Posts Tagged thumb

[Abstract + References] Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism

Abstract

The rehabilitation process of human fingers is a coupling movement of wearable hand rehabilitation equipment and human fingers, and its design must be based on the kinematics of human fingers. In this paper, the forward kinematics and inverse kinematics models are established for the index finger. Kinematics analysis is carried out. Then a bionic finger rehabilitation robot is designed according to the movement characteristics of the finger, A parallelogram linkage mechanism is proposed to make the joint independent drive, realize the flexion/extension movement, and perform positive kinematics and inverse kinematics analysis on the mechanism. The results show that it conforms to the kinematics of the index finger and can be used as the mechanism model of the finger rehabilitation robot.
1. Ibrahim Yildiz, “A Low-Cost and Lightweight Alternative to Rehabilitation Robots: Omnidirectional Interactive Mobile Robot for Arm Rehabilitation” in Arabian Journal for Science & Engineering, Springer Science & Business Media B.V., vol. 43, no. 3, pp. 1053-1059, 2018.

2. Bai Shaoping, Gurvinder S. Virk, Thomas G. Sugar, Wearable Exoskeleton Systems: Design control and applications[M], Institution of Engineering and Technology Control, pp. 1-406, 2018.

3. Kai Zhang, Xiaofeng Chen et al., “System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery”, Behavioural Neurology, vol. 12, pp. 1-14, 2018.

4. Yang Haile, Zhu Huiying, Lin Xingyu, “Review of Exoskeleton Wearable Rehabilitation System[J]”, Metrology and testing technology, vol. 46, no. 03, pp. 40-44, 2019.

5. Xiang Shichuan, Meng Qiaoling, Yu Hongliu, Meng Qingyun, “Research status of compliant exoskeleton rehabilitation manipulator [J]”, Chinese Journal of Rehabilitation Medicine, vol. 33, no. 04, pp. 461-465+474, 2018.

6. Wu Hongjian, Li Lina, Li Long, Liu Tian, Jue Wang, “Review of comprehensive intervention by hand rehabilitation robot after stroke [J]”, Journal of biomedical engineering, vol. 36, no. 01, pp. 151-156, 2019.

7. Yu Junwei, Xu Hongbin, Xu Taojin, Zhang Chengjie, Lu Shiqing, “Structure Design and Finite Element Analysis of a Rope Traction Upper Limb Rehabilitation Robot [J]”, Mechanical transmission, vol. 42, no. 12, pp. 93-97, 2018.

8. Chang Ying, Meng Qingyun, Yu Hongliu, “Research progress on the development of hand rehabilitation robot [J]”, Beijing Biomedical Engineering, vol. 37, no. 06, pp. 650-656, 2018.

9. N A I M Rosli, M A A Rahman, S A Mazlan et al., “Electrocardiographic (ECG) and Electromyographic (EMG) signals fusion for physiological device in rehab application[C]”, IEEE Student Conference on Research and Development, pp. 1-5, 2015.

10. K O Thielbar, K M Triandafilou, H C Fischer et al., “Benefits of using a voice and EMG- Driven actuated glove to support occupational therapy for stroke survivors”, IEEE Trans Neural Syst Rehabil Eng, vol. 25, no. 3, pp. 297-305, 2017.

 

via Design and Kinematics Analysis of a Bionic Finger Hand Rehabilitation Robot Mechanism – IEEE Conference Publication

, , , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Evaluation of a 1-DOF Hand Exoskeleton for Neuromuscular Rehabilitation – Full Text PDF

Abstract

A low-cost 1-DOF hand exoskeleton for neuromuscular rehabilitation has been designed and assembled. It consists of a base equipped with a servo motor, an index finger part, and a thumb part, connected through three gears. The index part has a tri-axial load cell and an attached ring to measure the finger force. An admittance control scheme was designed to provide intuitive control and positive force amplification to assist the user’s finger movement. To evaluate the effects of different control parameters on neuromuscular response of the fingers, we created an integrated exoskeleton-hand musculoskeletal model to virtually simulate and optimize the control loop. The exoskeleton is controlled by a proportional derivative controller that computes the motor torque to follow a desired joint angle of the index part, which is obtained from inverse kinematics of a virtual end-effector mass driven by the finger force. We conducted parametric simulations of the exoskeleton in action, driven by the user’s
closing and opening finger motion, with different proportional gains, endeffector masses, and other coefficients. We compared the interaction forces between the index finger and the ring in both passive and active modes. The best performing assistive controller can reduce the force from around 1.45N (in passive mode) to only around 0.52N, more than 64% of reduction. As a result, the muscle activations of the flexors and extensors were reduced significantly. We also noted the admittance control scheme is versatile and can also provide resistance (e.g. for strength training) by simply increasing the virtual end-effect mass.

1 Introduction

Stroke, one of the leading causes of adult disability, affects approximately 800,000 individuals each year in the United States [1]. Nearly 80% of stroke survivors suffer
from hemiparesis of the upper arm and thus impaired hand function, which is integral
to most activities of daily living. It is well established that highly repetitive training
can aid in the recovery of motor function of the hand however this can be labor intensive for the providing physical therapist in addition to the cost. In the past decade,
more robotic hand rehabilitation devices have been introduced to help patients recover
hand function through assistance during repetitive training of the hand [2-4].
In a comprehensive review by Heo et al. [2], hand exoskeleton technologies for rehabilitation and assistive engineering, from basic hand biomechanics, neurophysiology, sensors and actuators, physical human-robot interactions and ergonomics, are summarized. Different types of actuators and control schemes have been used for hand exoskeletons. In some control schemes, the robotic device will move the user passively through a preprogrammed trajectory for continuous passive movement (CPM) therapy. These devices can be beneficial for severely impaired individuals who may not have the ability to generate the forces required for specific finger or hand movement or for individuals who have abnormal muscle synergies preventing continuous movement. A few devices such as the Kinetic Maestra and Vector 1 are commercially available devices that are used for CPM [5, 6]. These devices allow for
passive movement through the range of motion for individual fingers. However, as
there is no active participation by the user, this device on its own may not promote
neurorehabilitation. These devices can be combined with other simulations or control
schemes that require active participation by the user. One commercially available
hand exoskeleton that has been used extensively by our lab to provide haptics to virtual simulations is the CyberGrasp [7]. The CyberGrasp is a cable driven exoskeleton
that weighs 450 grams and can provide up to 12 N of force on each finger and can be
used to provide assistance for extension of the user’s fingers. In one study, this was
used in combination with a virtual reality simulation to train finger individuation as
the user played a virtual piano [8]. The CyberGrasp was used to resist finger flexion
of the inactive fingers, promoting movement of the active independent finger. Similarly, the eXtension Glove (X-Glove) was developed to be used for cyclical stretching
in addition to active movement training [9-11]. This cable driven design is actuated
using linear servos allowing for individual finger movement in both extension and
flexion. In addition to this, each cable is integrated with a tension sensor which allows
the force of each digit to be monitored. This device has two modes that can be used
for rehabilitation, the first mode cyclically extends and flexes the fingers. The second
mode is an active training mode in which the glove provides constant extension assistance so that the user can complete flexion tasks as long as they overcome the force
required to keep the finger extended. In a further attempt to integrate user control with
the exoskeleton, an external input from the user such as force or electromyography
has been incorporated into some designs such as the Helping Hand [12]. This soft
robotic device allows for active assistance for each finger individually, in addition to
the ability to follow control states triggered by EMG.

In this paper, we introduce a low cost 1-DOF hand exoskeleton for neuromuscular
rehabilitation of individual fingers. This exoskeleton consists of a base equipped with
a servo motor, an index finger component and a thumb component connected with
gears. The exoskeleton’s control system was designed to generate suitable actuation
torques based on the interaction force between the user’s finger and the exoskeleton’s
index component. The goal of this study is to model the exoskeleton interacting with a
neuromuscular hand model in order to evaluate the effectiveness of an intuitive admittance control algorithm on providing different levels of assistance or resistance during hand rehabilitation.

2 Methods

2.1 The 1-DOF Exoskeleton and Hand Model

This exoskeleton consists of a base stationed with a servo motor (Dynamixel
XM430), an index finger part and a thumb part, which are connected through 3 gears
of equal sizes as shown in Fig. 1. The motor drives the top gear which in turn rotates
the gear attached to the index part and then the gear attached the thumb part. The
index and thumb parts both have rings for the fingers, and an OptoForce tri-axial load
cell or force sensor (OnRobot, Denmark) is attached to the index ring. All parts are
3D printed with a carbon fiber reinforced nylon material called Onyx (Markforged,
USA). The total weight of this exoskeleton is 0.158kg and the mass and inertia properties of its components, which were either measured or computed based on material
and part geometry, are listed in Table 1.

Related image

Fig. 1. The design of the 1-DOF hand exoskeleton

Full Text PDF

 

, , , , , , , , , , ,

Leave a comment

[Abstract] Decoupling Finger Joint Motion in an Exoskeletal Hand: A Design for Robot-assisted Rehabilitation

Abstract

In this study, a cable-driven exoskeleton device is developed for stroke patients to enable them to perform passive range of motion exercises and teleoperation rehabilitation of their impaired hands. Each exoskeleton finger is controlled by an actuator via two cables. The motions between the metacarpophalangeal and distal/proximal interphalangeal joints are decoupled, through which the movement pattern is analogous to that observed in the human hand. A dynamic model based on the Lagrange method is derived to estimate how cable tension varies with the angular position of the finger joints. Two discernable phases are observed, each of which reflects the motion of the metacarpophalangeal and distal/proximal interphalangeal joints. The tension profiles of exoskeleton fingers predicted by the Lagrange model are verified through a mechatronic integrated platform. The model can precisely estimate the tensions at different movement velocities, and it shows that the characteristics of two independent phases remain the same even for a variety of movement velocities. The feasibility for measuring resistance when manipulating a patient’s finger is demonstrated in human experiments. Specifically, the net force required to move a subject’s finger joints can be accounted for by the Lagrange model.

via https://ieeexplore.ieee.org/abstract/document/8701573

, , , , , , , ,

Leave a comment

[Abstract] Gesture Interaction and Augmented Reality based Hand Rehabilitation Supplementary System – IEEE Conference Publication

Abstract:

The existing systems of hand rehabilitation always design different rehabilitation medical apparatus and systems according to the patients’ needs. This kind of system always contain problems such as complexity, using only single training programs, inconvenient to wear and high cost. For these reasons, this paper uses gesture recognition technology and augmented reality technology to design a simple and interactive hand rehabilitation supplementary system. The system uses a low-cost, non-contact device named Leap Motion as the input device, and Unity3D as the development engine, realizing three functional modules: conventional training, AR game training and auxiliary functions. This rehabilitation training project with different levels of difficulty increases the fun and challenge of the rehabilitation process. Users can use the system to assist the treatment activity of hand rehabilitation anytime and anywhere. The system, which has good application value, can also be used in other physical rehabilitation fields.

via Gesture Interaction and Augmented Reality based Hand Rehabilitation Supplementary System – IEEE Conference Publication

, , , , , , , , , , , , ,

Leave a comment

[Abstract] Design and development of a portable exoskeleton for hand rehabilitation

Abstract:

Improvement in hand function to promote functional recovery is one of the major goals of stroke rehabilitation. This paper introduces a newly developed exoskeleton for hand rehabilitation with a user-centered design concept, which integrates the requirements of practical use, mechanical structure and control system. The paper also evaluated the function with two prototypes in a local hospital. Results of functional evaluation showed that significant improvements were found in ARAT (P=0.014), WMFT (P=0.020) and FMA_WH (P=0.021). Increase in the mean values of FMA_SE was observed but without significant difference (P=0.071). The improvement in ARAT score reflects the motor recovery in hand and finger functions. The increased FMA scores suggest there is motor improvement in the whole upper limb, and especially in the hand after the training. The product met patients’ requirements and has practical significance. It is portable, cost effective, easy to use and supports multiple control modes to adapt to different rehabilitation phases.

 

via Design and development of a portable exoskeleton for hand rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface

Abstract

Comparing with the traditional way for hand rehabilitation, such as simple trainers and artificial rigid auxiliary, this paper presents an isometric and isotonic soft hand for rehabilitation supported by the soft robots theory which aims to satisfy the more comprehensive rehabilitation requirements. Salient features of the device are the ability to achieve higher and controllable stiffness for both isometric and isotonic contraction. Then we analyze the active control for isometric and isotonic movement through electroencephalograph (EEG) signal. This paper focuses on three issues. The first is using silicon rubber to build a soft finger which can continuously stretch and bend to fit the basic action of the fingers. The second is changing stiffness of the finger through the coordination between variable stiffness cavity and actuating cavity. The last is to classify different EEG states based on isometric and isotonic contraction using common spatial pattern feature extraction (CSP) methods and support vector machine classification methods (SVM). On this basis, an EEG-based manipulator control system was set up.

 

I. Introduction

In recent years, stroke has became one of the major health problems which significantly affect the daily life of the elderly, and hand rehabilitation is introduced as an auxiliary treatment. Though various kinds of mechanical devices for hand rehabilitation have been developed, some deficiencies still exist in the current rigid rehabilitation hand, such as the degrees of freedom is not enough, complexity, unsafe status, overweight, being uncomfortable, unfitness and so on. Therefore, with the growth of aging population, it is highly needed to develop some new devices to satisfy the comprehensive rehabilitation requirements. Meanwhile, inspired by the mollusks in nature, soft robot is made of soft materials that can withstand large strains. It is a new type of continuum robot with high flexibility and environmental adaptability. The soft robot has a broad application prospects in military detection techniques, such as instance search, rescue, medical application and other fields.

References

1. J Zhang, H Wang, J Tang et al., “Modeling and design of a soft pneumatic finger for hand rehabilitation [C]”, IEEE International Conference on Information and Automation, pp. 2460-2465, 2015.

2. H Godaba, J Li, Y Wang et al., “A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator [J]”, IEEE Robotics & Automation Letters, vol. 1, no. 2, pp. 624-631, 2016.

3. Y Yang, Y. Chen, “Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer [C]”, IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 195-200, 2016.

4. M Wehner, R L Truby, D J Fitzgerald et al., “An integrated design and fabrication strategy for entirely soft autonomous robots [J]”, Nature, vol. 536, no. 7617, pp. 451, 2016.

5. P Polygerinos, Z Wang, K C Galloway et al., “Soft robotic glove for combined assistance and at-home rehabilitation [J]”, Robotics & Autonomous Systems, vol. 73, no. C, pp. 135-143, 2014.

6. M Tian, Y Xiao, X Wang et al., “Design and Experimental Research of Pneumatic Soft Humanoid Robot Hand [M]/ /” in Robot Intelligence Technology and Applications 4. Springer International Publishing, 2017.

7. K Y Hong, J H Lim, F Nasrallah et al., “A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness [C]”, IEEE International Conference on Robotics and Automation, pp. 4967-4972, 2015.

8. J.R Wolpaw, N Birbaumer, WJ Heetderks, DJ Mcfarland, PH Peckham, G Schalk et al., “Brain-computer interface technology: a review of thefirst international meeting”, IEEE Transactions on Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society, vol. 8, no. 2, pp. 164, 2000.

9. C Ethier, ER Oby, MJ Bauman, LE. Miller, “Restoration of grasp following paralysis through brain-controlled stimulation of muscles”, Nature, vol. 485, no. 7398, pp. 368, 2012.

10. C JL, B W, D JE, W W, T EC, W DJ et al., “High-performance neuroprosthetic control by an individual with tetraplegia”, Lancet, vol. 381, no. 9866, pp. 557-564, 2013.

11. UA Qidwai, M. Shakir, Fuzzy Classification-Based Control of Wheelchair Using EEG Data to Assist People with Disabilities, vol. 7666, pp. 458-467, 2012.

12. UA Qidwai, M. Shakir, Fuzzy Classification-Based Control of Wheelchair Using EEG Data to Assist People with Disabilities, vol. 7666, pp. 458-467, 2012.

13. D Broetz, C Braun, C Weber, S.R Soekadar, A Caria, N. Birbaumer, “Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report”, Neurorehabilitation & Neural Repair, vol. 24, no. 7, pp. 674, 2010.

14. BH. Dobkin, “Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation”, Journal of Physiology, vol. 579, no. Pt 3, pp. 637, 2007.

15. S.R Soekadar, N Birbaumer, LG. Cohen, Brain-Computer Interfaces in the Rehabilitation of Stroke and Neurotrauma, Japan:Springer, 2011.

16. LR Hochberg, B Daniel, J Beata, NY Masse, JD Simeral, V Joern et al., “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm”, Nature, vol. 485, no. 7398, pp. 372-375, 2013.

17. S R Soekadar, M Witkowski, C Gómez et al., Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia [J], vol. 1, no. 1, pp. eaag3296, 2016.

18. L B. Rosenberg, Force feedback interface having isotonic and isometric functionality: CA US 5825308 A [P], 1998.

19. L B. Rosenberg, Isotonic-isometric haptic feedback interface: US US71 02541 [P], 2006.

20. J T Gwin, D P. Ferris, “An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions [J]”, Journal of NeuroEngineering and Rehabilitation, vol. 9, no. 1, pp. 35, 9 2012-06-09.

21. S Bouisset, F Goubel, B. Maton, “[Isometric isotonic contraction and anisotonic isometric contraction: an electromyographic comparison] [J]”, Electromyography & Clinical Neurophysiology, vol. 13, no. 5, pp. 525, 1973.

 

via Design of Isometric and Isotonic Soft Hand for Rehabilitation Combining with Noninvasive Brain Machine Interface – IEEE Conference Publication

, , , , , , , , ,

Leave a comment

[Abstract] Hand Rehabilitation via Gesture Recognition Using Leap Motion Controller – Conference Paper

I. Introduction

Nowadays, a stroke is the fourth leading cause of death in the United States. In fact, every 40 seconds, someone in the US is having a stroke. Moreover, around 50% of stroke survivors suffer damage to the upper extremity [1]–[3]. Many actions of treating and recovering from a stroke have been developed over the years, but recent studies show that combining the recovery process with the existing rehabilitation plan provides better results and a raise in the patients quality of life [4]–[6]. Part of the stroke recovery process is a rehabilitation plan [7]. The process can be difficult, intensive and long depending on how adverse the stroke and which parts of the brain were damaged. These processes usually involve working with a team of health care providers in a full extensive rehabilitation plan, which includes hospital care and home exercises.

References

1. D. Tsoupikova, N. S. Stoykov, M. Corrigan, K. Thielbar, R. Vick, Y. Li, K. Triandafilou, F. Preuss, D. Kamper, “Virtual immersion for poststroke hand rehabilitation therapy”, Annals of biomedical engineering, vol. 43, no. 2, pp. 467-477, 2015.

2. J. E. Pompeu, T. H. Alonso, I. B. Masson, S. M. A. A. Pompeu, C. Torriani-Pasin, “The effects of virtual reality on stroke rehabilitation: a systematic review”, Motricidade, vol. 10, no. 4, pp. 111-122, 2014.

3. J.-H. Shin, S. B. Park, S. H. Jang, “Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized controlled study”, Computers in biology and medicine, vol. 63, pp. 92-98, 2015.

4. R. W. Teasell, L. Kalra, “Whats new in stroke rehabilitation”, Stroke, vol. 35, no. 2, pp. 383-385, 2004.

5. E. McDade, S. Kittner, “Ischemic stroke in young adults” in Stroke Essentials for Primary Care, Springer, pp. 123-146, 2009.

6. P. Langhorne, J. Bernhardt, G. Kwakkel, “Stroke rehabilitation”, The Lancet, vol. 377, no. 9778, pp. 1693-1702, 2011.

7. C. J. Winstein, J. Stein, R. Arena, B. Bates, L. R. Cherney, S. C. Cramer, F. Deruyter, J. J. Eng, B. Fisher, R. L. Harvey et al., “Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the american heart association/american stroke association”, Stroke, vol. 47, no. 6, pp. e98-e169, 2016.

8. R. Ibanez, A. Soria, A. Teyseyre, M. Campo, “Easy gesture recognition for kinect”, Advances in Engineering Software, vol. 76, pp. 171-180, 2014.

9. R. Ibañez, A. Soria, A. R. Teyseyre, L. Berdun, M. R. Campo, “A comparative study of machine learning techniques for gesture recognition using kinect”, Handbook of Research on Human-Computer Interfaces Developments and Applications, pp. 1-22, 2016.

10. S. Bhattacharya, B. Czejdo, N. Perez, “Gesture classification with machine learning using kinect sensor data”, Emerging Applications of Information Technology (EAIT) 2012 Third International Conference on, pp. 348-351, 2012.

11. K. Laver, S. George, S. Thomas, J. E. Deutsch, M. Crotty, “Virtual reality for stroke rehabilitation”, Stroke, vol. 43, no. 2, pp. e20-e21, 2012.

12. G. Saposnik, M. Levin, S. O. R. C. S. W. Group et al., “Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians”, Stroke, vol. 42, no. 5, pp. 1380-1386, 2011.

13. K. R. Anderson, M. L. Woodbury, K. Phillips, L. V. Gauthier, “Virtual reality video games to promote movement recovery in stroke rehabilitation: a guide for clinicians”, Archives of physical medicine and rehabilitation, vol. 96, no. 5, pp. 973-976, 2015.

14. A. Estepa, S. S. Piriz, E. Albornoz, C. Martínez, “Development of a kinect-based exergaming system for motor rehabilitation in neurological disorders”, Journal of Physics: Conference Series, vol. 705, pp. 012060, 2016.

15. E. Chang, X. Zhao, S. C. Cramer et al., “Home-based hand rehabilitation after chronic stroke: Randomized controlled single-blind trial comparing the musicglove with a conventional exercise program”, Journal of rehabilitation research and development, vol. 53, no. 4, pp. 457, 2016.

16. L. Ebert, P. Flach, M. Thali, S. Ross, “Out of touch-a plugin for controlling osirix with gestures using the leap controller”, Journal of Forensic Radiology and Imaging, vol. 2, no. 3, pp. 126-128, 2014.

17. W.-J. Li, C.-Y. Hsieh, L.-F. Lin, W.-C. Chu, “Hand gesture recognition for post-stroke rehabilitation using leap motion”, Applied System Innovation (ICASI) 2017 International Conference on, pp. 386-388, 2017.

18. K. Vamsikrishna, D. P. Dogra, M. S. Desarkar, “Computer-vision-assisted palm rehabilitation with supervised learning”, IEEE Transactions on Biomedical Engineering, vol. 63, no. 5, pp. 991-1001, 2016.

19. A. Butt, E. Rovini, C. Dolciotti, P. Bongioanni, G. De Petris, F. Cavallo, “Leap motion evaluation for assessment of upper limb motor skills in parkinson’s disease”, Rehabilitation Robotics (ICORR) 2017 International Conference on, pp. 116-121, 2017.

20. L. Di Tommaso, S. Aubry, J. Godard, H. Katranji, J. Pauchot, “A new human machine interface in neurosurgery: The leap motion (®). technical note regarding a new touchless interface”, Neuro-Chirurgie, vol. 62, no. 3, pp. 178-181, 2016.

21. O. Chapelle, “Training a support vector machine in the primal”, Neural computation, vol. 19, no. 5, pp. 1155-1178, 2007.

22. Y. Ma, G. Guo, Support vector machines applications, Springer, 2014.

23. J. Guna, G. Jakus, M. Pogačnik, S. Tomažič, J. Sodnik, “An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking”, Sensors, vol. 14, no. 2, pp. 3702-3720, 2014.

24. T. DOrazio, R. Marani, V. Renó, G. Cicirelli, “Recent trends in gesture recognition: how depth data has improved classical approaches”, Image and Vision Computing, vol. 52, pp. 56-72, 2016.

25. L. Motion, Leap motion sdk, 2015.

 

via Hand Rehabilitation via Gesture Recognition Using Leap Motion Controller – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

[Abstract] Electromyography Based Orthotic Arm and Finger Rehabilitation System

Abstract

Electromyography (EMG), a technique used to analyze and record electric current produced by skeletal muscles, has been used to control replacement limbs, and diagnose muscle irregularities. In this work, an EMG based system comprising of an orthotic arm and finger device to aid in muscle rehabilitation, is presented. As the user attempts to contract their bicep or forearm muscles, the system senses the change in the EMG signals and in turn triggers the motors to assist with flexion and extension of the arm and fingers. As brain is a major factor for muscle growth, mental training using motor imagery was incorporated into the system. Subjects underwent mental training to show the capability of muscle growth. The measured data reveals that the subjects were able to compensate for the loss of muscle growth, due to shorter physical training sessions, with mental training. Subjects were then tested using the orthotic arm and finger rehabilitation device with motor imagery. The findings also showed a positive increase in muscle growth using the rehabilitation system. Based on the experimental results, the EMG rehabilitation system presented in this paper has the potential to increase muscle strength and improve the recovery rate for muscle injuries, partial paralysis, or muscle irregularities.

via Electromyography Based Orthotic Arm and Finger Rehabilitation System – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

[Abstract] Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation

Abstract

In the modern world, due to an increased aging population, hand disability is becoming increasingly common. The prevalence of conditions such as stroke is placing an ever-growing burden on the limited fiscal resources of health care providers and the capacity of their physical therapy staff. As a solution, this paper presents a novel design for a wearable and adaptive glove for patients so that they can practice rehabilitative activities at home, reducing the workload for therapists and increasing the patient’s independence. As an initial evaluation of the design’s feasibility the prototype was subjected to motion analysis to compare its performance with the hand in an assessment of grasping patterns of a selection of blocks and spheres. The outcomes of this paper suggest that the theory of design has validity and may lead to a system that could be successful in the treatment of stroke patients to guide them through finger flexion and extension, which could enable them to gain more control and confidence in interacting with the world around them.

I. Introduction

In the modern world an extended life expectancy coupled with a sedentary lifestyle raises concerns over long term health in the population. This is highlighted by the increasing incidence of disability stemming from multiple sources, for example medical conditions such as cancer or stroke [1]. While avoiding the lifestyle factors that have a high association with these diseases would be the preferred solutions of health services the world over, as populations get progressively older and more sedentary, this becomes increasingly more difficult [1], [2]. The treatment of these conditions is often complex; in stroke for example, the initial incident is a constriction of blood flow in the brain which in turn damages the nervous system’s ability to communicate with the rest of the body. This damage will occur in one hemisphere of the body but can impact both the upper and lower limbs, as well as impairing functional processes such as speech and cognitive thinking.

 

via Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation – IEEE Journals & Magazine

, , , , , , , , , , , ,

Leave a comment

[Abstract] A soft robotic glove for hand motion assistance

Abstract:

Soft robotic devices have the potential to be widely used in daily lives for their inherent compliance and adaptability, which result in high safety under unexpected situations. System complexity and requirements are much lower, comparing with conventional rigid-bodied robotic devices, which also result in significantly lower costs. This paper presents a robotic glove by utilizing soft artificial muscles providing redundant degrees of freedom (DOFs) to generate both flexion and extension hand motions for daily grasping and manipulation tasks. Different with the existing devices, to minimize the weight applied to the user’s hands, pneumatic soft actuators were located on the fore arm and drive each finger via cable-transmission mechanisms. This actuation mechanism brings extra adaptability, motion smoothness, and user safety to the system. This design makes wearable robotic gloves more light-weight and user-friendly. Both theoretical and experimental analyses were conducted to explore the mechanical properties of pneumatic soft actuators. In addition, the fingertip trajectories were analyzed using Finite Element Methods, and a series of experiments were conducted evaluating both the technical and practical performances of the proposed glove.

 

I. Introduction

Glove-type wearable robotic devices are developed to assist people with impaired hand functions both in their activities of daily living (ADLs) and in rehabilitation [1]–[12]. Most of such wearable robotic devices generate hand movements with linkage systems actuated by electrical motors which usually are heavy and inconvenient for using. Moreover, because of the human hand variation, most wearable robotic devices require customization in order to fulfill the geometrical fitting requirements between the exoskeleton device and the human hand joints. Approximating the high dexterity of human hands usually requires high complexity in both the mechanical and controller structures of the robotic systems, and hence also results in high costs for most users.

via A soft robotic glove for hand motion assistance – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: