users, this results in a completely new possibility of making movement sequences easier—especially during training. A variety of grips were investigated in the project: the palmar grasp (cylinder grasp, as for grasping a glass), the lateral grasp (key grasp, as for picking up a spoon), and opening the hand and turning it inwards and outwards.

Large-scale study

End users can register on the special online platform to enter a large-scale feasibility study intended to check compatibility of the technique in everyday life. Participants eligible for the study will be tested according to a complex procedure. Afterward, each subject will be provided with a tailor-made BCI training course which must be completed independently in sessions lasting several hours each week. In this way, brain signals will be gathered and the system itself will learn during each experiment.

 Explore further: Potential brain-machine interface for hand paralysis

via MoreGrasp: Getting a better grip on things

, , , , , , , ,

Leave a comment

[Abstract] Activity-based Rehabilitation Interventions of the Neurologically Impaired Upper Extremity: Description of a Scoping Review Protocol

Introduction: A scoping review provides a means to synthesize and present a large body of literature on a broad topic, such as methods for various upper extremity activity-based therapy (ABT) interventions.

Objectives: To describe our scoping review protocol to evaluate peer-reviewed articles focused on ABT interventions for individuals with neurologically impaired upper extremities.

Methods: At Jefferson College of Health Professions and Sidney Kimmel Medical College at Jefferson, Philadelphia, the authors will follow this protocol to conduct a scoping review by establishing a research question and conducting a search of bibliographic databases to identify relevant studies. Using specific inclusion and exclusion criteria, abstracts will be screened and full-text articles will be reviewed for inclusion in charting, summarizing, and reporting results of appropriate studies.

Conclusion: This protocol will guide the scoping review process to develop a framework for establishing a noninvasive ABT intervention informed by evidence for individuals with neurologically impaired upper extremities.

via Activity-based Rehabilitation Interventions of the Neurologically Impaired Upper Extremity: Description of a Scoping Review Protocol | Topics in Spinal Cord Injury Rehabilitation

, , , , , ,

Leave a comment

[Clinical Study] Effectiveness of the Virtual Reality System Toyra on Upper Limb Function in People with Tetraplegia: A Pilot Randomized Clinical Trial – Full Text PDF

The aim of this study was to investigate the effects of a virtual reality program combined with conventional therapy in upper limb function in people with tetraplegia and to provide data about patients’ satisfaction with the virtual reality system.

Thirty-one people with subacute complete cervical tetraplegia participated in the study. Experimental group received 15 sessions with ToyraⓇ virtual reality system for 5 weeks, 30 minutes/day, 3 days/week in addition to conventional therapy, while control group only received conventional therapy. All patients were assessed at baseline, after intervention, and at three-month follow-up with a battery of clinical, functional, and satisfaction scales. Control group showed significant improvements in the manual muscle test (𝑝 = 0,043, partial 𝜂2 = 0,22) in the follow-up evaluation.

Both groups demonstrated clinical, but nonsignificant, changes to their arm function in 4 of the 5 scales used. All patients showed a high level of satisfaction with the virtual reality system. This study showed that virtual reality added to conventional therapy produces similar results in upper limb function compared to only conventional therapy. Moreover, the gaming aspects incorporated in conventional rehabilitation appear to produce high motivation during execution of the assigned tasks. This trial is registered with EudraCT number 2015-002157-35.

Download Full Text PDF

, , , , , ,

Leave a comment

[REVIEW] Upper limb functional electrical stimulation devices and their man–machine interfaces

Abstract

Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson’s disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5–C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man–machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn’t fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required.

Source: Taylor & Francis Online

, , , ,

Leave a comment

%d bloggers like this: