Posts Tagged Transcranial Direct Current Stimulation

[VIDEO] Marom Bikson plenary talk on tDCS at Society of Biological Psychiatry 2018 meeting – YouTube

“The Potential and Limitations of Transcranial Direct Current Stimulation” talk by Marom Bikson at SOBP 2018 conference

Download slides: https://www.neuralengr.org/wp-content…

All references at https://www.neuralengr.org/bikson/

Talk Abstract: Few emerging therapies for neuropsychiatric disorders has engaged as much excitement and also debate as transcranial Direct Current Stimulation (tDCS). To identify the potential of tDCS and move beyond the hype, this talk addresses the technology and cellular foundations of tDCS. For decades, it has been established that direct current stimulation can modulate plasticity; new research is unraveling the cellular mechanisms of how direct current stimulation can produce nuanced and targeted changes in brain function. Over the past decade, the technology of tDCS has advanced from basic clinical stimulator using two electrodes to High-Definition tDCS (HD-tDCS) using arrays of electrodes and to Remove-Supervised technology for home use. These new technologies have allowed categorical enhanced in the targeting (HD-tDCS) and deployment (Remote-Supervised) of tDCS. Finally, new approaches to optimize tDCS using imaging and biomarkers, including used EEG reciprocity, have provided new insight on therapeutic mechanisms as well as rational methods to select patients and individualize tDCS. The thesis of this talk is that tDCS is grounded in well-established biophysical principles but that emerging technologies will support robust and efficacious translation to patients.

via (55) Marom Bikson plenary talk on tDCS at Society of Biological Psychiatry 2018 meeting (May 12, 2018) – YouTube

Advertisements

, , ,

Leave a comment

[PINTEREST Board] transcranial Direct Current Stimulation (tDCS), Transcranial Magnetic Stimulation (TMS)

 

, , ,

Leave a comment

[Abstract+References] Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery?

Abstract

Non-invasive brain stimulation (NIBS) combined with behavioral training is a promising strategy to augment recovery after stroke. Current research efforts have been mainly focusing on primary motor cortex (M1) stimulation. However, the translation from proof-of-principle to clinical applications is not yet satisfactory. Possible reasons are the heterogeneous properties of stroke, generalization of the stimulation protocols, and hence the lack of patient stratification. One strategy to overcome these limitations could be the evaluation of alternative stimulation targets, like the cerebellum. In this regard, first studies provided evidence that non-invasive cerebellar stimulation can modulate cerebellar processing and linked behavior in healthy subjects. The cerebellum provides unique plasticity mechanisms and has vast connections to interact with neocortical areas. Moreover, the cerebellum could serve as a non-lesioned entry to the motor or cognitive system in supratentorial stroke. In the current article, we review mechanisms of plasticity in the cortico-cerebellar system after stroke, methods for non-invasive cerebellar stimulation, and possible target symptoms in stroke, like fine motor deficits, gait disturbance, or cognitive impairments, and discuss strategies for multi-focal stimulation.

 References

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. https://doi.org/10.1161/CIR.0000000000000350.PubMedCrossRefGoogle Scholar
  2. 2.
    Blackburn DJ, Bafadhel L, Randall M, Harkness KA. Cognitive screening in the acute stroke setting. Age Ageing. 2013;42(1):113–6. https://doi.org/10.1093/ageing/afs116.PubMedCrossRefGoogle Scholar
  3. 3.
    Kotila M, Waltimo O, Niemi ML, Laaksonen R, Lempinen M. The profile of recovery from stroke and factors influencing outcome. Stroke. 1984;15(6):1039–44. https://doi.org/10.1161/01.STR.15.6.1039.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramsey LE, Siegel JS, Lang CE, Strube M, Shulman GL, Corbetta M. Behavioural clusters and predictors of performance during recovery from stroke. Nat Hum Behav. 2017;1(3):38. https://doi.org/10.1038/s41562-016-0038.CrossRefGoogle Scholar
  5. 5.
    Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002;33(11):2718–21. https://doi.org/10.1161/01.STR.0000035286.87503.31.PubMedCrossRefGoogle Scholar
  6. 6.
    Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–35. https://doi.org/10.1093/brain/aws146.PubMedCrossRefGoogle Scholar
  7. 7.
    Hummel FC, Cohen LG. Drivers of brain plasticity. Curr Opin Neurol. 2005;18(6):667–74. https://doi.org/10.1097/01.wco.0000189876.37475.42.PubMedCrossRefGoogle Scholar
  8. 8.
    Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(3):490–9. https://doi.org/10.1093/brain/awh369.PubMedCrossRefGoogle Scholar
  9. 9.
    Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 2017;128(1):56–92. https://doi.org/10.1016/j.clinph.2016.10.087.PubMedCrossRefGoogle Scholar
  10. 10.
    Wessel MJ, Zimerman M, Hummel FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci. 2015;9:265. https://doi.org/10.3389/fnhum.2015.00265.
  11. 11.
    Tedesco Triccas L, Burridge JH, Hughes AM, Pickering RM, Desikan M, Rothwell JC, et al. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol. 2016;127(1):946–55. https://doi.org/10.1016/j.clinph.2015.04.067.PubMedCrossRefGoogle Scholar
  12. 12.
    Rossi C, Sallustio F, Di Legge S, Stanzione P, Koch G. Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol. 2013;20(1):202–4. https://doi.org/10.1111/j.1468-1331.2012.03703.x.PubMedCrossRefGoogle Scholar
  13. 13.
    Kapoor A, Lanctôt KL, Bayley M, Kiss A, Herrmann N, Murray BJ, et al. “Good outcome” isn’t good enough: cognitive impairment, depressive symptoms, and social restrictions in physically recovered stroke patients. Stroke. 2017;48(6):1688–90. https://doi.org/10.1161/STROKEAHA.117.016728.PubMedCrossRefGoogle Scholar
  14. 14.
    das Nair R, Cogger H, Worthington E, Lincoln NB. Cognitive rehabilitation for memory deficits after stroke: an updated review. Stroke. 2017;48(2):e28–9. https://doi.org/10.1161/STROKEAHA.116.015377.PubMedCrossRefGoogle Scholar
  15. 15.
    Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulat. 2008;1(4):326–36. https://doi.org/10.1016/j.brs.2008.07.002.CrossRefGoogle Scholar
  16. 16.
    Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645. https://doi.org/10.1002/14651858.CD009645.pub3.
  17. 17.
    Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H, et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol. 2009;66(3):298–309. https://doi.org/10.1002/ana.21725.PubMedCrossRefGoogle Scholar
  18. 18.
    Carey JR, Deng H, Gillick BT, Cassidy JM, Anderson DC, Zhang L, et al. Serial treatments of primed low-frequency rTMS in stroke: characteristics of responders vs. nonresponders. Restor Neurol Neurosci. 2014;32(2):323–35. https://doi.org/10.3233/RNN-130358.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. NeuroImage. 2007;35(3):1113–24. https://doi.org/10.1016/j.neuroimage.2007.01.027.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp. 2012;33(5):1040–51. https://doi.org/10.1002/hbm.21266.PubMedCrossRefGoogle Scholar
  21. 21.
    Demirtas-Tatlidede A, Alonso-Alonso M, Shetty RP, Ronen I, Pascual-Leone A, Fregni F. Long-term effects of contralesional rTMS in severe stroke: safety, cortical excitability, and relationship with transcallosal motor fibers. NeuroRehabilitation. 2015;36(1):51–9. https://doi.org/10.3233/NRE-141191.PubMedGoogle Scholar
  22. 22.
    O’Shea J, Boudrias MH, Stagg CJ, Bachtiar V, Kischka U, Blicher JU, et al. Predicting behavioural response to TDCS in chronic motor stroke. NeuroImage. 2014;85(Pt 3):924–33. https://doi.org/10.1016/j.neuroimage.2013.05.096.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex. 2012;22(11):2662–71. https://doi.org/10.1093/cercor/bhr344.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang CC, Wang CP, Tsai PY, Hsieh CY, Chan RC, Yeh SC. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery. Restor Neurol Neurosci. 2014;32(6):825–35. https://doi.org/10.3233/RNN-140410.PubMedGoogle Scholar
  25. 25.
    Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5. https://doi.org/10.1097/01.wnr.0000177010.44602.5e.PubMedCrossRefGoogle Scholar
  26. 26.
    Kwon TG, Kim YH, Chang WH, Bang OY, Shin YI. Effective method of combining rTMS and motor training in stroke patients. Restor Neurol Neurosci. 2014;32(2):223–32. https://doi.org/10.3233/RNN-130313.PubMedGoogle Scholar
  27. 27.
    Cho JY, Lee A, Kim MS, Park E, Chang WH, Shin YI, et al. Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients. Restor Neurol Neurosci. 2017;35(1):105–14. https://doi.org/10.3233/RNN-160669.PubMedGoogle Scholar
  28. 28.
    Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.PubMedGoogle Scholar
  29. 29.
    Carey MR. Synaptic mechanisms of sensorimotor learning in the cerebellum. Curr Opin Neurobiol. 2011;21(4):609–15. https://doi.org/10.1016/j.conb.2011.06.011.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheron G, Dan B, Marquez-Ruiz J. Translational approach to behavioral learning: lessons from cerebellar plasticity. Neural Plast. 2013;2013:853654. https://doi.org/10.1155/2013/853654.
  31. 31.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54. https://doi.org/10.1016/j.tics.2013.03.003.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Manto MU. On the cerebello-cerebral interactions. The Cerebellum. 2006;5:286–8. https://doi.org/10.1080/14734220601003955.
  33. 33.
    Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70. https://doi.org/10.1093/cercor/bhq246.PubMedCrossRefGoogle Scholar
  34. 34.
    Theoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306(1-2):29–32. https://doi.org/10.1016/S0304-3940(01)01860-2.PubMedCrossRefGoogle Scholar
  35. 35.
    Baron JC, Bousser MG, Comar D, Castaigne P. “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc. 1981;105:459–61.PubMedGoogle Scholar
  36. 36.
    Szilagyi G, Vas A, Kerenyi L, Nagy Z, Csiba L, Gulyas B. Correlation between crossed cerebellar diaschisis and clinical neurological scales. Acta Neurol Scand. 2012;125(6):373–81. https://doi.org/10.1111/j.1600-0404.2011.01576.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U A. 2002;99(11):7699–704. https://doi.org/10.1073/pnas.112012499.CrossRefGoogle Scholar
  38. 38.
    Kamouchi M, Fujishima M, Saku Y, Ibayashi S, Iida M. Crossed cerebellar hypoperfusion in hyperacute ischemic stroke. J Neurol Sci. 2004;225(1-2):65–9. https://doi.org/10.1016/j.jns.2004.07.004.PubMedCrossRefGoogle Scholar
  39. 39.
    Miura H, Nagata K, Hirata Y, Satoh Y, Watahiki Y, Hatazawa J. Evolution of crossed cerebellar diaschisis in middle cerebral artery infarction. J Neuroimaging. 1994;4(2):91–6. https://doi.org/10.1111/jon19944291.PubMedCrossRefGoogle Scholar
  40. 40.
    Takasawa M, Watanabe M, Yamamoto S, Hoshi T, Sasaki T, Hashikawa K, et al. Prognostic value of subacute crossed cerebellar diaschisis: single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am J Neuroradiol. 2002;23(2):189–93.PubMedGoogle Scholar
  41. 41.
    Bindman LJ, Lippold OC, Redfearn JW. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196(4854):584–5. https://doi.org/10.1038/196584a0.PubMedCrossRefGoogle Scholar
  42. 42.
    Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495–504. https://doi.org/10.1111/j.1460-9568.2005.04233.x.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Schulz R, Frey BM, Koch P, Zimerman M, Bönstrup M, Feldheim J, et al. Cortico-cerebellar structural connectivity is related to residual motor output in chronic stroke. Cereb Cortex. 2017;27:635–45. https://doi.org/10.1093/cercor/bhv251.
  44. 44.
    Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13. https://doi.org/10.1002/ana.410370603.PubMedCrossRefGoogle Scholar
  45. 45.
    Rothwell JC. Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci. 2011;30(5):906–15. https://doi.org/10.1016/j.humov.2010.07.007.PubMedCrossRefGoogle Scholar
  46. 46.
    Kikuchi S, Mochizuki H, Moriya A, Nakatani-Enomoto S, Nakamura K, Hanajima R, et al. Ataxic hemiparesis: neurophysiological analysis by cerebellar transcranial magnetic stimulation. Cerebellum. 2012;11(1):259–63. https://doi.org/10.1007/s12311-011-0303-0.PubMedCrossRefGoogle Scholar
  47. 47.
    Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997;104(5):453–8. https://doi.org/10.1016/S0168-5597(97)00051-8.PubMedCrossRefGoogle Scholar
  48. 48.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22. https://doi.org/10.1523/JNEUROSCI.2184-09.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90. https://doi.org/10.1097/01.wco.0000200544.29915.cc.PubMedCrossRefGoogle Scholar
  50. 50.
    Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4. https://doi.org/10.1126/science.272.5269.1791.PubMedCrossRefGoogle Scholar
  51. 51.
    Askim T, Indredavik B, Vangberg T, Haberg A. Motor network changes associated with successful motor skill relearning after acute ischemic stroke: a longitudinal functional magnetic resonance imaging study. Neurorehabil Neural Repair. 2009;23(3):295–304. https://doi.org/10.1177/1545968308322840.PubMedCrossRefGoogle Scholar
  52. 52.
    Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–7. https://doi.org/10.1016/j.conb.2005.03.004.PubMedCrossRefGoogle Scholar
  53. 53.
    Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage. 2013;67:283–97. https://doi.org/10.1016/j.neuroimage.2012.11.020.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cantarero G, Spampinato D, Reis J, Ajagbe L, Thompson T, Kulkarni K, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90. https://doi.org/10.1523/JNEUROSCI.2885-14.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wessel MJ, Zimerman M, Timmermann JE, Heise KF, Gerloff C, Hummel FC. Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb Cortex. 2016;26(4):1660–7. https://doi.org/10.1093/cercor/bhu335.PubMedCrossRefGoogle Scholar
  56. 56.
    Di Lazzaro V, Restuccia D, Molinari M, Leggio MG, Nardone R, Fogli D, et al. Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 1994;57(1):108–10. https://doi.org/10.1136/jnnp.57.1.108.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liepert J, Kucinski T, Tuscher O, Pawlas F, Baumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35(11):2484–8. https://doi.org/10.1161/01.STR.0000143152.45801.ca.PubMedCrossRefGoogle Scholar
  58. 58.
    De Vico FF, Clausi S, Leggio M, Chavez M, Valencia M, Maglione AG, et al. Interhemispheric connectivity characterizes cortical reorganization in motor-related networks after cerebellar lesions. Cerebellum. 2017;16:358–75. https://doi.org/10.1007/s12311-016-0811-z.
  59. 59.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum Lond Engl. 2014;13(1):151–77. https://doi.org/10.1007/s12311-013-0511-x.CrossRefGoogle Scholar
  60. 60.
    Sui R, Zhang L. Cerebellar dysfunction may play an important role in vascular dementia. Med Hypotheses. 2012;78:162–5. https://doi.org/10.1016/j.mehy.2011.10.017.
  61. 61.
    Chida K, Ogasawara K, Aso K, Suga Y, Kobayashi M, Yoshida K, et al. Postcarotid endarterectomy improvement in cognition is associated with resolution of crossed cerebellar hypoperfusion and increase in 123I-iomazenil uptake in the cerebral cortex: a SPECT study. Cerebrovasc Dis Basel Switz. 2010;29(4):343–51. https://doi.org/10.1159/000278930.CrossRefGoogle Scholar
  62. 62.
    Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani A, et al. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. NeuroImage. 2017;158:48–57. https://doi.org/10.1016/j.neuroimage.2017.06.048.PubMedCrossRefGoogle Scholar
  63. 63.
    Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60. https://doi.org/10.1002/ana.20604.PubMedCrossRefGoogle Scholar
  64. 64.
    Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. J Neurosci. 2011;31(6):2305–12. https://doi.org/10.1523/JNEUROSCI.4358-10.2011.PubMedCrossRefGoogle Scholar
  65. 65.
    van Dun K, Bodranghien F, Manto M, Marien P. Targeting the cerebellum by noninvasive neurostimulation: a review. Cerebellum. 2017;16(3):695–741. https://doi.org/10.1007/s12311-016-0840-7.PubMedCrossRefGoogle Scholar
  66. 66.
    Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. https://doi.org/10.1016/j.neuron.2010.03.035.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317. https://doi.org/10.3389/fnhum.2013.00317.
  68. 68.
    Valero-Cabre A, Payne BR, Pascual-Leone A. Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res. 2007;176(4):603–15. https://doi.org/10.1007/s00221-006-0639-8.PubMedCrossRefGoogle Scholar
  69. 69.
    Huang YZ, Chen RS, Rothwell JC, Wen HY. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118(5):1028–32. https://doi.org/10.1016/j.clinph.2007.01.021.PubMedCrossRefGoogle Scholar
  70. 70.
    Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, et al. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct. 2017;222(6):2891–906. https://doi.org/10.1007/s00429-016-1355-1.PubMedCrossRefGoogle Scholar
  71. 71.
    Morellini N, Grehl S, Tang A, Rodger J, Mariani J, Lohof AM, et al. What does low-intensity rTMS do to the cerebellum? Cerebellum. 2015;14(1):23–6. https://doi.org/10.1007/s12311-014-0617-9.PubMedCrossRefGoogle Scholar
  72. 72.
    Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119(11):2559–69. https://doi.org/10.1016/j.clinph.2008.08.008.PubMedCrossRefGoogle Scholar
  73. 73.
    Doeltgen SH, Young J, Bradnam LV. Anodal direct current stimulation of the cerebellum reduces cerebellar brain inhibition but does not influence afferent input from the hand or face in healthy adults. Cerebellum. 2016;15(4):466–74. https://doi.org/10.1007/s12311-015-0713-5.PubMedCrossRefGoogle Scholar
  74. 74.
    Naro A, Leo A, Russo M, Cannavo A, Milardi D, Bramanti P, et al. Does transcranial alternating current stimulation induce cerebellum plasticity? Feasibility, safety and efficacy of a novel electrophysiological approach. Brain Stimul. 2016;9(3):388–95. https://doi.org/10.1016/j.brs.2016.02.005.PubMedCrossRefGoogle Scholar
  75. 75.
    Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9. https://doi.org/10.1016/j.brs.2009.10.001.PubMedCrossRefGoogle Scholar
  76. 76.
    Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376(3):188–93. https://doi.org/10.1016/j.neulet.2004.11.053.PubMedCrossRefGoogle Scholar
  77. 77.
    Fierro B, Giglia G, Palermo A, Pecoraro C, Scalia S, Brighina F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp Brain Res. 2007;176(3):440–7. https://doi.org/10.1007/s00221-006-0628-y.PubMedCrossRefGoogle Scholar
  78. 78.
    Langguth B, Eichhammer P, Zowe M, Landgrebe M, Binder H, Sand P, et al. Modulating cerebello-thalamocortical pathways by neuronavigated cerebellar repetitive transcranial stimulation (rTMS). Neurophysiol Clin. 2008;38(5):289–95. https://doi.org/10.1016/j.neucli.2008.08.003.PubMedCrossRefGoogle Scholar
  79. 79.
    Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci. 2004;16(9):1605–11. https://doi.org/10.1162/0898929042568488.PubMedCrossRefGoogle Scholar
  80. 80.
    Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590(4):887–97. https://doi.org/10.1113/jphysiol.2011.218537.PubMedCrossRefGoogle Scholar
  81. 81.
    Li Voti P, Conte A, Rocchi L, Bologna M, Khan N, Leodori G, et al. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans. Eur J Neurosci. 2014;39(1):124–31. https://doi.org/10.1111/ejn.12391.PubMedCrossRefGoogle Scholar
  82. 82.
    Sebastian R, Saxena S, Tsapkini K, Faria AV, Long C, Wright A, et al. Cerebellar tDCS: a novel approach to augment language treatment post-stroke. Front Hum Neurosci. 2017;10:695. https://doi.org/10.3389/fnhum.2016.00695.
  83. 83.
    Kim WS, Jung SH, Oh MK, Min YS, Lim JY, Paik NJ. Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: a pilot study. J Rehabil Med. 2014;46(5):418–23. https://doi.org/10.2340/16501977-1802.PubMedCrossRefGoogle Scholar
  84. 84.
    Bonni S, Ponzo V, Caltagirone C, Koch G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct Neurol. 2014;29(1):41–5. https://doi.org/10.11138/FNeur/2014.29.1.041.
  85. 85.
    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(1):175–90. https://doi.org/10.1113/jphysiol.2003.055772.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5(6):436–52. https://doi.org/10.1016/0014-4886(62)90056-0.PubMedCrossRefGoogle Scholar
  87. 87.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92. https://doi.org/10.1007/s12311-012-0436-9.PubMedCrossRefGoogle Scholar
  89. 89.
    Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94. https://doi.org/10.1016/j.brs.2012.03.006.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2017. https://doi.org/10.1007/s12311-017-0877-2.
  91. 91.
    Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurother. 2012;12(11):1275–7. https://doi.org/10.1586/ern.12.121.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015;14(2):171–4. https://doi.org/10.1007/s12311-014-0607-y.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14(1):27–30. https://doi.org/10.1007/s12311-014-0599-7.PubMedCrossRefGoogle Scholar
  94. 94.
    Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22(1):83–97. https://doi.org/10.1177/1073858414559409.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    van Dun K, Bodranghien FC, Marien P, Manto MU. tDCS of the cerebellum: where do we stand in 2016? Technical issues and critical review of the literature. Front Hum Neurosci. 2016;10:199. https://doi.org/10.3389/fnhum.2016.00199.
  96. 96.
    Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105. https://doi.org/10.1016/j.brs.2007.10.001.PubMedCrossRefGoogle Scholar
  97. 97.
    Moliadze V, Antal A, Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol. 2010;588(24):4891–904. https://doi.org/10.1113/jphysiol.2010.196998.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24(3):333–9. https://doi.org/10.1016/j.cub.2013.12.041.PubMedCrossRefGoogle Scholar
  99. 99.
    Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5(11):e13766. https://doi.org/10.1371/journal.pone.0013766.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Polania R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012;22(14):1314–8. https://doi.org/10.1016/j.cub.2012.05.021.PubMedCrossRefGoogle Scholar
  101. 101.
    Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016;2016:3616807. http://doi.org/10.1155/2016/3616807.
  102. 102.
    Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–99. https://doi.org/10.1016/j.neuron.2007.06.026.PubMedCrossRefGoogle Scholar
  103. 103.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39. https://doi.org/10.1016/j.clinph.2009.08.016.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6. https://doi.org/10.1016/j.neuron.2004.12.033.PubMedCrossRefGoogle Scholar
  105. 105.
    Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004;371(2-3):185–9. https://doi.org/10.1016/j.neulet.2004.08.067.PubMedCrossRefGoogle Scholar
  106. 106.
    Koch G. Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol. 2010;25(3):159–63.PubMedGoogle Scholar
  107. 107.
    Minks E, Kopickova M, Marecek R, Streitova H, Bares M. Transcranial magnetic stimulation of the cerebellum. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):133–9. https://doi.org/10.5507/bp.2010.020.PubMedCrossRefGoogle Scholar
  108. 108.
    Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80. https://doi.org/10.1007/BF00279670.PubMedCrossRefGoogle Scholar
  109. 109.
    Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin. 2016;12:765–75. https://doi.org/10.1016/j.nicl.2016.10.013.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Machado AG, Cooperrider J, Furmaga HT, Baker KB, Park HJ, Chen Z, et al. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery. 2013;73(2):344–53. https://doi.org/10.1227/01.neu.0000430766.80102.ac.
  111. 111.
    Jorgensen HS. The Copenhagen Stroke Study experience. J Stroke Cerebrovasc Dis. 1996;6(1):5–16. https://doi.org/10.1016/S1052-3057(96)80020-6.PubMedCrossRefGoogle Scholar
  112. 112.
    Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: pathophysiology and rehabilitation strategies. Neurophysiol Clin. 2015;45(4-5):335–55. https://doi.org/10.1016/j.neucli.2015.09.005.PubMedCrossRefGoogle Scholar
  113. 113.
    Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art. Neurorehabil Neural Repair. 2015;30:71–82. https://doi.org/10.1177/1545968315586464.
  114. 114.
    Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7. https://doi.org/10.1152/jn.00645.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Fernandez L, Albein-Urios N, Kirkovski M, McGinley JL, Murphy AT, Hyde C, et al. Cathodal transcranial direct current stimulation (tDCS) to the right cerebellar hemisphere affects motor adaptation during gait. Cerebellum. 2017;16(1):168–77. https://doi.org/10.1007/s12311-016-0788-7.PubMedCrossRefGoogle Scholar
  116. 116.
    Naro A, Milardi D, Cacciola A, Russo M, Sciarrone F, La Rosa G, et al. What do we know about the influence of the cerebellum on walking ability? Promising findings from transcranial alternating current stimulation. Cerebellum. 2017;16(4):859–67. https://doi.org/10.1007/s12311-017-0859-4.PubMedCrossRefGoogle Scholar
  117. 117.
    Nijsse B, Visser-Meily JM, van Mierlo ML, Post MW, de Kort PL, van Heugten CM. Temporal evolution of Poststroke cognitive impairment using the Montreal Cognitive Assessment. Stroke. 2017;48(1):98–104. https://doi.org/10.1161/STROKEAHA.116.014168.PubMedCrossRefGoogle Scholar
  118. 118.
    Dichgans M, Leys D. Vascular cognitive impairment. Circ Res. 2017;120(3):573–91. https://doi.org/10.1161/CIRCRESAHA.116.308426.PubMedCrossRefGoogle Scholar
  119. 119.
    Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PM, Teuschl Y, et al. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015;22(2):229–238, e13-6https://doi.org/10.1111/ene.12626.PubMedCrossRefGoogle Scholar
  120. 120.
    Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15(3):369–91. https://doi.org/10.1007/s12311-015-0687-3.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79. https://doi.org/10.1093/brain/121.4.561.PubMedCrossRefGoogle Scholar
  122. 122.
    Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99. https://doi.org/10.1080/02699931.2011.619520.PubMedCrossRefGoogle Scholar
  123. 123.
    Turkeltaub PE, Swears MK, D’Mello AM, Stoodley CJ. Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restor Neurol Neurosci. 2016;34(4):491–505. https://doi.org/10.3233/RNN-150633.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53. https://doi.org/10.1016/j.brs.2012.10.001.PubMedCrossRefGoogle Scholar
  125. 125.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97. https://doi.org/10.1162/jocn.2008.20112.PubMedCrossRefGoogle Scholar
  126. 126.
    Macher K, Bohringer A, Villringer A, Pleger B. Cerebellar-parietal connections underpin phonological storage. J Neurosci. 2014;34(14):5029–37. https://doi.org/10.1523/JNEUROSCI.0106-14.2014.PubMedCrossRefGoogle Scholar
  127. 127.
    Grimaldi G, Oulad Ben Taib N, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8:9. https://doi.org/10.3389/fnsys.2014.00009.
  128. 128.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22. https://doi.org/10.1038/nrn1953.PubMedCrossRefGoogle Scholar
  129. 129.
    Manto M, Marien P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(1):2. https://doi.org/10.1186/s40673-015-0023-1.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.PubMedCrossRefGoogle Scholar
  131. 131.
    Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4(4):290–4. https://doi.org/10.1080/14734220500348584.PubMedCrossRefGoogle Scholar
  132. 132.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMedGoogle Scholar
  133. 133.
    Jurgens U. The efferent and afferent connections of the supplementary motor area. Brain Res. 1984;300(1):63–81. https://doi.org/10.1016/0006-8993(84)91341-6.PubMedCrossRefGoogle Scholar
  134. 134.
    Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659–73. https://doi.org/10.1523/JNEUROSCI.3134-07.2007.PubMedCrossRefGoogle Scholar
  135. 135.
    Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83. https://doi.org/10.1093/brain/101.2.251.PubMedCrossRefGoogle Scholar
  136. 136.
    Hashimoto M, Takahara D, Hirata Y, Inoue K, Miyachi S, Nambu A, et al. Motor and non-motor projections from the cerebellum to rostrocaudally distinct sectors of the dorsal premotor cortex in macaques. Eur J Neurosci. 2010;31(8):1402–13. https://doi.org/10.1111/j.1460-9568.2010.07151.x.PubMedCrossRefGoogle Scholar
  137. 137.
    Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66. https://doi.org/10.1016/S0079-6123(08)63386-5.PubMedCrossRefGoogle Scholar
  138. 138.
    Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to “AIP”. Cereb Cortex. 2005;15(7):913–20. https://doi.org/10.1093/cercor/bhh190.PubMedCrossRefGoogle Scholar
  139. 139.
    Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28. https://doi.org/10.1093/cercor/bhp091.PubMedCrossRefGoogle Scholar
  140. 140.
    Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22(4):451–7.PubMedGoogle Scholar
  141. 141.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2(2):133–46. https://doi.org/10.1002/jnr.490020204.PubMedCrossRefGoogle Scholar
  142. 142.
    Zimerman M, Nitsch M, Giraux P, Gerloff C, Cohen LG, Hummel FC. Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann Neurol. 2013;73(1):10–5. https://doi.org/10.1002/ana.23761.PubMedCrossRefGoogle Scholar
  143. 143.
    Samaei A, Ehsani F, Zoghi M, Hafez Yosephi M, Jaberzadeh S. Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: a randomized double-blind sham-controlled study. Eur J Neurosci. 2017;45(9):1177–85. https://doi.org/10.1111/ejn.13559.PubMedCrossRefGoogle Scholar
  144. 144.
    Ehsani F, Bakhtiary AH, Jaberzadeh S, Talimkhani A, Hajihasani A. Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: a randomized double-blind sham-controlled study. Neurosci Res. 2016;112:10–9. https://doi.org/10.1016/j.neures.2016.06.003.PubMedCrossRefGoogle Scholar
  145. 145.
    Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30. https://doi.org/10.1007/s00221-005-2334-6.PubMedCrossRefGoogle Scholar
  146. 146.
    Miler JA, Meron D, Baldwin DS, Garner M. The effect of prefrontal transcranial direct current stimulation on attention network function in healthy volunteers. Neuromodulation. 2017. https://doi.org/10.1111/ner.12629.
  147. 147.
    Hulst T, John L, Kuper M, van der Geest JN, Goricke SL, Donchin O, et al. Cerebellar patients do not benefit from cerebellar or M1 transcranial direct current stimulation during force field reaching adaptation. J Neurophysiol. 2017;118(2):732–48. https://doi.org/10.1152/jn.00808.2016.PubMedCrossRefGoogle Scholar
  148. 148.
    Jalali R, Miall RC, Galea JM. No consistent effect of cerebellar transcranial direct current stimulation (tDCS) on visuomotor adaptation. J Neurophysiol. 2017;118(2):655–65. https://doi.org/10.1152/jn.00896.2016.PubMedCrossRefGoogle Scholar
  149. 149.
    Spielmann K, van der Vliet R, van de Sandt-Koenderman WM, Frens MA, Ribbers GM, Selles RW, et al. Cerebellar cathodal transcranial direct stimulation and performance on a verb generation task: a replication study. Neural Plast. 2017;2017:1254615. https://doi.org/10.1155/2017/1254615.
  150. 150.
    Verhage MC, Avila EO, Frens MA, Donchin O, van der Geest JN. Cerebellar tDCS does not enhance performance in an implicit categorization learning task. Front Psychol. 2017;8:476. https://doi.org/10.3389/fpsyg.2017.00476.
  151. 151.
    Cooper IS. Twenty-five years of experience with physiological neurosurgery. Neurosurgery. 1981;9(2):190–200. https://doi.org/10.1227/00006123-198108000-00017.PubMedCrossRefGoogle Scholar
  152. 152.
    Oulad Ben Taib N, Manto M. Trains of epidural DC stimulation of the cerebellum tune corticomotor excitability. Neural Plast. 2013;2013:613197. https://doi.org/10.1155/2013/613197.
  153. 153.
    Teixeira MJ, Cury RG, Galhardoni R, Barboza VR, Brunoni AR, Alho E, et al. Deep brain stimulation of the dentate nucleus improves cerebellar ataxia after cerebellar stroke. Neurology. 2015;85(23):2075–6. https://doi.org/10.1212/WNL.0000000000002204.PubMedCrossRefGoogle Scholar

via Non-invasive Cerebellar Stimulation: a Promising Approach for Stroke Recovery? | SpringerLink

, , , , ,

Leave a comment

[VIDEO] tDCS – Transcranial direct current stimulation CIDIMU Group – YouTube

Published on Nov 24, 2017

 

, , , ,

Leave a comment

[Abstract] Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment

First published: 

Abstract

Objectives

To evaluate effects of somatosensory stimulation in the form of repetitive peripheral nerve sensory stimulation (RPSS) in combination with transcranial direct current stimulation (tDCS), tDCS alone, RPSS alone, or sham RPSS + tDCS as add-on interventions to training of wrist extension with functional electrical stimulation (FES), in chronic stroke patients with moderate to severe upper limb impairments in a crossover design. We hypothesized that the combination of RPSS and tDCS would enhance the effects of FES on active range of movement (ROM) of the paretic wrist to a greater extent than RPSS alone, tDCS alone or sham RPSS + tDCS.

Materials and Methods

The primary outcome was the active ROM of extension of the paretic wrist. Secondary outcomes were ROM of wrist flexion, grasp, and pinch strength of the paretic and nonparetic upper limbs, and ROM of wrist extension of the nonparetic wrist. Outcomes were blindly evaluated before and after each intervention. Analysis of variance with repeated measures with factors “session” and “time” was performed.

Results

After screening 2499 subjects, 22 were included. Data from 20 subjects were analyzed. There were significant effects of “time” for grasp force of the paretic limb and for ROM of wrist extension of the nonparetic limb, but no effects of “session” or interaction “session x time.” There were no significant effects of “session,” “time,” or interaction “session x time” regarding other outcomes.

Conclusions

Single sessions of PSS + tDCS, tDCS alone, or RPSS alone did not improve training effects in chronic stroke patients with moderate to severe impairment.

Source: Combined Brain and Peripheral Nerve Stimulation in Chronic Stroke Patients With Moderate to Severe Motor Impairment – Menezes – 2017 – Neuromodulation: Technology at the Neural Interface – Wiley Online Library

, , , , , , , , , , ,

Leave a comment

[ARTICLE] Plasticity induced by non-invasive transcranial brain stimulation: A position paper – Full Text

Abstract

Several techniques and protocols of non-invasive transcranial brain stimulation (NIBS), including transcranial magnetic and electrical stimuli, have been developed in the past decades. Non-invasive transcranial brain stimulation may modulate cortical excitability outlasting the period of non-invasive transcranial brain stimulation itself from several minutes to more than one hour. Quite a few lines of evidence, including pharmacological, physiological and behavioral studies in humans and animals, suggest that the effects of non-invasive transcranial brain stimulation are produced through effects on synaptic plasticity. However, there is still a need for more direct and conclusive evidence. The fragility and variability of the effects are the major challenges that non-invasive transcranial brain stimulation currently faces. A variety of factors, including biological variation, measurement reproducibility and the neuronal state of the stimulated area, which can be affected by factors such as past and present physical activity, may influence the response to non-invasive transcranial brain stimulation. Work is ongoing to test whether the reliability and consistency of non-invasive transcranial brain stimulation can be improved by controlling or monitoring neuronal state and by optimizing the protocol and timing of stimulation.

1. Introduction

Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are the most commonly used methods of non-invasive transcranial brain stimulation that has been abbreviated by previous authors as either as NIBS or NTBS. Here we use NIBS since it seems to be the most common term at the present time. When it was first introduced in 1985, TMS was employed primarily as a tool to investigate the integrity and function of the human corticospinal system (Barker et al., 1985). Single pulse stimulation was used to elicit motor evoked potentials (MEPs) that were easily evoked and measured in contralateral muscles (Rothwell et al., 1999). The robustness and repeatability of measures of conduction time, stimulation threshold and “hot spot” location allowed TMS to be developed into a standard tool in clinical neurophysiology.

As we review below, a number of NIBS protocols can lead to effects on brain excitability that outlast the period of stimulation. These may reflect basic synaptic mechanisms involving long-term potentiation (LTP)- or long-term depression (LTD)-like plasticity, and because of this there has been great interest in using the methods as therapeutic interventions in neurological and psychiatric diseases. Furthermore, recently they are more frequently applied to modify memory processes and to enhance cognitive function in healthy individuals. However, apart from success in treating some patients with depression (Lefaucheur et al., 2014; Padberg et al., 2002, 1999), there is little consensus that they have improved outcomes in a clinically meaningful fashion in any other conditions. The reason for this is probably linked to the reason why many other protocols failed to reach routine clinical neurophysiology: they are too variable both within and between individuals to make them practically useful in a health service setting (Goldsworthy et al., 2014; Hamada et al., 2013; Lopez-Alonso et al., 2014, 2015).

Below we review the evidence for the mechanisms underlying the “neuroplastic” effects of NIBS, and then consider the problems in reproducibility and offer some potential ways forward in research. […]

Continue —> Plasticity induced by non-invasive transcranial brain stimulation: A position paper – ScienceDirect

There are three major lines of evidence supporting NIBS produces effects…

Fig. 1. There are three major lines of evidence supporting NIBS produces effects through mechanisms of synaptic plasticity: (1) Drugs that modulate the function of critical receptors/channels for plasticity, e.g. Ca2+ channels and NMDA receptors, alter the effect of NIBS; (2) NIBS mainly changes I-waves rather than the D-wave in the epidural recording of descending volleys evoked by TMS, suggesting the effect of NIBS occurs trans-synaptically; and (3) NIBS interacts between protocols and with motor practice and cognitive learning processes, suggesting the effect of NIBS is involves in plasticity-related motor and psychological processes.

, , , , , , ,

Leave a comment

[Case Study] Transcranial direct current stimulation (tDCS) combined with blindsight rehabilitation for the treatment of homonymous hemianopia: a report of two-cases – Full Text PDF

Abstract.

[Purpose] Homonymous hemianopia is one of the most common symptoms following neurologic damage leading to impairments of functional abilities and activities of daily living. There are two main types of restorative
rehabilitation in hemianopia: “border training” which involves exercising vision at the edge of the damaged visual field, and “blindsight training,” which is based on exercising the unconscious perceptual functions deep
inside the blind hemifield. Only border effects have been shown to be facilitated by transcranial direct current stimulation (tDCS). This pilot study represents the first attempt to associate the modulatory effects of tDCS over
the parieto-occipital cortex to blindsight treatment in the rehabilitation of the homonymous hemianopia.

[Subjects and Methods] Patients TA and MR both had chronic hemianopia. TA underwent blindsight treatment which was combined with tDCS followed by blindsight training alone. MR underwent the two training rounds in reverse order.

[Results] The patients showed better scores in clinical-instrumental, functional, and ecological assessments after tDCS combined with blindsight rehabilitation rather than rehabilitation alone. [Conclusion] In this two-case report parietal-occipital tDCS modulate the effects induced by blindsight treatment on hemianopia.

[Conclusion] In this two-case report parietal-occipital tDCS modulate the effects induced by blindsight treatment on hemianopia.

Full text  PDF

, , , , , ,

Leave a comment

[ARTICLE] Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials – Full Text

Abstract

Background

Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving capacity in activities of daily living (ADL) and upper limb function after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types.

Methods

We performed a systematic review of randomised trials using network meta-analysis (NMA), searching the following databases until 5 July 2016: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of ADL capacity, versus control, after stroke. PROSPERO ID: CRD42016042055.

Results

We included 26 studies with 754 participants. Our NMA showed evidence of an effect of cathodal tDCS in improving our primary outcome, that of ADL capacity (standardized mean difference, SMD = 0.42; 95% CI 0.14 to 0.70). tDCS did not improve our secondary outcome, that of arm function, measured by the Fugl-Meyer upper extremity assessment (FM-UE). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events.

Conclusion

Comparing different forms of tDCS shows that cathodal tDCS is the most promising treatment option to improve ADL capacity in people with stroke.

Background

An emerging approach for enhancing neural plasticity and hence rehabilitation outcomes after stroke is non-invasive brain stimulation (NIBS). Several stimulation procedures are available, such as repetitive transcranial magnetic stimulation (rTMS) [1], transcranial direct current stimulation (tDCS) [234], transcranial alternating current stimulation (tACS) [5], and transcranial pulsed ultrasound (TPU) [6]. In recent years a considerable evidence base for NIBS has emerged, especially for rTMS and tDCS.

tDCS is relatively inexpensive, easy to administer and portable, hence constituting an ideal adjuvant therapy during stroke rehabilitation. It works by applying a weak and constant direct current to the brain and has the ability to either enhance or suppress cortical excitability, with effect lasting up to several hours after the stimulation [789]. Hypothetically, this technique makes tDCS a potentially useful tool to modulate neuronal inhibitory and excitatory networks of the affected and the non-affected hemisphere post stroke to enhance, for example, upper limb motor recovery [1011]. Three different stimulation types can be distinguished.

  • In anodal stimulation, the anodal electrode (+) usually is placed over the lesioned brain area and the reference electrode over the contralateral orbit [12]. This leads to subthreshold depolarization, hence promoting neural excitation [3].

  • In cathodal stimulation, the cathode (−) usually is placed over the non-lesioned brain area and the reference electrode over the contralateral orbit [12], leading to subthreshold polarization and hence inhibiting neural activity [3].

  • Dual tDCS means the simultaneous application of anodal and cathodal stimulation [13].

However, the literature does not provide clear guidelines, not only regarding the tDCS type, but also regarding the electrode configuration [14], the amount of current applied and the duration of tDCS, or the question if tDCS should be applied as a standalone therapy or in combination with other treatments, like robot-assisted therapy [15].

Rationale

There is so far conflicting evidence from systematic reviews of randomised controlled trials on the effectiveness of different tDCS approaches after stroke. For example, over the past two decades more than 30 randomised clinical trials have investigated the effects of different tDCS stimulation techniques for stroke, and there are 55 ongoing trials [16]. However, the resulting network of evidence from randomised controlled trials (RCTs) investigating different types of tDCS (i.e., anodal, cathodal or dual) as well as their comparators like sham tDCS, physical rehabilitation or pharmacological agents has not yet been analyzed in a systematic review so far.

A network meta-analysis (NMA), also known as multiple treatment comparison meta-analysis or mixed treatment comparison analysis, allows for a quantitative synthesis of the evidence network. This is made possible by combining direct evidence from head-to-head comparisons of three or more interventions within randomised trials with indirect evidence across randomised trials on the basis of a common comparator [17181920]. Network meta-analysis has many advantages over traditional pairwise meta-analysis, such as visualizing and facilitating the interpretation of the wider picture of the evidence and improving understanding of the relative merits of these different types of neuromodulation when compared to sham tDCS and/or another comparator such as exercise therapy and/or pharmacological agents [2122]. By borrowing strength from indirect evidence to gain certainty about all treatment comparisons, network meta-analysis allows comparative effects that have not been investigated directly in randomised clinical trials to be estimated and ranked [2223].

Objective

The aim of our systematic review with NMA was to give an overview of the evidence network of randomised controlled trials of tDCS (anodal, cathodal, or dual) for improving capacity in activities of daily living (ADL) and upper limb function after stroke, as well as its safety, and to estimate and rank the relative effectiveness of the different stimulation types, while taking into account potentially important treatment effect modifiers.

Continue —>  Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials | Journal of NeuroEngineering and Rehabilitation | Full Text

 

Fig. 1 Study flow diagram

, , , , , ,

Leave a comment

[Abstract] Transcranial direct current stimulation over multiple days enhances motor performance of a grip task

Abstract

Background

Recovery of handgrip is critical after stroke since it is positively related to upper limb function. To boost motor recovery, transcranial direct current stimulation (tDCS) is a promising, non-invasive brain stimulation technique for the rehabilitation of persons with stroke. When applied over the primary motor cortex (M1), tDCS has been shown to modulate neural processes involved in motor learning. However, no studies have looked at the impact of tDCS on the learning of a grip task in both stroke and healthy individuals.

Objective

To assess the use of tDCS over multiple days to promote motor learning of a grip task using a learning paradigm involving a speed-accuracy tradeoff in healthy individuals.

Methods

In a double-blinded experiment, 30 right-handed subjects (mean age: 22.1 ± 3.3 years) participated in the study and were randomly assigned to an anodal (n = 15) or sham (n = 15) stimulation group. First, subjects performed the grip task with their dominant hand while following the pace of a metronome. Afterwards, subjects trained on the task, at their own pace, over 5 consecutive days while receiving sham or anodal tDCS over M1. After training, subjects performed de novo the metronome-assisted task. The change in performance between the pre and post metronome-assisted task was used to assess the impact of the grip task and tDCS on learning.

Results

Anodal tDCS over M1 had a significant effect on the speed-accuracy tradeoff function. The anodal tDCS group showed significantly greater improvement in performance (39.28 ± 15.92%) than the sham tDCS group (24.06 ± 16.35%) on the metronome-assisted task, t(28) = 2.583, P = 0.015 (effect size d = 0.94).

Conclusions

Anodal tDCS is effective in promoting grip motor learning in healthy individuals. Further studies are warranted to test its potential use for the rehabilitation of fine motor skills in stroke patients.

Source: Transcranial direct current stimulation over multiple days enhances motor performance of a grip task – ScienceDirect

, , , , ,

Leave a comment

[Abstract] Polarity-independent effects of tDCS on paired associative stimulation-induced plasticity

Abstract

Background

Transcranial direct current stimulation (tDCS) can polarize the cortex of the human brain.

Objective

/Hypothesis: We sought to verify the hypothesis that posterior-anterior (PA) but not anterior-posterior (AP) tDCS of primary motor cortex (M1) produces cooperative effects with corticospinal plasticity induced by paired associative stimulation of the supplementary motor area (SMA) to M1 projection (PASSMA→M1) in a highly controlled experimental design.

Methods

Three experimental conditions were tested in a double-blinded, randomized crossover design in 15 healthy adults: Navigated PASSMA→M1 during PA-tDCS (35 cm2 electrodes, anode 3 cm posterior to M1 hand area, cathode over contralateral frontopolar cortex, 1 mA, 2 × 5 min) or AP-tDCS (reversed polarity), or sham-tDCS. Effects were analyzed over 120 min post-intervention by changes of motor evoked potential (MEP) amplitude in a hand muscle.

Results

There was no significant effect of tDCS on PASSMA→M1 induced plasticity in the repeated-measures ANOVA. However, post-hoc within-subject contrasts revealed a significant tDCS with PASSMA→M1 interaction. This was explained by PA-tDCS and AP-tDCS modifying the PASSMA→M1 effect into the same direction in 13/15 subjects (87%, p = 0.004 for deviation from equality). Sizes of the PA-tDCS and AP-tDCS effects were correlated (rs = 0.53, p = 0.044). A control experiment demonstrated that PA-tDCS and AP-tDCS alone (without PASSMA→M1) had no effect on MEP amplitude.

Conclusions

Data point to unidirectional tDCS effects on PASSMA→M1 induced plasticity irrespective of tDCS polarity, in contrast to our hypothesis. We propose that radial symmetry of cortical columns, gyral geometry of motor cortex, and cooperativity of plasticity induction can explain the findings.

Source: Polarity-independent effects of tDCS on paired associative stimulation-induced plasticity

, , , , , ,

Leave a comment

%d bloggers like this: