Posts Tagged thumb

[Abstract + References] A Virtual Reality Serious Game for Hand Rehabilitation Therapy – IEEE Conference Publication

Abstract

The human hand is the body part most frequently injured in occupational accidents, accounting for one out of five emergency cases and often requiring surgery with subsequently long periods of rehabilitation. This paper proposes a Virtual Reality game to improve conventional physiotherapy in hand rehabilitation, focusing on resolving recurring limitations reported in most technological solutions to the problem, namely the limited diversity support of movements and exercises, complicated calibrations and exclusion of patients with open wounds or other disfigurements of the hand. The system was assessed by seven able-bodied participants using a semistructured interview targeting three evaluation categories: hardware usability, software usability and suggestions for improvement. A System Usability Score (SUS) of 84.3 and participants’ disposition to play the game confirm the potential of both the conceptual and technological approaches taken for the improvement of hand rehabilitation therapy.

References

1. A. Elnaggar and D. Reichardt, “Digitizing the Hand Rehabilitation Using Serious Games Methodology with User-Centered Design Approach”, 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 13-22, 2016. Show Context View Article Full Text: PDF (1150KB) Google Scholar 

2. L. S. Robinson, M. Sarkies, T. Brown and L. O’Brien, “Direct indirect and intangible costs of acute hand and wrist injuries: A systematic review”, Injury, vol. 47, no. 12, pp. 2614-2626, Dec. 2016. Show Context CrossRef  Google Scholar 

3. D. Johnson, S. Deterding, K.-A. Kuhn, A. Staneva, S. Stoyanov and L. Hides, “Gamification for health and wellbeing: A systematic review of the literature”, Internet Interv., vol. 6, pp. 89-106, Nov. 2016. Show Context CrossRef  Google Scholar 

4. C. Prahm, “PlayBionic Interactive rehabilitation after amputation or nerve injury of the upper extremity”, Christian Doppler Laboratory for Restoration of Extremity Function and Rehabilitation, 2019. Show Context Google Scholar 

5. M. K. Holden, “Virtual Environments for Motor Rehabilitation: Review”, CyberPsychology Behav., vol. 8, no. 3, pp. 187-211, Jun. 2005. Show Context CrossRef  Google Scholar 

6. D. Ganjiwale, R. Pathak, A. Dwivedi, J. Ganjiwale and S. Parekh, “Occupational therapy rehabilitation of industrial setup hand injury cases for functional independence using modified joystick in interactive computer gaming in Anand Gujarat”, Natl. J. Physiol. Pharm. Pharmacol., vol. 9, pp. 1, 2018. Show Context CrossRef  Google Scholar 

7. H. A. Hernández, A. Khan, L. Fay, Je.-S. Roy and E. Biddiss, “Force Resistance Training in Hand Grasp and Arm Therapy: Feasibility of a Low-Cost Videogame Controller”, Games Health J., vol. 7, no. 4, pp. 277-287, Aug. 2018. Show Context CrossRef  Google Scholar 

8. J. Broeren, L. Claesson, D. Goude, M. Rydmark and K. S. Sunnerhagen, “Virtual Rehabilitation in an Activity Centre for Community-Dwelling Persons with Stroke”, Cerebrovasc. Dis., vol. 26, no. 3, pp. 289-296, 2008. Show Context CrossRef  Google Scholar 

9. J. Broeren, M. Rydmark and K. S. Sunnerhagen, “Virtual reality and haptics as a training device for movement rehabilitation after stroke: A single-case study”, Arch. Phys. Med. Rehabil., vol. 85, no. 8, pp. 1247-1250, Aug. 2004. Show Context CrossRef  Google Scholar 

10. C. N. Walifio-Paniagua et al., “Effects of a Game-Based Virtual Reality Video Capture Training Program Plus Occupational Therapy on Manual Dexterity in Patients with Multiple Sclerosis: A Randomized Controlled Trial”, J. Healthc. Eng., vol. 2019, pp. 1-7, Apr. 2019. Show Context CrossRef  Google Scholar 

11. M. E. Gabyzon, B. Engel-Yeger, S. Tresser and S. Springer, “Using a virtual reality game to assess goal-directed hand movements in children: A pilot feasibility study”, Technol. Heal. Care, vol. 24, no. 1, pp. 11-19, Jan. 2016. Show Context CrossRef  Google Scholar 

12. M. King, L. Hale, A. Pekkari, M. Persson, M. Gregorsson and M. Nilsson, “An affordable computerised table-based exercise system for stroke survivors”, Disabil. Rehabil. Assist. Technol., vol. 5, no. 4, pp. 288-293, Jul. 2010. Show Context CrossRef  Google Scholar 

13. J. Shin et al., “Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded randomized controlled trial”, J. Neuroeng. Rehabil., vol. 13, no. 1, pp. 17, Dec. 2016. Show Context CrossRef  Google Scholar 

14. R. Lipovsky and H. A. Ferreira, “Hand therapist: A rehabilitation approach based on wearable technology and video gaming”, 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), pp. 1-2, February 2015. Show Context View Article Full Text: PDF (1901KB) Google Scholar 

15. C. Schuster-Amft et al., “Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial”, Trials, vol. 15, no. 1, pp. 350, Dec. 2014. Show Context CrossRef  Google Scholar 

16. Y. A. Rahman, M. M. Hoque, K. I. Zinnah and I. M. Bokhary, “Helping-Hand: A data glove technology for rehabilitation of monoplegia patients”, 2014 9th International Forum on Strategic Technology (IFOST), pp. 199-204, 2014. Show Context View Article Full Text: PDF (625KB) Google Scholar 

17. M. da Silva Cameirão, S. Bermúdez, I Badia, E. Duarte and P. F. M. J. Verschure, “Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the Rehabilitation Gaming System”, Restor. Neurol. Neurosci., vol. 29, no. 5, pp. 287-298, 2011. Show Context CrossRef  Google Scholar 

18. M. R. Golomb et al., “In-Home Virtual Reality Videogame Telerehabilitation in Adolescents With Hemiplegic Cerebral Palsy”, Arch. Phys. Med. Rehabil., vol. 91, no. 1, pp. 1-8, Jan. 2010. Show Context CrossRef  Google Scholar 

19. R. Proffitt, M. Sevick, C.-Y. Chang and B. Lange, “User-Centered Design of a Controller-Free Game for Hand Rehabilitation”, Games Health J., vol. 4, no. 4, pp. 259-264, Aug. 2015. Show Context CrossRef  Google Scholar 

20. N. Arman, E. Tarakci, D. Tarakci and O. Kasapcopur, “Effects of Video Games-Based Task-Oriented Activity Training (Xbox 360 Kinect) on Activity Performance and Participation in Patients with Juvenile Idiopathic Arthritis: A Randomized Clinical Trial”, Am. J. Phys. Med. Rehabil., vol. 98, no. 3, pp. 174-181, 2019. Show Context CrossRef  Google Scholar 

21. S. Cho, W.-S. Kim, N.-J. Paik and H. Bang, “Upper-Limb Function Assessment Using VBBTs for Stroke Patients”, IEEE Comput. Graph. Appl., vol. 36, no. 1, pp. 70-78, Jan. 2016. Show Context View Article Full Text: PDF (4692KB) Google Scholar 

22. E. Tarakci, N. Arman, D. Tarakci and O. Kasapcopur, “Leap Motion Controller-based training for upper extremity rehabilitation in children and adolescents with physical disabilities: A randomized controlled trial”, J. Hand Ther., pp. 1-9, Apr. 2019. Show Context CrossRef  Google Scholar 

23. Y.-T. Wu, K.-H. Chen, S.-L. Ban, K.-Y. Tung and L.-R. Chen, “Evaluation of leap motion control for hand rehabilitation in burn patients: An experience in the dust explosion disaster in Formosa Fun Coast”, Burns, vol. 45, no. 1, pp. 157-164, Feb. 2019. Show Context CrossRef  Google Scholar 

24. T. Vanbellingen, S. J. Filius, T. Nyffeler and E. E. H. van Wegen, “Usability of Videogame- Based Dexterity Training in the Early Rehabilitation Phase of Stroke Patients: A Pilot Study”, Front. Neurol., vol. 8, no. DEC, pp. 1-9, Dec. 2017. Show Context CrossRef  Google Scholar 

25. M. Iosa et al., “Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study”, Top. Stroke Rehabil., vol. 22, no. 4, pp. 306-316, Aug. 2015. Show Context CrossRef  Google Scholar 

26. A. M. D. C. Souza and S. R. Dos Santos, “Handcopter Game: A Video-Tracking Based Serious Game for the Treatment of Patients Suffering from Body Paralysis Caused by a Stroke”, 2012 14th Symposium on Virtual and Augmented Reality, pp. 201-209, 2012. Show Context View Article Full Text: PDF (795KB) Google Scholar 

27. A. L. Borstad et al., “In-Home Delivery of Constraint-Induced Movement Therapy via Virtual Reality Gaming”, J. Patient-Centered Res. Rev., vol. 5, no. 1, pp. 6-17, Jan. 2018. Show Context CrossRef  Google Scholar 

28. N. J. Seo, J. Arun Kumar, P. Hur, V. Crocher, B. Motawar and K. Lakshminarayanan, “Usability evaluation of low-cost virtual reality hand and arm rehabilitation games”, J. Rehabil. Res. Dev., vol. 53, no. 3, pp. 321-334, Jul. 2016. Show Context CrossRef  Google Scholar 

29. G. C. Burdea, A. Jain, B. Rabin, R. Pellosie and M. Golomb, “Long-term hand tele-rehabilitation on the playstation 3: Benefits and challenges”, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1835-1838, 2011. Show Context View Article Full Text: PDF (479KB) Google Scholar 

30. M. R. Golomb, M. Barkat-Masih, B. Rabin, M. Abdelbaky, M. Huber and G. Burdea, “Eleven Months of home virtual reality telerehabilitation – Lessons learned”, 2009 Virtual Rehabilitation International Conference, pp. 23-28, 2009. Show Context View Article Full Text: PDF (1370KB) Google Scholar 

31. X. Huang, F. Naghdy, G. Naghdy and H. Du, “Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients”, 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 511-515, 2017. Show Context View Article Full Text: PDF (1865KB) Google Scholar 

32. G. Tieri, G. Morone, S. Paolucci and M. Iosa, “Virtual reality in cognitive and motor rehabilitation: facts fiction and fallacies”, Expert Rev. Med. Devices, vol. 15, no. 2, pp. 107-117, Feb. 2018. Show Context CrossRef  Google Scholar 

33. B. Garrett, T. Taverner, D. Gromala, G. Tao, E. Cordingley and C. Sun, “Virtual Reality Clinical Research: Promises and Challenges”, JMIR Serious Games, vol. 6, no. 4, pp. e10839, Oct. 2018. Show Context CrossRef  Google Scholar 

34. P. Lankoski, Game Research Methods: An Overview, 2015. Show Context Google Scholar 

Source: https://ieeexplore.ieee.org/abstract/document/9201789

, , , , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Multi-modal Intent Recognition Method for the Soft Hand Rehabilitation Exoskeleton

Abstract

Stroke has become the second most disabling disease in the world. Due to the intensive demand for physical therapists and the severe dependence on hospitals, the cost for the treatment of stroke patients is huge. As the most flexible limb of the human body, the hand faces more severe challenges, which has a much lower degree of recovery than the upper and lower limbs. In the face of these challenges, a new treatment, exoskeleton-based rehabilitation, has demonstrated new vitality. This paper proposes a novel design of the soft hand exoskeleton based on bionics and anatomy and the exoskeleton could help the users bend and extend their fingers, which would greatly improve the motor ability of stroke patients. Through the control of the six drive motors, the exoskeleton could achieve most of the hand’s freedom of training. At the same time, we propose a multi-modal intent recognition method based on machine vision and machine speech. Under specific rehabilitation training scenarios, both healthy subjects and patients could complete grasping tasks in the wearing of the exoskeleton, overcoming potential security risks caused by misidentification due to using the single-modal intent understanding method.

References

1. M. P. Lindsay, B. Norrving, R. L. Sacco, M. Brainin, W. Hacke, S. Martins, et al., “World stroke organization (wso): Global stroke fact sheet 2019”, 2019.CrossRef  Google Scholar 

2. [online] Available: http://www.sohu.com/a/306292195_243428. Show Context

3. K. B. Lee, S. H. Lim, K. H. Kim, K. J. Kim, Y. R. Kim, W. N. Chang, et al., “Six-month functional recovery of stroke patients: a multi-time-point study”, International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, vol. 38, no. 2, pp. 173, 2015. Show Context CrossRef  Google Scholar 

4. P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, et al., “Towards a soft pneumatic glove for hand rehabilitation”, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512-1517, 2013. Show Context View Article Full Text: PDF (1334KB) Google Scholar 

5. J. Yi, X. Chen and Z. Wang, “A three-dimensional- printed soft robotic glove with enhanced ergonomics and force capability”, IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 242-248, 2017. Show Context View Article Full Text: PDF (676KB) Google Scholar 

6. N. Ho, K. Tong, X. Hu, K. Fung, X. Wei, W. Rong, et al., “An emg-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation”, 2011 IEEE international conference on rehabilitation robotics, pp. 1-5, 2011. Show Context View Article Full Text: PDF (848KB) Google Scholar 

7. S. Park, L. Weber, L. Bishop, J. Stein and M. Ciocarlie, “Design and development of effective transmission mechanisms on a tendon driven hand orthosis for stroke patients”, 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2281-2287, 2018. Show Context View Article Full Text: PDF (2666KB) Google Scholar 

8. L. Gerez and M. Liarokapis, “An underactuated tendon-driven wearable exo-glove with a four-output differential mechanism”, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6224-6228, 2019. Show Context View Article Full Text: PDF (3125KB) Google Scholar 

9. T. Bützer, J. Dittli, J. Lieber, H. J. van Hedel, A. Meyer-Heim, O. Lambercy, et al., “Pexo- a pediatric whole hand exoskeleton for grasping assistance in task-oriented training”, 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 108-114, 2019. Show Context View Article Full Text: PDF (1216KB) Google Scholar 

10. M. Mirakhorlo, N. Van Beek, M. Wesseling, H. Maas, H. Veeger and I. Jonkers, “A musculoskeletal model of the hand and wrist: model definition and evaluation”, Computer methods in biomechanics and biomedical engineering, vol. 21, no. 9, pp. 548-557, 2018. Show Context CrossRef  Google Scholar 

11. M. Suarez-Escobar and E. Rendon-Velez, “An overview of robotic/mechanical devices for post-stroke thumb rehabilitation”, Disability and Rehabilitation: Assistive Technology, vol. 13, no. 7, pp. 683-703, 2018. Show Context CrossRef  Google Scholar 

12. M. Li, Z. Liang, B. He, C.-G. Zhao, W. Yao, G. Xu, et al., “Attention-controlled assistive wrist rehabilitation using a low-cost eeg sensor”, IEEE Sensors Journal, vol. 19, no. 15, pp. 6497-6507, 2019. Show Context View Article Full Text: PDF (4401KB) Google Scholar 

13. D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar and A. I. Rudnicky, “Pocketsphinx: A free real-time continuous speech recognition system for hand-held devices”, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol. 1, pp. I-I, 2006. Show Context View Article Full Text: PDF (89KB) Google Scholar 

14. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified real-time object detection”, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016. Show Context View Article Full Text: PDF (1742KB) Google Scholar 

Source: https://ieeexplore.ieee.org/abstract/document/9189174

, , , , , , , , , , , , , ,

Leave a comment

[Conference Paper] HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation – Full Text

Abstract

We have developed HandMATE (Hand Movement Assisting Therapy Exoskeleton); a wearable motorized hand exoskeleton for home-based movement therapy following stroke. Each finger and the thumb is powered by a linear actuator which provides flexion and extension assistance. Force sensitive resistors integrated into the design measure grasp and extension initiation force. An assistive therapy mode is based on an admittance control strategy. We evaluated our control system via subject and bench testing. Errors during a grip force tracking task while using the HandMATE were minimal (<1%) and comparable to unassisted healthy hand performance. We also outline a dedicated app we have developed for optimal use of HandMATE at home. The exoskeleton communicates wirelessly with an Android tablet which features guided exercises, therapeutic games and performance feedback. We surveyed 5 chronic stroke patients who used the HandMATE device to further evaluate our system, receiving positive feedback on the exoskeleton and integrated app.

SECTION I.

Introduction

Stroke is the leading cause of severe long-term disability in the US [1]. The probability of regaining functional use of the impaired upper extremity is low [2]. At 6 months post stroke, 62% of survivors failed to achieve some dexterity [3]. Such impairments can inhibit the individual’s ability to perform activities of daily living (ADL). Subsequently, upper limb rehabilitation recovery to improve ADL is one of the main self-reported goals of stroke survivors [4].

Outpatient rehabilitation is recommended for survivors that have been discharged from inpatient rehabilitative services [5]. However, outpatient rehabilitation in general is largely underutilized, with only 35.5% of stroke survivors using services [6]. Factors inhibiting outpatient therapy include cost, lack of resources and transportation. Wearable robotics that enable home-based therapy have the potential to overcome these barriers. They provide assistive movement forces which enable task-specific training in real-life situations that patients are often unable to practice without a clinician. See [7] for wearable hand robots for rehabilitation review.

At home therapy is not without its limitations. The inability to motivate oneself and fatigue are the most common reported factors resulting in failure to adhere to home based exercise programs for stroke recovery [8]. While wearable robotics can reduce fatigue during exercise, it does not directly address lack of motivation. Research has shown incorporating games into home therapy can encourage compliance [9]. Zondervan et al. showed that use of an instrumented sensor glove, named the MusicGlove, improved self-reported use and quality of movement, greater than convention at home exercises [9]. Other studies showed increased motivation to complete the therapeutic exercises and optimized movement when the user is given feedback of their performance via the Microsoft Kinect [10]. Wearable robotic systems that offer feedback and gaming capability may optimize at home stroke therapy.

Such a system was presented by Nijenhuis et al. in which stroke survivors showed motor improvements after completing a 6 week self-administered training program comprised of a dynamic hand orthosis and gaming environment [11]. However, the hand device was passive, assisting only with extension, which limits the range of stroke survivors who could utilize such a system. Research groups have proposed combining their powered take-home wearable hand devices with custom integrated gaming systems [12], or guided exercises [13]; however, they have yet to conduct clinical trials. Notably, Ghassemi et al., have developed an integrated multi-user VR system to use with their X-Glove actuated orthosis, which will allow for client-therapist sessions without the patient having to travel [12].

Tablets are relatively inexpensive, portable, and straight forward to use, with 47% of internet users globally already owning one [14]. Furthermore, a recent study demonstrated the success of a tablet based at home exercise program in improving the recovery of stroke survivors [15]. Notably, the study evaluated the accessibility of tablets, concluding every participant used the tablet successfully. Therefore a wearable powered hand robot with a dedicated tablet app which will provide functional games, task-specific guided exercises and feedback of movement, could optimize at home stroke therapy.

SECTION II.

Aims

The goal of this project was to create a wearable robotic exoskeleton that enables repetitive practice of task-specific and goal orientated movements, which translates into improvements in ADL. Furthermore, for maximum use and successful integration into home-based rehabilitation, we aimed to create an Android application compatible with the robotic exoskeleton.

To meet these goals, the following design objectives were established: 1) Assistance with finger flex/extension. 2) Assistance with thumb carpometacarpal (CMC) add/abduction and thumb metacarpophalangeal (MCP) flex/extension. 3) Independent assistive control of each finger and thumb. 4) Portable for at home use, meaning the device has to be lightweight and wireless. 5) Relatively affordable. 6) Integrated with android tablet app. Specific design goals for the app included: 1) Easy to use. 2) Allow the user to control the exoskeletons assistance mode through the app. 3) Records the user’s data and prompts the user via notifications to complete the allocated daily or weekly recommended activity time.

In this paper we will evaluate if the proposed device and app goals have been achieved via bench and subject testing.

SECTION III.

Design

The HandMATE device (Fig. 1) builds upon the Hand Spring Operated Movement Enhancer (HandSOME) devices [16][17][18]. The HandSOME devices are non-motorized wearable exoskeletons that assists stroke patients with finger and thumb extension movements. The HandSOME I device assists with gross whole hand opening movements, while the HandSOME II assists isolated extension movement of 15 finger and thumb degrees of freedom (DOF), allowing performance of various grip patterns used in ADL. While both devices have been shown to significantly increase range of motion (ROM) and functional ability in chronic stroke subjects [16],[18], the HandSOME devices only assist with extension movements and require enough flexion activity to overcome the assistance of the extension springs. As many stroke patients also suffer finger and thumb flexion weakness, we decided to build upon the work of the high DOF HandSOME II and additionally utilize power actuation so we can assist with both flexion and extension movements.

Figure 1: - 
HandMATE device. Individually actuated fingers and thumb shown. Electronics box is affixed to back of splint.
Figure 1:
HandMATE device. Individually actuated fingers and thumb shown. Electronics box is affixed to back of splint.

Continue —-> https://ieeexplore.ieee.org/abstract/document/9175332

, , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Feasibility of Wearable Sensing for In-Home Finger Rehabilitation Early After Stroke

Abstract

Wearable grip sensing shows potential for hand rehabilitation, but few studies have studied feasibility early after stroke. Here, we studied a wearable grip sensor integrated with a musical computer game (MusicGlove). Among the stroke patients admitted to a hospital without limiting complications, 13% had adequate hand function for system use. Eleven subjects used MusicGlove at home over three weeks with a goal of nine hours of use. On average they achieved 4.1 ± 3.2 (SD) hours of use and completed 8627 ± 7500 grips, an amount comparable to users in the chronic phase of stroke measured in a previous study. The rank-order usage data were well fit by distributions that arise in machine failure theory. Users operated the game at high success levels, achieving note-hitting success >75% for 84% of the 1061 songs played. They changed game parameters infrequently (31% of songs), but in a way that logically modulated challenge, consistent with the Challenge Point Hypothesis from motor learning. Thus, a therapy based on wearable grip sensing was feasible for home rehabilitation, but only for a fraction of subacute stroke subjects. Subjects made usage decisions consistent with theoretical models of machine failure and motor learning.

1. A. Schwarz, C. M. Kanzler, O. Lambercy, A. R. Luft and J. M. Veerbeek, “Systematic review on kinematic assessments of upper limb movements after stroke”, Stroke, vol. 50, no. 3, pp. 718-727, Mar. 2019.

2. S. C. Cramer, “The EXCITE trial: A major step forward for restorative therapies in stroke”, Stroke, vol. 38, no. 7, pp. 2204-2205, Jul. 2007.

3. L. Sawaki, “Use-dependent plasticity of the human motor cortex in health and disease”, IEEE Eng. Med. Biol. Mag., vol. 24, no. 1, pp. 36-39, Jan. 2005.

4. L. Ada, S. Dorsch and C. G. Canning, “Strengthening interventions increase strength and improve activity after stroke: A systematic review”, Austral. J. Physiotherapy, vol. 52, no. 4, pp. 241-248, 2006.

5. J. H. van der Lee, I. A. Snels, H. Beckerman, G. J. Lankhorst, R. C. Wagenaar and L. M. Bouter, “Exercise therapy for arm function in stroke patients: A systematic review of randomized controlled trials”, Clin. Rehabil., vol. 15, no. 1, pp. 20-31, Feb. 2001.

6. M. G. M. Kloosterman, G. J. Snoek and M. J. A. Jannink, “Systematic review of the effects of exercise therapy on the upper extremity of patients with spinal-cord injury”, Spinal Cord, vol. 47, no. 3, pp. 196-203, Mar. 2009.

7. R. J. Nudo, “Postinfarct cortical plasticity and behavioral recovery”, Stroke, vol. 38, no. 2, pp. 840-845, Feb. 2007.

8. C. E. Lang et al., “Observation of amounts of movement practice provided during stroke rehabilitation”, Arch. Phys. Med. Rehabil., vol. 90, no. 10, pp. 1692-1698, Oct. 2009.

9. N. N. Byl, E. A. Pitsch and G. M. Abrams, “Functional outcomes can vary by dose: Learning-based sensorimotor training for patients stable poststroke”, Neurorehabilitation Neural Repair, vol. 22, no. 5, pp. 494-504, Sep. 2008.

10. M. S. Jeffers et al., “Does stroke rehabilitation really matter? Part B: An algorithm for prescribing an effective intensity of rehabilitation”, Neurorehabilitation Neural Repair, vol. 32, no. 1, pp. 73-83, Jan. 2018.

11. K. L. Cox, V. Burke, T. J. Gorely, L. J. Beilin and I. B. Puddey, “Controlled comparison of retention and adherence in home-vs center-initiated exercise interventions in women ages 40–65 years: The S.W.E.A.T. Study (sedentary women exercise adherence trial)”, Preventive Med., vol. 36, no. 1, pp. 17-29, Jan. 2003.

12. W. J. Rejeski, L. R. Brawley, W. Ettinger, T. Morgan and C. Thompson, “Compliance to exercise therapy in older participants with knee osteoarthritis: Implications for treating disability”, Med. Sci. Sports Exerc., vol. 29, no. 8, pp. 977-985, Aug. 1997.

13. E. M. Sluijs, G. J. Kok and J. van der Zee, “Correlates of exercise compliance in physical therapy”, Phys. Therapy, vol. 73, no. 11, pp. 771-782, Nov. 1993.

14. A. Turton and C. Fraser, “The use of home therapy programmes for improving recovery of the upper limb following stroke”, Brit. J. Occupational Therapy, vol. 53, no. 11, pp. 457-462, Nov. 1990.

15. M. T. Jurkiewicz, S. Marzolini and P. Oh, “Adherence to a home-based exercise program for individuals after stroke”, Topics Stroke Rehabil., vol. 18, no. 3, pp. 277-284, May 2011.

16. A. Barzel et al., “Comparison of two types of constraint-induced movement therapy in chronic stroke patients: A pilot study”, Restorative Neurol. Neurosci., vol. 27, no. 6, pp. 675-682, 2009.

17. A. Barzel et al., “Enhancing activities of daily living of chronic stroke patients in primary health care by modified constraint-induced movement therapy (HOMECIMT): Study protocol for a cluster randomized controlled trial”, Trials, vol. 14, no. 1, pp. 334, 2013.

18. L. Dodakian et al., “A home-based telerehabilitation program for patients with stroke”, Neurorehabilitation Neural Repair, vol. 31, no. 10, pp. 923-933, Oct. 2017.

19. S. C. Cramer et al., “Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: A randomized clinical trial”, J. Amer. Med. Assoc. Neurol., vol. 76, no. 9, pp. 1079, Sep. 2019.

20. K. E. Laver, D. Schoene, M. Crotty, S. George, N. A. Lannin and C. Sherrington, “Telerehabilitation services for stroke”, Cochrane Database Systematic Rev., vol. 2013, no. 12, pp. 1-48, 2013.

21. Y. Hara, S. Ogawa, K. Tsujiuchi and Y. Muraoka, “A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation”, Disability Rehabil., vol. 30, no. 4, pp. 296-304, Jan. 2008.

22. E. V. Donoso Brown, S. W. McCoy, A. S. Fechko, R. Price, T. Gilbertson and C. T. Moritz, “Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery”, Arch. Phys. Med. Rehabil., vol. 95, no. 8, pp. 1461-1469, Aug. 2014.

23. M. King, J. Hijmans, M. Sampson, J. Satherley and L. Hale, “Home-based stroke rehabilitation using computer gaming”, New Zeal. J. Physiother., vol. 40, no. 3, pp. 128-134, 2012.

24. A. Slijper, K. E. Svensson, P. Backlund, H. Engström and K. Sunnerhagen, “Computer game-based upper extremity training in the home environment in stroke persons: A single subject design”, J. NeuroEng. Rehabil., vol. 11, no. 1, pp. 35, 2014.

25. M. Villeneuve and A. Lamontagne, “Playing piano can improve upper extremity function after stroke: Case studies”, Stroke Res. Treat., vol. 2013, pp. 1-5, Feb. 2013.

26. J. M. Hijmans, L. A. Hale, J. A. Satherley, N. J. Mcmillan and M. J. King, “Bilateral upper-limb rehabilitation after stroke using a movement-based game controller”, J. Rehabil. Res. Develop., vol. 48, no. 8, pp. 1005, 2011.

27. J. Yoo, “The role of therapeutic instrumental music performance in hemiparetic arm rehabilitation”, Music Therapy Perspect., vol. 27, no. 1, pp. 16-24, Jan. 2009.

28. P. Rinne et al., “Democratizing neurorehabilitation: How accessible are low-cost mobile-gaming technologies for self-rehabilitation of arm disability in stroke?”, PLoS ONE, vol. 11, no. 10, 2016.

29. N. Friedman, V. Chan, D. Zondervan, M. Bachman and D. J. Reinkensmeyer, “MusicGlove: Motivating and quantifying hand movement rehabilitation by using functional grips to play music”, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 2359-2363, Aug. 2011.

30. N. Friedman et al., “Retraining and assessing hand movement after stroke using the MusicGlove: Comparison with conventional hand therapy and isometric grip training”, J. NeuroEng. Rehabil., vol. 11, no. 1, pp. 76, 2014.

31. D. K. Zondervan et al., “Home-based hand rehabilitation after chronic stroke: Randomized controlled single-blind trial comparing the MusicGlove with a conventional exercise program”, J. Rehabil. Res. Develop., vol. 53, no. 4, pp. 457-472, 2016.

32. C. Meinert and S. Tonascia, Clinical Trials: Design Conduct and Analysis, New York, NY, USA:Oxford Univ.Press, 1986.

33. V. Mathiowetz, G. Volland, N. Kashman and K. Weber, “Adult norms for the box and block test of manual dexterity”, Amer. J. Occupational Therapy, vol. 39, no. 6, pp. 386-391, Jun. 1985.

34. M. L. Delignette-Muller and C. Dutang, “fitdistrplus: An R package for fitting distributions”, J. Stat. Softw., vol. 64, no. 4, pp. 1-23, 2015.

35. R. Proffitt and B. Lange, “Innovative technologies special series”, Phys. Therapy, vol. 95, no. 3, pp. 441-448, 2015.

36. S. Nijenhuis, G. Prange, F. Amirabdollahian, F. Infarinato, J. Buurke and J. Reitman, “Feasibility of a second iteration wrist and hand supported training system for self-administered training at home in chronic stroke”, Proc. 8th Int. Conf. eHealth Telemed. Soc. Med., pp. 51-56, Apr. 2016.

37. P. Rinne et al., “Democratizing neurorehabilitation: How accessible are low-cost mobile-gaming technologies for self-rehabilitation of arm disability in stroke?”, PLoS ONE, vol. 11, no. 10, 2016.

38. X. L. Hu, K.-Y. Tong, R. Song, X. J. Zheng and W. W. F. Leung, “A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke”, Neurorehabilitation Neural Repair, vol. 23, no. 8, pp. 837-846, Oct. 2009.

39. C. M. McCrimmon, C. E. King, P. T. Wang, S. C. Cramer, Z. Nenadic and A. H. Do, “Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: A safety study”, J. NeuroEng. Rehabil., vol. 12, no. 1, pp. 57, Dec. 2015.

40. S. L. Norman et al., “Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke”, J. Neural Eng., vol. 15, no. 5, Oct. 2018.

41. R. A. Bos et al., “A structured overview of trends and technologies used in dynamic hand orthoses”, J. NeuroEngineering Rehabil., vol. 13, no. 1, Dec. 2016.

42. S. C. Cramer et al., “Stroke recovery and rehabilitation research: Issues opportunities and the National Institutes of Health StrokeNet”, Stroke, vol. 48, no. 3, pp. 813-819, Feb. 2017.

43. W. Nelson, “Statistical methods for reliability data”, Technometrics, vol. 40, no. 3, pp. 254-256, Aug. 1998.

44. E. Castillo, Extreme Value Theory in Engineering, New York, NY, USA:Academic, 1988.

45. M. A. Guadagnoli and T. D. Lee, “Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning”, J. Motor Behav., vol. 36, no. 2, pp. 212-224, Jul. 2004.

46. D. A. Brown, T. D. Lee, D. J. Reinkensmeyer and J. E. Duarte, “Designing robots that challenge to optimize motor learning” in Neurorehabilitation Technology, Cham, Switzerland:Springer, 2016.

47. L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strategies for robotic movement training after neurologic injury”, J. NeuroEng. Rehabil., vol. 6, no. 1, Dec. 2009.

48. J. B. Rowe, V. Chan, M. L. Ingemanson, S. C. Cramer, E. T. Wolbrecht and D. J. Reinkensmeyer, “Robotic assistance for training finger movement using a hebbian model: A randomized controlled trial”, Neurorehabilitation Neural Repair, vol. 31, no. 8, pp. 769-780, Aug. 2017.

via Feasibility of Wearable Sensing for In-Home Finger Rehabilitation Early After Stroke – IEEE Journals & Magazine

, , , , , , , , , , ,

Leave a comment

[Abstract + References] Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism

Abstract

The rehabilitation process of human fingers is a coupling movement of wearable hand rehabilitation equipment and human fingers, and its design must be based on the kinematics of human fingers. In this paper, the forward kinematics and inverse kinematics models are established for the index finger. Kinematics analysis is carried out. Then a bionic finger rehabilitation robot is designed according to the movement characteristics of the finger, A parallelogram linkage mechanism is proposed to make the joint independent drive, realize the flexion/extension movement, and perform positive kinematics and inverse kinematics analysis on the mechanism. The results show that it conforms to the kinematics of the index finger and can be used as the mechanism model of the finger rehabilitation robot.
1. Ibrahim Yildiz, “A Low-Cost and Lightweight Alternative to Rehabilitation Robots: Omnidirectional Interactive Mobile Robot for Arm Rehabilitation” in Arabian Journal for Science & Engineering, Springer Science & Business Media B.V., vol. 43, no. 3, pp. 1053-1059, 2018.

2. Bai Shaoping, Gurvinder S. Virk, Thomas G. Sugar, Wearable Exoskeleton Systems: Design control and applications[M], Institution of Engineering and Technology Control, pp. 1-406, 2018.

3. Kai Zhang, Xiaofeng Chen et al., “System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery”, Behavioural Neurology, vol. 12, pp. 1-14, 2018.

4. Yang Haile, Zhu Huiying, Lin Xingyu, “Review of Exoskeleton Wearable Rehabilitation System[J]”, Metrology and testing technology, vol. 46, no. 03, pp. 40-44, 2019.

5. Xiang Shichuan, Meng Qiaoling, Yu Hongliu, Meng Qingyun, “Research status of compliant exoskeleton rehabilitation manipulator [J]”, Chinese Journal of Rehabilitation Medicine, vol. 33, no. 04, pp. 461-465+474, 2018.

6. Wu Hongjian, Li Lina, Li Long, Liu Tian, Jue Wang, “Review of comprehensive intervention by hand rehabilitation robot after stroke [J]”, Journal of biomedical engineering, vol. 36, no. 01, pp. 151-156, 2019.

7. Yu Junwei, Xu Hongbin, Xu Taojin, Zhang Chengjie, Lu Shiqing, “Structure Design and Finite Element Analysis of a Rope Traction Upper Limb Rehabilitation Robot [J]”, Mechanical transmission, vol. 42, no. 12, pp. 93-97, 2018.

8. Chang Ying, Meng Qingyun, Yu Hongliu, “Research progress on the development of hand rehabilitation robot [J]”, Beijing Biomedical Engineering, vol. 37, no. 06, pp. 650-656, 2018.

9. N A I M Rosli, M A A Rahman, S A Mazlan et al., “Electrocardiographic (ECG) and Electromyographic (EMG) signals fusion for physiological device in rehab application[C]”, IEEE Student Conference on Research and Development, pp. 1-5, 2015.

10. K O Thielbar, K M Triandafilou, H C Fischer et al., “Benefits of using a voice and EMG- Driven actuated glove to support occupational therapy for stroke survivors”, IEEE Trans Neural Syst Rehabil Eng, vol. 25, no. 3, pp. 297-305, 2017.

 

via Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism – IEEE Conference Publication

, , , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Evaluation of a 1-DOF Hand Exoskeleton for Neuromuscular Rehabilitation – Full Text PDF

Abstract

A low-cost 1-DOF hand exoskeleton for neuromuscular rehabilitation has been designed and assembled. It consists of a base equipped with a servo motor, an index finger part, and a thumb part, connected through three gears. The index part has a tri-axial load cell and an attached ring to measure the finger force. An admittance control scheme was designed to provide intuitive control and positive force amplification to assist the user’s finger movement. To evaluate the effects of different control parameters on neuromuscular response of the fingers, we created an integrated exoskeleton-hand musculoskeletal model to virtually simulate and optimize the control loop. The exoskeleton is controlled by a proportional derivative controller that computes the motor torque to follow a desired joint angle of the index part, which is obtained from inverse kinematics of a virtual end-effector mass driven by the finger force. We conducted parametric simulations of the exoskeleton in action, driven by the user’s
closing and opening finger motion, with different proportional gains, endeffector masses, and other coefficients. We compared the interaction forces between the index finger and the ring in both passive and active modes. The best performing assistive controller can reduce the force from around 1.45N (in passive mode) to only around 0.52N, more than 64% of reduction. As a result, the muscle activations of the flexors and extensors were reduced significantly. We also noted the admittance control scheme is versatile and can also provide resistance (e.g. for strength training) by simply increasing the virtual end-effect mass.

1 Introduction

Stroke, one of the leading causes of adult disability, affects approximately 800,000 individuals each year in the United States [1]. Nearly 80% of stroke survivors suffer
from hemiparesis of the upper arm and thus impaired hand function, which is integral
to most activities of daily living. It is well established that highly repetitive training
can aid in the recovery of motor function of the hand however this can be labor intensive for the providing physical therapist in addition to the cost. In the past decade,
more robotic hand rehabilitation devices have been introduced to help patients recover
hand function through assistance during repetitive training of the hand [2-4].
In a comprehensive review by Heo et al. [2], hand exoskeleton technologies for rehabilitation and assistive engineering, from basic hand biomechanics, neurophysiology, sensors and actuators, physical human-robot interactions and ergonomics, are summarized. Different types of actuators and control schemes have been used for hand exoskeletons. In some control schemes, the robotic device will move the user passively through a preprogrammed trajectory for continuous passive movement (CPM) therapy. These devices can be beneficial for severely impaired individuals who may not have the ability to generate the forces required for specific finger or hand movement or for individuals who have abnormal muscle synergies preventing continuous movement. A few devices such as the Kinetic Maestra and Vector 1 are commercially available devices that are used for CPM [5, 6]. These devices allow for
passive movement through the range of motion for individual fingers. However, as
there is no active participation by the user, this device on its own may not promote
neurorehabilitation. These devices can be combined with other simulations or control
schemes that require active participation by the user. One commercially available
hand exoskeleton that has been used extensively by our lab to provide haptics to virtual simulations is the CyberGrasp [7]. The CyberGrasp is a cable driven exoskeleton
that weighs 450 grams and can provide up to 12 N of force on each finger and can be
used to provide assistance for extension of the user’s fingers. In one study, this was
used in combination with a virtual reality simulation to train finger individuation as
the user played a virtual piano [8]. The CyberGrasp was used to resist finger flexion
of the inactive fingers, promoting movement of the active independent finger. Similarly, the eXtension Glove (X-Glove) was developed to be used for cyclical stretching
in addition to active movement training [9-11]. This cable driven design is actuated
using linear servos allowing for individual finger movement in both extension and
flexion. In addition to this, each cable is integrated with a tension sensor which allows
the force of each digit to be monitored. This device has two modes that can be used
for rehabilitation, the first mode cyclically extends and flexes the fingers. The second
mode is an active training mode in which the glove provides constant extension assistance so that the user can complete flexion tasks as long as they overcome the force
required to keep the finger extended. In a further attempt to integrate user control with
the exoskeleton, an external input from the user such as force or electromyography
has been incorporated into some designs such as the Helping Hand [12]. This soft
robotic device allows for active assistance for each finger individually, in addition to
the ability to follow control states triggered by EMG.

In this paper, we introduce a low cost 1-DOF hand exoskeleton for neuromuscular
rehabilitation of individual fingers. This exoskeleton consists of a base equipped with
a servo motor, an index finger component and a thumb component connected with
gears. The exoskeleton’s control system was designed to generate suitable actuation
torques based on the interaction force between the user’s finger and the exoskeleton’s
index component. The goal of this study is to model the exoskeleton interacting with a
neuromuscular hand model in order to evaluate the effectiveness of an intuitive admittance control algorithm on providing different levels of assistance or resistance during hand rehabilitation.

2 Methods

2.1 The 1-DOF Exoskeleton and Hand Model

This exoskeleton consists of a base stationed with a servo motor (Dynamixel
XM430), an index finger part and a thumb part, which are connected through 3 gears
of equal sizes as shown in Fig. 1. The motor drives the top gear which in turn rotates
the gear attached to the index part and then the gear attached the thumb part. The
index and thumb parts both have rings for the fingers, and an OptoForce tri-axial load
cell or force sensor (OnRobot, Denmark) is attached to the index ring. All parts are
3D printed with a carbon fiber reinforced nylon material called Onyx (Markforged,
USA). The total weight of this exoskeleton is 0.158kg and the mass and inertia properties of its components, which were either measured or computed based on material
and part geometry, are listed in Table 1.

Related image

Fig. 1. The design of the 1-DOF hand exoskeleton

Full Text PDF

 

, , , , , , , , , , ,

Leave a comment

[Abstract] Decoupling Finger Joint Motion in an Exoskeletal Hand: A Design for Robot-assisted Rehabilitation

Abstract

In this study, a cable-driven exoskeleton device is developed for stroke patients to enable them to perform passive range of motion exercises and teleoperation rehabilitation of their impaired hands. Each exoskeleton finger is controlled by an actuator via two cables. The motions between the metacarpophalangeal and distal/proximal interphalangeal joints are decoupled, through which the movement pattern is analogous to that observed in the human hand. A dynamic model based on the Lagrange method is derived to estimate how cable tension varies with the angular position of the finger joints. Two discernable phases are observed, each of which reflects the motion of the metacarpophalangeal and distal/proximal interphalangeal joints. The tension profiles of exoskeleton fingers predicted by the Lagrange model are verified through a mechatronic integrated platform. The model can precisely estimate the tensions at different movement velocities, and it shows that the characteristics of two independent phases remain the same even for a variety of movement velocities. The feasibility for measuring resistance when manipulating a patient’s finger is demonstrated in human experiments. Specifically, the net force required to move a subject’s finger joints can be accounted for by the Lagrange model.

via https://ieeexplore.ieee.org/abstract/document/8701573

, , , , , , , ,

Leave a comment

[Abstract] Gesture Interaction and Augmented Reality based Hand Rehabilitation Supplementary System – IEEE Conference Publication

Abstract:

The existing systems of hand rehabilitation always design different rehabilitation medical apparatus and systems according to the patients’ needs. This kind of system always contain problems such as complexity, using only single training programs, inconvenient to wear and high cost. For these reasons, this paper uses gesture recognition technology and augmented reality technology to design a simple and interactive hand rehabilitation supplementary system. The system uses a low-cost, non-contact device named Leap Motion as the input device, and Unity3D as the development engine, realizing three functional modules: conventional training, AR game training and auxiliary functions. This rehabilitation training project with different levels of difficulty increases the fun and challenge of the rehabilitation process. Users can use the system to assist the treatment activity of hand rehabilitation anytime and anywhere. The system, which has good application value, can also be used in other physical rehabilitation fields.

via Gesture Interaction and Augmented Reality based Hand Rehabilitation Supplementary System – IEEE Conference Publication

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Design and development of a portable exoskeleton for hand rehabilitation

Abstract:

Improvement in hand function to promote functional recovery is one of the major goals of stroke rehabilitation. This paper introduces a newly developed exoskeleton for hand rehabilitation with a user-centered design concept, which integrates the requirements of practical use, mechanical structure and control system. The paper also evaluated the function with two prototypes in a local hospital. Results of functional evaluation showed that significant improvements were found in ARAT (P=0.014), WMFT (P=0.020) and FMA_WH (P=0.021). Increase in the mean values of FMA_SE was observed but without significant difference (P=0.071). The improvement in ARAT score reflects the motor recovery in hand and finger functions. The increased FMA scores suggest there is motor improvement in the whole upper limb, and especially in the hand after the training. The product met patients’ requirements and has practical significance. It is portable, cost effective, easy to use and supports multiple control modes to adapt to different rehabilitation phases.

 

via Design and development of a portable exoskeleton for hand rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface

Abstract

Comparing with the traditional way for hand rehabilitation, such as simple trainers and artificial rigid auxiliary, this paper presents an isometric and isotonic soft hand for rehabilitation supported by the soft robots theory which aims to satisfy the more comprehensive rehabilitation requirements. Salient features of the device are the ability to achieve higher and controllable stiffness for both isometric and isotonic contraction. Then we analyze the active control for isometric and isotonic movement through electroencephalograph (EEG) signal. This paper focuses on three issues. The first is using silicon rubber to build a soft finger which can continuously stretch and bend to fit the basic action of the fingers. The second is changing stiffness of the finger through the coordination between variable stiffness cavity and actuating cavity. The last is to classify different EEG states based on isometric and isotonic contraction using common spatial pattern feature extraction (CSP) methods and support vector machine classification methods (SVM). On this basis, an EEG-based manipulator control system was set up.

 

I. Introduction

In recent years, stroke has became one of the major health problems which significantly affect the daily life of the elderly, and hand rehabilitation is introduced as an auxiliary treatment. Though various kinds of mechanical devices for hand rehabilitation have been developed, some deficiencies still exist in the current rigid rehabilitation hand, such as the degrees of freedom is not enough, complexity, unsafe status, overweight, being uncomfortable, unfitness and so on. Therefore, with the growth of aging population, it is highly needed to develop some new devices to satisfy the comprehensive rehabilitation requirements. Meanwhile, inspired by the mollusks in nature, soft robot is made of soft materials that can withstand large strains. It is a new type of continuum robot with high flexibility and environmental adaptability. The soft robot has a broad application prospects in military detection techniques, such as instance search, rescue, medical application and other fields.

References

1. J Zhang, H Wang, J Tang et al., “Modeling and design of a soft pneumatic finger for hand rehabilitation [C]”, IEEE International Conference on Information and Automation, pp. 2460-2465, 2015.

2. H Godaba, J Li, Y Wang et al., “A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator [J]”, IEEE Robotics & Automation Letters, vol. 1, no. 2, pp. 624-631, 2016.

3. Y Yang, Y. Chen, “Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer [C]”, IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 195-200, 2016.

4. M Wehner, R L Truby, D J Fitzgerald et al., “An integrated design and fabrication strategy for entirely soft autonomous robots [J]”, Nature, vol. 536, no. 7617, pp. 451, 2016.

5. P Polygerinos, Z Wang, K C Galloway et al., “Soft robotic glove for combined assistance and at-home rehabilitation [J]”, Robotics & Autonomous Systems, vol. 73, no. C, pp. 135-143, 2014.

6. M Tian, Y Xiao, X Wang et al., “Design and Experimental Research of Pneumatic Soft Humanoid Robot Hand [M]/ /” in Robot Intelligence Technology and Applications 4. Springer International Publishing, 2017.

7. K Y Hong, J H Lim, F Nasrallah et al., “A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness [C]”, IEEE International Conference on Robotics and Automation, pp. 4967-4972, 2015.

8. J.R Wolpaw, N Birbaumer, WJ Heetderks, DJ Mcfarland, PH Peckham, G Schalk et al., “Brain-computer interface technology: a review of thefirst international meeting”, IEEE Transactions on Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 8, no. 2, pp. 164, 2000.

9. C Ethier, ER Oby, MJ Bauman, LE. Miller, “Restoration of grasp following paralysis through brain-controlled stimulation of muscles”, Nature, vol. 485, no. 7398, pp. 368, 2012.

10. C JL, B W, D JE, W W, T EC, W DJ et al., “High-performance neuroprosthetic control by an individual with tetraplegia”, Lancet, vol. 381, no. 9866, pp. 557-564, 2013.

11. UA Qidwai, M. Shakir, Fuzzy Classification-Based Control of Wheelchair Using EEG Data to Assist People with Disabilities, vol. 7666, pp. 458-467, 2012.

12. UA Qidwai, M. Shakir, Fuzzy Classification-Based Control of Wheelchair Using EEG Data to Assist People with Disabilities, vol. 7666, pp. 458-467, 2012.

13. D Broetz, C Braun, C Weber, S.R Soekadar, A Caria, N. Birbaumer, “Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report”, Neurorehabilitation & Neural Repair, vol. 24, no. 7, pp. 674, 2010.

14. BH. Dobkin, “Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation”, Journal of Physiology, vol. 579, no. Pt 3, pp. 637, 2007.

15. S.R Soekadar, N Birbaumer, LG. Cohen, Brain-Computer Interfaces in the Rehabilitation of Stroke and Neurotrauma, Japan:Springer, 2011.

16. LR Hochberg, B Daniel, J Beata, NY Masse, JD Simeral, V Joern et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm”, Nature, vol. 485, no. 7398, pp. 372-375, 2013.

17. S R Soekadar, M Witkowski, C Gómez et al., Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia [J], vol. 1, no. 1, pp. eaag3296, 2016.

18. L B. Rosenberg, Force feedback interface having isotonic and isometric functionality: CA US 5825308 A [P], 1998.

19. L B. Rosenberg, Isotonic-isometric haptic feedback interface: US US71 02541 [P], 2006.

20. J T Gwin, D P. Ferris, “An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions [J]”, Journal of NeuroEngineering and Rehabilitation, vol. 9, no. 1, pp. 35, 9 2012-06-09.

21. S Bouisset, F Goubel, B. Maton, “[Isometric isotonic contraction and anisotonic isometric contraction: an electromyographic comparison] [J]”, Electromyography & Clinical Neurophysiology, vol. 13, no. 5, pp. 525, 1973.

 

via Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

%d bloggers like this: