Posts Tagged Transcramial magnetic stimulation

[Supplement] It Takes Two: Noninvasive Brain Stimulation Combined With Neurorehabilitation- Full Text

The goal of postacute neurorehabilitation is to maximize patient function, ideally by using surviving brain and central nervous system tissue when possible. However, the structures incorporated into neurorehabilitative approaches often differ from this target, which may explain why the efficacy of conventional clinical treatments targeting neurologic impairment varies widely.

Noninvasive brain stimulation (eg, transcranial magnetic stimulation [TMS], transcranial direct current stimulation [tDCS]) offers the possibility of directly targeting brain structures to facilitate or inhibit their activity to steer neural plasticity in recovery and measure neuronal output and interactions for evaluating progress. The latest advances as stereotactic navigation and electric field modeling are enabling more precise targeting of patient’s residual structures in diagnosis and therapy.

Given its promise, this supplement illustrates the wide-ranging significance of TMS and tDCS in neurorehabilitation, including in stroke, pediatrics, traumatic brain injury, focal hand dystonia, neuropathic pain, and spinal cord injury. TMS and tDCS are still not widely used and remain poorly understood in neurorehabilitation. Therefore, the present supplement includes articles that highlight ready clinical application of these technologies, including their comparative diagnostic capabilities relative to neuroimaging, their therapeutic benefit, their optimal delivery, the stratification of likely responders, and the variable benefits associated with their clinical use because of interactions between pathophysiology and the innate reorganization of the patient’s brain. Overall, the supplement concludes that whether provided in isolation or in combination, noninvasive brain stimulation and neurorehabilitation are synergistic in the potential to transform clinical practice.

The incidence of many neurologic diseases is rising partly because of an increasingly aged population and improved delivery and timing of acute care for neurologic disorders. As a result, more survivors are emerging from acute care, with most exhibiting life-altering impairments that require neurorehabilitation. One prominent example of this trend is stroke; taking into account both the years of potential life lost from premature death and long-term disability, stroke is also one of the most costly diseases, with 36% of this growing population exhibiting a discernable disability 5 years poststroke,1 and almost half of survivors remaining dependent on others 6 years poststroke because of the severity of their disability.2

The focus of medical teams during hyperacute and acute neurologic care is usually 3-fold: ensure survival/reduce mortality; manage and prevent medical complications; and when possible, salvage existing central nervous system tissue (eg, through the use of thrombolytics in stroke).3 In contrast, the goal of postacute neurorehabilitation is to maximize patient function, ideally by using surviving brain and central nervous system tissue when possible. However, despite their widely appreciated importance, the efficacy of conventional clinical treatments targeting specific neurologic impairments and sequelae vary widely. Again in the case of stroke, conventional rehabilitative strategies targeting upper extremity hemiparesis in adults offer negligible or no efficacy.4, 5

Recently developed neurorehabilitative strategies offer slightly more promise but remain limited because of the considerable time and resources that they require to administer. Perhaps the most notable example is constraint-induced movement therapy (CIMT), which has been applied to the affected upper extremity after stroke and other neurologic disorders (eg, multiple sclerosis, aphasia, traumatic brain injury [TBI]). One of the hallmarks of CIMT is long-duration training using an affected body part (eg, paretic upper extremity) or capacity (eg, speaking) that lasts up to 6 hours per day and is administered over multiple days (usually 10 consecutive weekdays). Although results have been promising,6 several studies7, 8 have found that most patients with stroke do not wish to participate in CIMT because of these long-duration treatment parameters, have reported high attrition rates,9 have reported poor compliance with the CIMT restrictive device wear,10, 11 and have reported on patient inability to participate in the entire 6-hour regimen as a result of fatigue.12 As a result of the required time, financial resources, and human resources, CIMT has not realized widespread clinical application.13, 14

Other new neurorehabilitative approaches being taught by training programs and/or adopted by clinics worldwide (eg, partial weight-supported treadmill training, certain automated and splinting approaches) offer negligible efficacy when compared with more conventional strategies15, 16, 17 and/or only work on patients displaying a particular level of impairment. As a result, there remains a gap centering on the need for techniques that extend the efficacy, duration of treatment effect, and/or number of patients who may benefit from promising neurorehabilitative therapies. Noninvasive brain stimulation offers the ability to meet all of these needs and offers efficacy as a stand-alone treatment approach for many neurologic impairments.

Continue –>  It Takes Two: Noninvasive Brain Stimulation Combined With Neurorehabilitation – Archives of Physical Medicine and Rehabilitation.

, , , , , , , , ,

Leave a comment

%d bloggers like this: