Posts Tagged Transcranial Direct Current Stimulation

[Abstract] Evaluating the effects of tDCS in stroke patients using functional outcomes: a systematic review

Background and purpose: Transcranial direct current stimulation (tDCS) has been extensively studied over the past 20 years to promote functional motor recovery after stroke. However, tDCS clinical relevance still needs to be determined. The present systematic review aims to determine whether tDCS applied to the primary motor cortex (M1) in stroke patients can have a positive effect on functional motor outcomes.

Materials and methods: Two databases (Medline & Scopus) were searched for randomized, double-blinded, sham-controlled trials pertaining to the use of M1 tDCS on cerebral stroke patients, and its effects on validated functional motor outcomes. When data were provided, effect sizes were calculated. PROSPERO registration number: CRD42018108157

Results: 46 studies (n = 1291 patients) met inclusion criteria. Overall study quality was good (7.69/10 on the PEDro scale). Over half (56.5%) the studies were on chronic stroke patients. There seemed to be a certain pattern of recurring parameters, but tDCS protocols still remain heterogeneous. Overall results were positive (71.7% of studies found that tDCS has positive results on functional motor outcomes). Effect-sizes ranged from 0 to 1.33. No severe adverse events were reported.

Conclusion: Despite heterogeneous stimulation parameters, outcomes and patient demographics, tDCS seems to be complementary to classical and novel rehabilitation approaches. With minimal adverse effects (if screening parameters are respected), none of which were serious, and a high potential to improve recovery when using optimal parameters (i.e.: 20 min of stimulation, at 2 mA with 25 or 35cm2 electrodes that are regularly humidified), tDCS could potentially be ready for clinical applications.

  • Implications for Rehabilitation
  • tDCS could potentially be ready for clinical application.

  • Evidence of very low to very high quality is available on the effectiveness of tDCS to improve motor control following stroke.

  • This should with caution be focused on the primary motor cortex.

via Evaluating the effects of tDCS in stroke patients using functional outcomes: a systematic review: Disability and Rehabilitation: Vol 0, No 0

, , , , ,

Leave a comment

[ARTICLE] Transcranial Direct Current Stimulation to Facilitate Lower Limb Recovery Following Stroke: Current Evidence and Future Directions – Full Text HTML

Abstract

Stroke remains a global leading cause of disability. Novel treatment approaches are required to alleviate impairment and promote greater functional recovery. One potential candidate is transcranial direct current stimulation (tDCS), which is thought to non-invasively promote neuroplasticity within the human cortex by transiently altering the resting membrane potential of cortical neurons. To date, much work involving tDCS has focused on upper limb recovery following stroke. However, lower limb rehabilitation is important for regaining mobility, balance, and independence and could equally benefit from tDCS. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of lower limb function following stroke. Preliminary evidence from both healthy adults and stroke survivors indicates that tDCS is a promising intervention to support recovery of lower limb function. Studies provide some indication of both behavioral and physiological changes in brain activity following tDCS. However, much work still remains to be performed to demonstrate the clinical potential of this neuromodulatory intervention. Future studies should consider treatment targets based on individual lesion characteristics, stage of recovery (acute vs. chronic), and residual white matter integrity while accounting for known determinants and biomarkers of tDCS response.

1. Introduction

Stroke is the second leading cause of death and third leading cause of adult disability globally [1]. With advancement in acute medical care, more people now survive stroke, but frequently require extensive rehabilitative therapy to reduce impairment and improve quality of life. For those that survive stroke, the damaging effects not only impact the individual and their family, but there is also increased burden on health unit resources and community services as the person leaves hospital, potentially requiring assistance to live in the community. Novel treatments that can enable restoration and enhance potential for stroke recovery are desperately needed and will have significant value for many aspects of stroke care.
True recovery from stroke impairment is underpinned by neuroplasticity. Neuroplasticity describes the brain’s ability to change in structure or function in order to help restore behavior following neural damage. Mechanisms of neuroplasticity are available throughout life but appear enhanced during critical periods of learning [2]. Across several animal studies, it has been shown that there is a period of heightened neuroplasticity that appears to open within several days following stroke [2,3,4] and correlates with rapid recovery [5]. In humans, the timing and duration of a similar critical period of heightened neuroplasticity are not clear, but it likely emerges early after stroke. Understanding the characteristics of a potential critical period of heightened neuroplasticity in humans is important for optimizing stroke rehabilitation and is the subject of current trials [6]. However, the importance of neuroplasticity for stroke recovery in humans is unequivocal, with imaging and physiological studies providing extensive evidence of brain changes correlating with improved behavior [7,8,9,10,11,12,13].
Transcranial direct current stimulation (tDCS) is a promising, non-invasive, method to induce neuroplasticity within the cerebral cortex and augment stroke recovery. Importantly, tDCS has potential to bidirectionally and selectively alter corticospinal excitability for up to one hour after stimulation [14,15]. Animal models indicate that tDCS modulates resting membrane potential, with anodal stimulation leading to neuronal depolarization and cathodal stimulation leading to neuronal hyperpolarization over large cortical populations [16]. Stimulation-induced changes may be potentiated by changes in intracellular calcium concentrations. For example, anodal tDCS applied to the surface of the rat sensorimotor cortex led to a rise in the intracellular calcium concentrations [17]. Local increases in calcium can result in short- and long-term changes in synaptic function [18]. In humans, pharmacological studies have also provided indirect evidence to suggest that tDCS after effects are mediated by changes in synaptic plasticity through mechanisms that resemble long-term potentiation (LTP) and long-term depression-like effects [19]. Oral administration of the NMDA-receptor antagonist dextromethorphan was found to suppress the post-tDCS effects of both anodal and cathodal stimulation, suggesting that tDCS after effects involve NMDA receptors [19]. Importantly, modulation of cortical activity with tDCS changes human behavior [20]. For example, in randomized sham-controlled trials, anodal stimulation of the motor cortex (M1) in the lesioned hemisphere was found to improve upper limb outcomes in chronic [21,22,23] and subacute stroke survivors [24,25,26], with behavior changes underpinned by increased cortical activity within the M1 [27]. Although much work remains to be performed regarding optimal stimulation doses, cortical targets and electrode montages, these studies provide some indication that tDCS may be beneficial in stroke recovery.
While there is indication that tDCS has potential to improve stroke recovery of the upper limb [28], there are comparatively fewer studies that have investigated tDCS for lower limb recovery after stroke. Lower limb rehabilitation is especially important, as the simple act of regaining the ability to walk has subsequent effects on the ability to engage in activities of daily living [29,30]. Furthermore, those receiving therapy targeting mobility have been shown to have reduced levels of depression and anxiety [31], which are important determinants of stroke recovery [32,33,34]. Therefore, novel interventions capable of enhancing lower limb recovery might improve not only lower limb motor performance but could have added benefit for stroke rehabilitation in general. The purpose of this review is to discuss tDCS as a technique to modulate brain activity and promote recovery of walking following stroke. Within this review, we will outline current studies that have investigated tDCS to improve lower limb motor performance in both healthy adults and people with stroke. Additionally, we propose a best-practice model of experimental design for lower limb tDCS to guide future application for lower limb stroke recovery.

2. Is it Possible to Modify Lower Limb Motor Networks with Transcranial Direct Current Stimulation?

One approach to modify activity of the lower limb motor network with tDCS is to target the M1, similar to studies involving the upper limb. However, targeted application with tDCS is challenging as, compared with upper limb representations, the lower limb M1 representations are more medial and deeper within the interhemispheric fissure (Figure 1). This presents two notable difficulties. First, the ability of targeted stimulation to the lower limb M1 within one hemisphere (e.g., the lesioned hemisphere in stroke) is challenging, as tDCS electrodes can be relatively large compared to the size of cortical representations, resulting in current spread that may inadvertently lead to stimulation within the opposite hemisphere. Second, the depth of the lower limb M1 representations may present a challenge to current penetration and depth with traditional tDCS applications. However, there is evidence to indicate that it is possible to modulate activity of the lower limb M1 with tDCS. Computational modelling has revealed that traditional anodal tDCS electrode montages (anode overlying the lower limb M1 and cathode overlying the contralateral orbit; Figure 1) can lead to the expected cortical excitability enhancement in the target cortex [35]. Indeed, reducing the size of the anode (3.5 cm × 1 cm) was found to improve the specificity of the current delivered to the cortex, while positioning the return electrode (cathode) to a more lateral position (T7/8 on the 10–10 EEG system) further improved current specificity, leading to greater changes in cortical excitability [35]. Experimental evidence also suggests that tDCS targeting the lower limb M1 can modify excitability. Jeffrey and colleagues [36] utilized an anodal-tDCS montage (2 mA, 10 min) over the lower limb M1 and found that motor-evoked potentials (MEPs) of the tibialis anterior muscle increased by as much as 59% compared to sham conditions. Along similar lines, 10 sessions of anodal tDCS (2 mA, 10 min) targeting the lower limb M1 was found to increase the amplitude of MEPs recorded from the paretic tibialis anterior compared to sham stimulation [37]. This empirical evidence provides some support to the computational modelling to suggest that the use of tDCS targeting the lower limb M1 can modify corticospinal excitability.
Although M1 has received attention as a stimulation target to modify excitability of the lower limb M1, there is potential for cerebellar tDCS to induce similar, or possibly more prominent, behavioral and neurophysiological changes. It is noteworthy that a computational modelling study that compared electrode montages targeting M1 and the cerebellum found that cerebellar stimulation produced substantially higher electric field strengths in the target area compared to M1 stimulation, suggesting the cerebellum may indeed be a suitable target for tDCS [38]. Behaviorally, the cerebellum contributes to motor planning, learning, and control; this influence is in part mediated by connections to M1 via the cerebellothalamocortical tracts, previously reported to play a key role in motor skill learning in mice [39]. Although this stimulation technique has received comparatively little attention compared to M1 stimulation, there is some indication that it is possible to modify cerebellar excitability in a focal and polarity specific manner [40]. Whether cerebellar tDCS is required to modify excitability of M1 for behavioral change is unclear. However, if a desired outcome was to modify M1 excitability with cerebellar stimulation, a pertinent challenge would be whether cerebellar tDCS can achieve the specificity required to precisely target the lower limb M1 in one hemisphere. Although speculative, one approach could be to pre-activate M1 through a contralateral lower limb motor task in order to bias the effects of tDCS towards those networks activated to perform the task. In support, there is some evidence in the upper limb that performance of a task during cerebellar tDCS does interact with the change in M1 excitability [41].[…]

Continue —-> Brain Sciences | Free Full-Text | Transcranial Direct Current Stimulation to Facilitate Lower Limb Recovery Following Stroke: Current Evidence and Future Directions | HTML

, , , , , , , ,

Leave a comment

[Review] Immediate and long-term effects of BCIbased rehabilitation of the upper extremity after stroke: a systematic review and metaanalysis – Full Text PDF

Abstract

Background: A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and
the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery.

Methods: The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke.

Results: A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a
trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18–0.66; I2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = − 0.28 – 0.52; I2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor
imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = − 0.30; 95% CI = − 0.96 – 0.36; I2 = 0%; P = 0.370; fixed-effects model).

Conclusion: The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds
of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.

Full Text PDF

 

, , , , , , , , , , , ,

Leave a comment

[Abstract] Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: A randomized controlled pilot study

Highlights

  • The priming effect of dual tDCS was important to facilitate motor recovery in combination with mirror therapy in stroke.

Abstract

This study was a randomized, controlled pilot trial to investigate the timing-dependent interaction effects of dual transcranial direct current stimulation (tDCS) in mirror therapy (MT) for hemiplegic upper extremity in patients with chronic stroke. Thirty patients with chronic stroke were randomly assigned to three groups: tDCS applied before MT (prior-tDCS group), tDCS applied during MT (concurrent-tDCS group), and sham tDCS applied randomly prior to or concurrent with MT (sham-tDCS group). Dual tDCS at 1 mA was applied bilaterally over the ipsilesional M1 (anodal electrode) and the contralesional M1 (cathodal electrode) for 30 min. The intervention was delivered five days per week for two weeks. Upper extremity motor performance was measured using the Fugl-Meyer Assessment-Upper Extremity (FMA-UE), the Action Research Arm Test (ARAT), and the Box and Block Test (BBT). Assessments were administered at baseline, post-intervention, and two weeks follow-up. The results indicated that concurrent-tDCS group showed significant improvements in the ARAT in relation to the prior-tDCS group and sham-tDCS group at post-intervention. Besides, a trend toward greater improvement was also found in the FMA-UE for the concurrent-tDCS group. However, no statistically significant difference in the FMA-UE and BBT was identified among the three groups at either post-intervention or follow-up. The concurrent-tDCS seems to be more advantageous and time-efficient in the context of clinical trials combining with MT. The timing-dependent interaction factor of tDCS to facilitate motor recovery should be considered in future clinical application.

via Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: A randomized controlled pilot study – Journal of the Neurological Sciences

, , , , , , , , , ,

Leave a comment

[Abstract] Treatments for Poststroke Motor Deficits and Mood Disorders: A Systematic Review for the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Guidelines for Stroke Rehabilitation

Abstract

Background: Early rehabilitation after stroke is essential to help reduce disability.
Purpose: To summarize evidence on the benefits and harms of nonpharmacologic and pharmacologic treatments for motor deficits and mood disorders in adults who have had stroke.
Data Sources: English-language searches of multiple electronic databases from April 2009 through July 2018; targeted searches to December 2018 for studies of selective serotonin reuptake inhibitors (SSRIs) or serotonin–norepinephrine reuptake inhibitors.
Study Selection: 19 systematic reviews and 37 randomized controlled trials addressing therapies for motor deficits or mood disorders in adults with stroke.
Data Extraction: One investigator abstracted the data, and quality and GRADE assessment were checked by a second investigator.
Data Synthesis: Most interventions (for example, SSRIs, mental practice, mirror therapy) did not improve motor function. High-quality evidence did not support use of fluoxetine to improve motor function. Moderate-quality evidence supported use of cardiorespiratory training to improve maximum walking speed and repetitive task training or transcranial direct current stimulation to improve activities of daily living (ADLs). Low-quality evidence supported use of robotic arm training to improve ADLs. Low-quality evidence indicated that antidepressants may reduce depression, whereas the frequency and severity of antidepressant-related adverse effects was unclear. Low-quality evidence suggested that cognitive behavioral therapy and exercise, including mind–body exercise, may reduce symptoms of depression and anxiety.
Limitation: Studies were of poor quality, interventions and comparators were heterogeneous, and evidence on harms was scarce.
Conclusion: Cardiorespiratory training, repetitive task training, and transcranial direct current stimulation may improve ADLs in adults with stroke. Cognitive behavioral therapy, exercise, and SSRIs may reduce symptoms of poststroke depression, but use of SSRIs to prevent depression or improve motor function was not supported.
Primary Funding Source: U.S. Department of Veterans Affairs, Veterans Health Administration.

via Treatments for Poststroke Motor Deficits and Mood Disorders | Annals of Internal Medicine | American College of Physicians

, , , , , , , , ,

Leave a comment

[ARTICLE] A Novel tDCS Sham Approach Based on Model-Driven Controlled Shunting – Full Text

Abstract

Background

Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique able to transiently modulate brain activity, is surging as one of the most promising therapeutic solutions in many neurological and psychiatric disorders. However, profound limitations exist in current placebo (sham) protocols that limit single- and double-blinding, especially in non-naïve subjects.

Objective

/hypothesis: To ensure better blinding and strengthen reliability of tDCS studies and trials, we tested a new optimization algorithm aimed at creating an “active” sham tDCS condition (ActiSham hereafter) capable of inducing the same scalp sensations perceived during real stimulation, while preventing currents from reaching the cortex and cause changes in brain excitability.

Methods

A novel model-based multielectrode technique —optimizing the location and currents of a set of small electrodes placed on the scalp— was used to control the relative amount of current delivered transcranially in real and placebo multichannel tDCS conditions. The presence, intensity and localization of scalp sensations during tDCS was evaluated by means of a specifically designed questionnaire administered to the participants. We compared blinding ratings by directly addressing subjects’ ability to discriminate across conditions for both traditional (Bifocal-tDCS and -Sham, using sponge electrodes) and our novel multifocal approach (both real Multifocal-tDCS and ActiSham). Changes in corticospinal excitability were monitored based on Motor Evoked Potentials (MEPs) recorded via concurrent Transcranial Magnetic Stimulation (TMS) and electromyography (EMG).

Results

Subjects perceived Multifocal-tDCS and ActiSham similarly in terms of both scalp sensations and their localization on the scalp, whereas traditional Bifocal stimulation was rated as more painful and annoying compared to its Sham counterpart. Additionally, differences in scalp localization were reported for active/sham Bifocal-tDCS. As for MEPs amplitude, a main effect of stimulation was found when comparing Bifocal-Sham and ActiSham (F(1,13)= 6.67, p=.023), with higher MEPs amplitudes after the application of Bifocal-Sham.

Conclusions

Compared to traditional Bifocal-tDCS, ActiSham offers better participants’ blinding by inducing very similar scalp sensations to those of real Multifocal tDCS both in terms of intensity and localization, while not affecting corticospinal excitability.

Introduction

Non-invasive Brain Stimulation (NIBS) techniques are used to modulate brain activity in a safe and well-tolerated way [1]. In particular, Transcranial direct current stimulation (tDCS), uses low-intensity electrical currents to modulate cortical excitability in a polarity-specific manner [1]. Classical tDCS montages consist of two rectangular sponge electrodes with a contact area of ∼25-35 cm2, where electrical current between 0.5mA and 4mA flows from a positively charged electrode (anode) to a negative one (cathode)[2] passing through various tissue compartments including skin, muscle, bone, cerebrospinal fluid and brain. Due to its safety and relatively low-cost, tDCS experiments have been widely carried out to investigate human neurophysiology and to test its application as a new potential therapeutic solution for neurological and psychiatric conditions. To ensure adequate understanding of the observed effects, however, researchers need to rely on valid and approved control placebo conditions, a fundamental requirement in randomized controlled trials. Traditional standard sham protocols consist on an initial ramp up of the current, followed by a short stimulation period (usually for 5-60 seconds) and a final ramp down [[3][4][5]], (i.e., Fade In of current, brief real Stimulation, Fade-Out; commonly known as “FISSFO” protocol), an approach thought to cause sensory stimulation similar to real tDCS without affecting cortico-spinal excitability [6]. However, both these assumptions (i.e., adequate blinding and absence of effects on the brain) are still under examination. FISSFO sham has been considered effective in providing a proper blinding when compared with real tDCS at 1mA for 20 minutes [6], becoming the standard for sham tDCS [7]. The rationale stems from participants’ reports in which the cutaneous perceptions that generally cue subjects on tDCS being effectively delivered (i.e., tingling or itching sensation), have been mostly reported during the first 30-60 seconds of stimulation to then gradually decrease, possibly due to habituation [4]. However, a recent investigation has revealed that even naïve subjects (N=192) are capable of distinguishing classic sham stimulation (FISSFO) from active tDCS when delivered at 1 mA for 20 minutes over the left dorsolateral prefrontal cortex (DLPFC) [8]. Prior experiments had already suggested blinding inefficacy when real tDCS is applied at 1.5-2 mA, even for only 10 minutes [9,10]. Accordingly, non-naïve subjects seem more capable of distinguishing real from sham tDCS [11] and extreme individual variability has been reported with regard to sensibility to stimulation intensity and duration, with subjects being able to perceive tDCS even at very low intensity (i.e., 400 μA) [11].

On the other hand, additional sham protocols have been developed with modified durations of ramp up/down, or even delivering constant low intensity currents (0.016 or 0.034 mA) [7,12,13]. However, these approaches have not been properly tested on large sample of patients/subjects, with no data on the effects of such alternative sham protocols on the brain, while inconsistent results on many neurophysiological parameters have been documented when adopting such modified approaches [13].

Beyond the single or double blinding efficacy of FISSFO and related approaches [14], an element of interest is the question of whether tDCS effects are due to cortical interaction of the generated electric fields or from peripheral nervous system (PNS) stimulation. Since the ramp-up/ramp-down method for blinding decreases both cortical and peripheral stimulation, they cannot help disentangling cortical and peripheral effects. In addition, cortical effects of the brief period of real stimulation during sham protocols may not completely be excluded [15].

An additional challenge is the fact that the induced tDCS electric field is conditioned by the heterogeneity of cortical and non-cortical tissues, as well as by the complexity of cortical geometry [16]. In recent years, this has been addressed by the use of multichannel tDCS systems in combination with realistic finite element modeling of current propagation in the head derived from subject neuroimaging data (e.g. MRI, fMRI) [17,18]. The rationale for multifocal stimulation resides on both the need for more targeted stimulation of the cortex, as well as the notion that brain regions operate in networks and communicate with each other’s through modulatory interactions [[19][20][21]]. Realistic physical models provide a crucial element for better experimental understanding and control of the electric fields generated by tDCS.

In the present study, we investigate a novel approach to sham stimulation based on controlled shunting of currents via a model-based quantification of transcutaneous and transcranial effects. Specifically, the novel sham tDCS solution benefits from the use of an optimization algorithm allowing tDCS montages to be tailored in such a way that zero or very low magnitude electric fields are delivered on the brain, while medium to high intensity currents are maintained in at least some scalp electrodes, thus eliciting scalp sensations necessary for blinding. Notably, this allows to maintain the stimulation ON for the entire duration of sham tDCS, therefore inducing scalp sensations similar to real tDCS, while avoiding known limitations of the FISSFO protocol. We hypothesize that such montage (Active Sham, ActiSham hereafter) (i) will generate scalp sensations similar to a Multifocal (real) tDCS montage based on the same electrodes’ location and identical stimulation intensity/duration; and that (ii) ActiSham will not induce changes in cortico-spinal excitability (CSE), as assessed through Motor Evoked Potentials (MEPs) induced by Transcranial Magnetic Stimulation (TMS) as an index of corticospinal excitability. If successful, this and similar other approaches for improved sham stimulation could contribute to more efficient design of future tDCS research studies and clinical trials.

Methods

Study design

Fourteen subjects participated in 4 randomized tDCS stimulation visits, spaced 7±3 days to ensure no carryover effects. The tDCS conditions were: real Bifocal-tDCS, Bifocal-Sham, real Multifocal-tDCS and ActiSham. Each session lasted approximately 90 minutes during which participants seated in a comfortable chair with their eyes open. To measure changes in corticospinal excitability, single pulse TMS was applied over the left primary motor cortex (M1) at the beginning and the end of each stimulation session. Somatosensory sensations elicited by tDCS were addressed by means of ad-hoc questionnaires. See dedicated sections below for further details about tools and procedures.

Participants

Fourteen healthy right-handed naïve subjects (25.4 years ± 2.1; 5 males) were recruited at the University Campus of Siena, School of Medicine (Siena, Italy). Possible contraindications to either TMS or tDCS were assessed by means of a screening questionnaire [22]. Exclusion criteria included: history of seizures, head injury, pacemakers or other implanted medical devices, metallic objects in the head, hearing impairments, medications altering cortical excitability or other significant medical concerns. All participants gave written informed consent prior to participating to the study. The research proposal and associated methodologies were approved by the local ethical committee in accordance with the principles of the Declaration of Helsinki.

tDCS

tDCS sessions lasted 15 minutes, with electrode types, scalp montages and stimulation intensities customized for each tDCS protocol (Figure 1). Transcranial stimulation was delivered using a “Starstim 8” brain stimulator controlled via Bluetooth using a laptop computer (Neuroelectrics, Barcelona, Spain). For canonical Bifocal-tDCS (active or sham), stimulation was delivered through traditional 5×7 cm rectangular sponge electrodes, with a contact area of 35 cm2 (SPONSTIM, Neuroelectrics, Barcelona, Spain). Before current delivery, electrodes were soaked with 15 ml of sterile sodium chloride solution (0.9%). For Multichannel stimulation conditions (real and ActiSham), current was instead delivered using circular Ø 20 mm PISTIM electrodes (Neuroelectrics, Barcelona, Spain) with an Ag/AgCl core and a gel/skin contact area of 3.14 cm2. Electrodes were filled with a conductive gel before the tDCS intervention. To further improve current conductivity, the scalp was gently rubbed with an alcohol solution at the beginning of each session. Electrodes were inserted in a neoprene cap with available positions following the 10/20 EEG system.

Figure 1

Figure 1Study design. (A) Active stimulation was delivered for 15 minutes, (30 seconds of ramp up and down). Corticospinal excitability was measured via TMS three times prior to stimulation (Pre-10, Pre-5 and Pre-0) and compared with post measurements collected up to 15 minutes after stimulation (Post-0, Post-5, Post-10, Post-15). Halfway through the protocol (i.e., at minute 7), subjects were asked to rate stimulation-related annoyance and pain levels. tDCS montages for Multifocal-tDCS (B), ActiSham (C), Bifocal-tDCS and Bifocal-Sham (D) are shown.

[…]

Continue —-> A Novel tDCS Sham Approach Based on Model-Driven Controlled Shunting – ScienceDirect

, , , , , , ,

Leave a comment

[Abstract] Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study

Abstract

Background and Purpose

Transcranial direct current stimulation (tDCS) is a treatment used in the rehabilitation of stroke patients aiming to improve functionality of the plegic upper extremity. Currently, tDCS is not routinely used in post stroke rehabilitation. The aim of this study was to establish the effects of bihemspheric tDCS combined with physical therapy (PT) and occupational therapy (OT) on upper extremity motor function.

Methods

Thirty-two stroke inpatients were randomised into 2 groups. All patients received 15 sessions of conventional upper extremity PT and OT over 3 weeks. The tDCS group (n = 16) also received 30 minutes of bihemispheric tDCS and the sham group (n = 16) 30 minutes of sham bihemispheric tDCS simultaneously to OT. Patients were evaluated before and after treatment using the Fugl Meyer upper extremity (FMUE), functional independence measure (FIM), and Brunnstrom stages of stroke recovery (BSSR) by a physiatrist blind to the treatment group

Results

The improvement in FIM was higher in the tDCS group compared to the sham group (P = .001). There was a significant within group improvement in FMUE, FIM and BSSR in those receiving tDCS (P = .001). There was a significant improvement in FIM in the chronic (> 6months) stroke sufferers who received tDCS when compared to those who received sham tDCS and when compared to subacute stroke (3-6 months) sufferers who received tDCS/sham.

Conclusions

Upper extremity motor function in hemiplegic stroke patients improves when bihemispheric tDCS is used alongside conventional PT and OT. The improvement in functionality is greater in chronic stroke patients.

via Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review – Full Text

Abstract

Background

Transcranial direct-current stimulation (tDCS) is an easy-to-apply, cheap, and safe technique capable of affecting cortical brain activity. However, its effectiveness has not been proven for many clinical applications.

Objective

The aim of this systematic review was to determine whether the effect of different strategies for gait training in patients with neurological disorders can be enhanced by the combined application of tDCS compared to sham stimulation. Additionally, we attempted to record and analyze tDCS parameters to optimize its efficacy.

Methods

A search in Pubmed, PEDro, and Cochrane databases was performed to find randomized clinical trials that combined tDCS with gait training. A chronological filter from 2010 to 2018 was applied and only studies with variables that quantified the gait function were included.

Results

A total of 274 studies were found, of which 25 met the inclusion criteria. Of them, 17 were rejected based on exclusion criteria. Finally, 8 trials were evaluated that included 91 subjects with stroke, 57 suffering from Parkinson’s disease, and 39 with spinal cord injury. Four of the eight assessed studies did not report improved outcomes for any of its variables compared to the placebo treatment.

Conclusions

There are no conclusive results that confirm that tDCS can enhance the effect of the different strategies for gait training. Further research for specific pathologies, with larger sample sizes and adequate follow-up periods, are required to optimize the existing protocols for applying tDCS.

Introduction

Difficulty to walk is a key feature of neurological disorders [1], so much so that recovering and/or maintaining the patient’s walking ability has become one of the main aims of all neurorehabilitation programs [2]. Additionally, the loss of this ability is one of the most significant factors negatively impacting on the social and professional reintegration of neurological patients [3].

Strategies for gait rehabilitation traditionally focus on improving the residual ability to walk and compensation strategies. Over the last years, a new therapeutic paradigm has been established based on promoting neuroplasticity and motor learning, which has led to the development of different therapies employing treadmills and partial body-weight support, as well as robotic-assisted gait training [4]. Nevertheless, these new paradigms have not demonstrated superior results when compared to traditional therapies [5,6,7], and therefore recent studies advise combining therapies to enhance their therapeutic effect via greater activation of neuroplastic mechanisms [8].

Transcranial direct-current stimulation (tDCS) is an intervention for brain neuromodulation consisting of applying constant weak electric currents on the patient’s scalp in order to stimulate specific brain areas. The application of the anode (positive electrode) to the primary motor cortex causes an increase in neuron excitability whereas stimulation with the cathode (negative electrode) causes it to decrease [9].

The effectiveness of tDCS has been proven for treating certain pathologies such as depression, addictions, fibromyalgia, or chronic pain [10]. Also, tDCS has shown to improve precision and motor learning [11] in healthy volunteers. Improvements in the functionality of upper limbs and fine motor skills of the hand with paresis have been observed in patients with stroke using tDCS, although the results were somewhat controversial [1213]. Similarly, a Cochrane review on the effectiveness of tDCS in treating Parkinson’s disease highlights the great potential of the technique to improve motor skills, but the significance level of the evidence was not enough to clearly recommend it [14]. In terms of gait rehabilitation, current studies are scarce and controversial [10].

Furthermore, tDCS is useful not only as a therapy by itself but also in combination with other rehabilitation strategies to increase their therapeutic potential; in these cases, the subjects’ basal activity and the need for combining the stimulation with the behavior to be enhanced have been highlighted. Several studies have combined tDCS with different modalities of therapeutic exercising, such as aerobic exercise to increase the hypoalgesic effect in patients with fibromyalgia [15] or muscle strengthening to increase functionality in patients suffering from knee osteoarthritis [16]. Along these lines, various studies have combined tDCS with gait training in patients with neurological disorders, obtaining rather disparate outcomes [17,18,19,20]. As a result, the main aim of this systematic review was to determine whether the application of tDCS can enhance the effectiveness of other treatment strategies for gait training. Additionally, as a secondary objective, we attempted to record and identify the optimal parameters of the applied current since they are key factors for its effectiveness. […]

 

Continue —>  Combining transcranial direct-current stimulation with gait training in patients with neurological disorders: a systematic review | Journal of NeuroEngineering and Rehabilitation | Full Text

, , , ,

Leave a comment

[Abstract + References] Motor stroke recovery after tDCS: a systematic review

Abstract

The purpose of the present study was to investigate the effects of transcranial direct current stimulation (tDCS) on motor recovery in adult patients with stroke, taking into account the parameters that could influence the motor recovery responses. The second aim was to identify the best tDCS parameters and recommendations available based on the enhanced motor recovery demonstrated by the analyzed studies. Our systematic review was performed by searching full-text articles published before February 18, 2019 in the PubMed database. Different methods of applying tDCS in association with several complementary therapies were identified. Studies investigating the motor recovery effects of tDCS in adult patients with stroke were considered. Studies investigating different neurologic conditions and psychiatric disorders or those not meeting our methodologic criteria were excluded. The main parameters and outcomes of tDCS treatments are reported. There is not a robust concordance among the study outcomes with regard to the enhancement of motor recovery associated with the clinical application of tDCS. This is mainly due to the heterogeneity of clinical data, tDCS approaches, combined interventions, and outcome measurements. tDCS could be an effective approach to promote adaptive plasticity in the stroke population with significant positive premotor and postmotor rehabilitation effects. Future studies with larger sample sizes and high-quality studies with a better standardization of stimulation protocols are needed to improve the study quality, further corroborate our results, and identify the optimal tDCS protocols.

References

  • Allman, C., Amadi, U., Winkler, A.M., Wilkins, L., Filippini, N., Kischka, U., Stagg, C.J., and Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci. Transl. Med. 8, 330re1.PubMedCrossrefGoogle Scholar
  • Ameli, M., Grefkes, C., Kemper, F., Riegg, F.P., Rehme, A.K., Karbe, H., Fink, G.R., and Nowak, D.A. (2009). Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann. Neurol. 66, 298–309.PubMedCrossrefGoogle Scholar
  • Andrade, S.M., Batista, L.M., Nogueira, L.L., de Oliveira, E.A., de Carvalho, A.G., Lima, S.S., Santana, J.R., de Lima, E.C., and Fernández-Calvo, B. (2017a). Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehab. Res. Pract. 2017, 6842549.Google Scholar
  • Andrade, S.M., Ferreira, J.J.A., Rufino, T.S., Medeiros, G., Brito, J.D., da Silva, M.A., and Moreira, R.N. (2017b). Effects of different montages of transcranial direct current stimulation on the risk of falls and lower limb function after stroke. Neurol. Res. 39, 1037–1043.CrossrefGoogle Scholar
  • Bikson, M., Grossman, P., Thomas, C., Zannou, A.L., Jiang, J., Adnan, T., Mourdoukoutas, A.P., Kronberg, G., Truong, D., Boggio, P., et al. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 9, 641–661.CrossrefPubMedGoogle Scholar
  • Bolognini, N. and Vallar, G. (2015). Stimolare il cervello. Manuale di stimolazione cerebrale non invasiva (pp. 1–224). il Mulino.Google Scholar
  • Bolognini, N., Pascual-Leone, A., and Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehab. 6, 8.CrossrefGoogle Scholar
  • Bolognini, N., Vallar, G., Casati, C., Latif, L.A., El-Nazer, R., Williams, J., Banco, E., Macea, D.D., Tesio, L., Chessa, C., et al. (2011). Neurophysiological and behavioral effects of tDC combined with constraint-induced movement therapy in post stroke patients. Neurorehab. Neural Rep. 25, 819–829.CrossrefGoogle Scholar
  • Bortoletto, M., Rodella, C., Salvador, R., Miranda, P.C., and Miniussi, C. (2016). Reduced current spread by concentric electrodes in transcranial electrical stimulation (tES). Brain Stimul. 9, 525–528.CrossrefPubMedGoogle Scholar
  • Bradnam, L.V., Stinear, C.M., Barber, P.A., and Byblow, W.D. (2012). Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb. Cortex 22, 2662–2671.PubMedCrossrefGoogle Scholar
  • Brunelin, J., Mondino, M., Gassab, L., Haesebaert, F., Gaha, L., Suaud-Chagny, M.F., Saoud, M., Mechri, A., and Poulet, E. (2012a). Examining transcranial direct current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am. J. Psychiatry 169, 719–724.CrossrefGoogle Scholar
  • Brunoni, A.R., Zanao, T.A., Ferrucci, R., Priori, A., Valiengo, L., de Oliveira, J.F., Boggio, P.S., Lotufo, P.A., Benseñor, I.M., and Fregni, F. (2013c). Bifrontal tDCS prevents implicit learning acquisition in antidepressant-free patients with major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 43, 146–150.CrossrefGoogle Scholar
  • Burke Quinlan, E., Dodakian, L., See, J., McKenzie, A., Le, V., Wojnowicz, M., Shahbaba, B., and Cramer, S.C. (2015). Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neurol. 77, 132–145.CrossrefPubMedGoogle Scholar
  • Byblow, W.D., Stinear, C.M., Barber, P.A., Petoe, M.A., and Ackerley, S.J. (2015). Proportional recovery after stroke depends on corticomotor integrity. Ann. Neurol. 78, 848–859.CrossrefPubMedGoogle Scholar
  • Chang, M.C., Kim, D.Y., and Park, D.H. (2015). Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul. 8, 561–566.CrossrefPubMedGoogle Scholar
  • Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. (Hillsdale, NJ: Erlbaum).Google Scholar
  • Coin, A., Najjar, M., Catanzaro, S., Orru, G., Sampietro, S., Sergi, G., Manzato, E., Perissinotto, E., Rinaldi, G., Sarti, S., et al. (2009). A retrospective pilot study on the development of cognitive, behavioral and functional disorders in a sample of patients with early dementia of Alzheimer type. Arch. Gerontol. Geriatr. 49, 35–38.CrossrefGoogle Scholar
  • Conti, C.L. and Nakamura-Palacios, E.M. (2013). Bilateral transcranial direct current stimulation over dorsolateral prefrontal cortex changes the drug-cued reactivity in the anterior cingulate cortex of crack-cocaine addicts. Brain Stimul. 7, 130–132.PubMedGoogle Scholar
  • Da Costa Santos, C.M., de Mattos Pimenta, C.A., and Nobre, M.R. (2007). The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enfermagem. 15, 508–511.PubMedCrossrefGoogle Scholar
  • De Vries, M.H., Barth, A.C., Maiworm, S., Knecht, S., Zwitserlood, P., and Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J. Cognit. Neurosci. 22, 2427–2436.CrossrefGoogle Scholar
  • Di Lazzaro, V., Dileone, M., Capone, F., Pellegrino, G., Ranieri, F., Musumeci, G., Florio, L., Di Pino, G., and Fregni, F. (2014). Immediate and late modulation of interhemispheric imbalance with bilateral transcranial direct current stimulation in acute stroke. Brain Stimul. 7, 841–848.CrossrefGoogle Scholar
  • Feng, W., Wang, J., Chhatbar, P.Y., Doughty, C., Landsittel, D., Lioutas, V.A., and Schlaug, G. (2015). Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann. Neurol. 78, 860–870.CrossrefPubMedGoogle Scholar
  • Ferrucci, R., Mameli, F., Guidi, I., Mrakic-Sposta, S., Vergari, M., Marceglia, S., Cogiamanian, F., Barbieri, S., Scarpini, E., and Priori, A. (2008). Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71, 493–498.CrossrefPubMedGoogle Scholar
  • Figlewski, K., Blicher, J.U., Mortensen, J., Severinsen, K.E., Nielsen, J.F., and Andersen, H. (2017). Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke 48, 229–232.PubMedCrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., Marcolin, M.A., Rigonatt, S.P., Silva, M.T., and Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30.PubMedCrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Lima, M.C., Ferreira, M.J., Wagner, T., Rigonatti, S.P., Castro, A.W., Souza, D.R., Riberto, M., Freedman, S.D., et al. (2006a). A sham controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209.CrossrefGoogle Scholar
  • Fregni, F., Boggio, P.S., Santos, M.C., Lima, M., Vieira, A.L., Rigonatti, S.P., Silva, M.T., Barbosa, E.R., Nitsche, M.A., and Pascual-Leone, A. (2006b). Non invasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 21, 1693–1702.CrossrefGoogle Scholar
  • Fregni, F., Gimenes, R., Valle, A.C., Ferreira, M.J., Rocha, R.R., Natalle, L., Bravo, R., Rigonatti, S.P., Freedman, S.D., Nitsche, M.A., et al. (2006c). A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54, 3988–3998.CrossrefGoogle Scholar
  • Fusco, A., Assenza, F., Iosa, M., Izzo, S., Altavilla, R., Paolucci, S., and Vernieri, F. (2014). The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. BioMed Res. Int. 2014, 547290.PubMedGoogle Scholar
  • Geroin, C., Picelli, A., Munari, D., Waldner, A., Tomelleri, C., and Smania, N. (2011). Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin. Rehabil. 25, 537–548.PubMedCrossrefGoogle Scholar
  • Gladwin, T.E., den Uyl, T.E., Fregni, F.F., and Wiers, R.W. (2012). Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task. Neurosci. Lett. 512, 33–37.CrossrefGoogle Scholar
  • Grefkes, C. and Fink, G.R. (2014). Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 13, 206–216.CrossrefPubMedGoogle Scholar
  • Hamoudi, M., Schambra, H.M., Fritsch, B., Schoechlin-Marx, A., Weiller, C., Cohen, L.G., and Reis, J. (2018). Transcranial direct current stimulation enhances motor skill learning but not generalization in chronic stroke. Neurorehabil. Neural Repair 32, 295–308.PubMedCrossrefGoogle Scholar
  • Hattie, J. (2009). Visible Learning: A Synthesis of Over 800 Meta-analyses Relating to Achievement (Park Square, Oxford: Rutledge).Google Scholar
  • Herrmann, C.S., Rach, S., Neuling, T., and Strüber, D. (2013). Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 7, 279.PubMedGoogle Scholar
  • Hesse, S., Waldner, A., Mehrholz, J., Tomelleri, C., Pohl, M., and Werner, C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabil. Neural Repair 25, 838–846.PubMedCrossrefGoogle Scholar
  • Holman, L., Head, M.L., Lanfear, R., and Jennions, M.D. (2015). Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190.CrossrefPubMedGoogle Scholar
  • Horn, S.D., DeJong, G., Smout, R.J., Gassaway, J., James, R., and Conroy, B. (2005). Stroke rehabilitation patients, practice, and outcomes: is earlier and more aggressive therapy better? Arch. Phys. Med. Rehab. 86, 101–114.CrossrefGoogle Scholar
  • Horvath, J.C., Forte, J.D., and Carter, O. (2015a). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 8, 535–550.CrossrefGoogle Scholar
  • Horvath, J.C., Forte, J.D., and Carter, O. (2015b). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66, 213–236.CrossrefGoogle Scholar
  • Hoyer, E.H. and Celnik, P.A. (2011). Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor. Neurol. Neurosci. 29, 395–409.PubMedGoogle Scholar
  • Hummel, F.C. and Cohen, L.G. (2006). Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712.CrossrefPubMedGoogle Scholar
  • Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W.H., Gerloff, C., and Cohen, L.G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499.PubMedCrossrefGoogle Scholar
  • Hummel, F.C., Voller, B., Celnik, P., Floel, A., Giraux, P., Gerloff, C., and Cohen, L.G. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci. 7, 73.CrossrefPubMedGoogle Scholar
  • Ilić, N.V., Dubljanin-Raspopović, E., Nedeljković, U., Tomanović-Vujadinović, S., Milanović, S.D., Petronić-Marković, I., and Ilić, T.V. (2016). Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. Restor. Neurol. Neurosci. 34, 935–945.PubMedGoogle Scholar
  • Ivanenko, Y.P., Poppele, R.E., and Lacquaniti, F. (2009). Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects. Brain Res. Bull. 78, 13–21.CrossrefPubMedGoogle Scholar
  • Khedr, E.M., Shawky, O.A., El-Hammady, D.H., Rothwell, J.C., Darwish, E.S., Mostafa, O.M., and Tohamy, A.M. (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. Neurorehab. Neural Rep. 7, 592–601.Google Scholar
  • Kim, D.Y., Lim, J.Y., Kang, E.K., You, D.S., Oh, M.K., Oh, B.M., and Paik, N.J. (2010). Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 89, 879–886.PubMedCrossrefGoogle Scholar
  • Koo, W.R., Jang, B.H., and Kim, C.R. (2018). Effects of anodal transcranial direct current stimulation on somatosensory recovery after stroke: a randomized controlled trial. Am. J. Phys. Med. Rehabil. 97, 507–513.CrossrefPubMedGoogle Scholar
  • Kwakkel, G. and Kollen, B.J. (2013). Predicting activities after stroke: what is clinically relevant? Int. J. Stroke 8, 25–32.CrossrefPubMedGoogle Scholar
  • Langhorne, P., Coupar, F., and Pollock, A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754.CrossrefPubMedGoogle Scholar
  • Lee, S.J. and Chun, M.H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehab. 95, 431–438.CrossrefGoogle Scholar
  • Lefaucheur, J.P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., et al. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 128, 56–92.CrossrefPubMedGoogle Scholar
  • Leon, D., Cortes, M., Elder, J., Kumru, H., Laxe, S., Edwards, D.J., Tormos, J.M., Bernabeu, M., and Pascual-Leone, A. (2017). tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor. Neurol. Neurosci. 35, 377–384.PubMedGoogle Scholar
  • Liew, S.L., Santarnecchi, E., Buch, E.R., and Cohen, L.G. (2014). Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front. Hum. Neurosci. 8, 378.PubMedGoogle Scholar
  • Lindenberg, R., Renga, V., Zhu, L.L., Nair, D., and Schlaug, G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75, 2176–2184.PubMedCrossrefGoogle Scholar
  • Lopez-Espuela, F., Zamorano, J.D.P., Ramírez-Moreno, J.M., Jiménez-Caballero, P.E., Portilla-Cuenca, J.C., Lavado-García, J.M., and Casado-Naranjo, I. (2015). Determinants of quality of life in stroke survivors after 6 months, from a comprehensive stroke unit: a longitudinal study. Biol. Res. Nurs. 17, 461–468.CrossrefGoogle Scholar
  • Lüdemann-Podubecká, J., Bösl, K., Rothhardt, S., Verheyden, G., and Nowak, D.A. (2014). Transcranial direct current stimulation for motor recovery of upper limb function after stroke. Neurosci. Biobehav. Rev. 47, 245–259.PubMedCrossrefGoogle Scholar
  • Marshall, L., Molle, M., Hallschmid, M., and Born, J. (2004). Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci. 24, 9985.CrossrefPubMedGoogle Scholar
  • Mazzoleni, S., Tran, V.D., Iardella, L., Dario, P., and Posteraro, F. (2017). Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment on subacute stroke patients: intermediate results. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 555–560. doi:10.1109/icorr.2017.8009306.Google Scholar
  • Menezes, I.S., Cohen, L.G., Mello, E.A., Machado, A.G., Peckham, P.H., Anjos, S.M., Siqueira, I.L., Conti, J., Plow, E.B., and Conforto, A.B. (2018). Combined brain and peripheral nerve stimulation in chronic stroke patients with moderate to severe motor impairment. Neuromodulation 21, 176–183.CrossrefPubMedGoogle Scholar
  • Miranda, P.C., Lomarev, M., and Hallett, M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629.PubMedCrossrefGoogle Scholar
  • Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Int. Med. 151, 264–269.CrossrefGoogle Scholar
  • Nicolo, P., Magnin, C., Pedrazzini, E., Plomp, G., Mottaz, A., Schnider, A., and Guggisberg, A.G. (2018). Comparison of neuroplastic responses to cathodal transcranial direct current stimulation and continuous theta burst stimulation in subacute stroke. Arch. Phys. Med. Rehab. 99, 862–872.CrossrefGoogle Scholar
  • Nitsche, M.A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639.CrossrefPubMedGoogle Scholar
  • Nitsche, M.A. and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57, 1899–1901.PubMedCrossrefGoogle Scholar
  • Nitsche, M.A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., and Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 15, 619–626.PubMedCrossrefGoogle Scholar
  • Nitsche, M.A., Seeber, A., Frommann, K., Klein, C.C., Rochford, C., Nitsche, M.S., Fricke, K., Liebetanz, D., Lang, N., Antal, A., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 568, 291–303.CrossrefPubMedGoogle Scholar
  • Nitsche, M.A., Kuo, M.F., Karrasch, R., Wächter, B., Liebetanz, D., and Paulus, W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry 66, 503–508.CrossrefPubMedGoogle Scholar
  • Nowak, D.A., Bösl, K., Podubeckà, J., and Carey, J.R. (2010). Noninvasive brain stimulation and motor recovery after stroke. Restor. Neurol. Neurosci. 28, 531–544.PubMedGoogle Scholar
  • Nudo, R.J. and Milliken, G.W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J. Neurophysiol. 75, 2144–2149.PubMedCrossrefGoogle Scholar
  • Platz, T. (2004). Impairment-oriented training (IOT): scientific concept and evidence-based treatment strategies. Restor. Neurol. Neurosci. 22, 301–315.PubMedGoogle Scholar
  • Plow, E.B., Carey, J.R., Nudo, R.J., and Pascual-Leone, A. (2009). Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke 40, 1926–1931.PubMedCrossrefGoogle Scholar
  • Polanía, R., Nitsche, M.A., and Paulus, W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapping 32, 1236–1249.CrossrefGoogle Scholar
  • Priori, A., Berardelli, A., Rona, S., Accornero, N., and Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport 9, 2257–2260.CrossrefPubMedGoogle Scholar
  • Rossi, C., Sallustio, F., Di Legge, S., Stanzione, P., and Koch, G. (2013). Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur. J. Neurol. 20, 202–204.CrossrefPubMedGoogle Scholar
  • Saeys, W., Vereeck, L., Lafosse, C., Truijen, S., Wuyts, F., and Van De Heyning, P. (2015). Transcranial direct current stimulation in the recovery of postural control after stroke: a pilot study. Disabil. Rehabil. 37, 1–7.Google Scholar
  • Sattler, V., Acket, B., Raposo, N., Thalamas, C., Loubinoux, I., Chollet, F., and Simonetta-Moreau, M. (2015). Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehab. Neural Rep. 29, 743–754.CrossrefGoogle Scholar
  • Seo, H.G., Lee, W.H., Lee, S.H., Yi, Y., Kim, K.D., and Oh, B.M. (2017). Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. Restor. Neurol. Neurosci. 35, 527–536.PubMedGoogle Scholar
  • Shekhawat, G.S., Searchfield, G.D., and Stinear, C.M. (2013a). Randomized trial of transcranial direct current stimulation and hearing aids for tinnitus management. Neurorehab. Neural Rep. 28, 410–419.Google Scholar
  • Simonetti, D., Zollo, L., Milighetti, S., Miccinilli, S., Bravi, M., Ranieri, F., Magrone, G., Guglielmelli, E., Di Lazzaro, V., and Sterzi, S. (2017). Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front. Hum. Neurosci. 11, 268.CrossrefPubMedGoogle Scholar
  • Stinear, C.M. and Byblow, W.D. (2014). Predicting and accelerating motor recovery after stroke. Curr. Opin. Neurol. 27, 624–630.PubMedGoogle Scholar
  • Straudi, S., Fregni, F., Martinuzzi, C., Pavarelli, C., Salvioli, S., and Basaglia, N. (2016). tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke. BioMed Res. Int. 2016, 8.Google Scholar
  • Suzuki, Y., and Naito, E. (2012). Neuro-modulation in dorsal premotor cortex facilitates human multi-task ability. J. Behav. Brain Sci. 2, 372.CrossrefGoogle Scholar
  • Terney, D., Chaieb, L., Moliadze, V., Antal, A., and Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28, 14147–14155.CrossrefPubMedGoogle Scholar
  • Viana, R.T., Laurentino, G.E., Souza, R.J., Fonseca, J.B., Silva Filho, E.M., Dias, S.N., Teixeira-Salmela, L.F., and Monte-Silva, K.K. (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. Neurorehabilitation 34, 437–446.PubMedGoogle Scholar
  • Wang, Y., Shen, Y., Cao, X., Shan, C., Pan, J., He, H., Ma, Y., and Yuan, T.F. (2016). Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates cue-induced craving for heroin. J. Psychiatry Res. 79, 1–3.CrossrefGoogle Scholar
  • Wu, D., Qian, L., Zorowitz, R.D., Zhang, L., Qu, Y., and Yuan, Y. (2013). Effects on decreasing upper-limb post stroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. Arch. Phys. Med. Rehab. 94, 1–8.CrossrefGoogle Scholar
  • Zehr, E.P. (2005). Neural control of rhythmic human movement: the common core hypothesis. Exercise Sport Sci. Rev. 33, 54–60.Google Scholar
  • Ziemann, U., Paulus, W., Nitsche, M.A., Pascual-Leone, A., Byblow, W.D., Berardelli, A., Siebner, H.R., Classen, J., Cohen, L.G., and Rothwell, J.C. (2008). Consensus: motor cortex plasticity protocols. Brain Stimul. 1, 164–182.CrossrefPubMedGoogle Scholar

via Motor stroke recovery after tDCS: a systematic review : Reviews in the Neurosciences

, , , , , ,

Leave a comment

[WEB SIDE] RPW Technology Announces The Launch Of Liftid Neurostimulation

OSSINING, N.Y.Aug. 16, 2019 /PRNewswire/ — RPW Technology, LLC introduces Liftid Neurostimulation (www.GetLiftid.com), a transcranial direct current stimulation (tDCS) recreational device for consumers that can improve attention, productivity, and memory through mild electrical stimulation. Liftid uses a constant, low-level electric current, passed through two electrodes placed on the forehead area, to stimulate the brain. tDCS is one of the hottest categories in neuroscience today and supported by over 4,000 published studies.

Maximize attention and elevate performance with LIFTiD Neurostimulation.

 

Dr. Ted Schwartz, MD, a New York based neurosurgeon and RPW’s lead scientist, explains, “As has been shown in several studies, tDCS delivers a small amount of electrical current to the cerebral cortex, rendering neurons in the brain more likely to fire. As a result, the user demonstrates increased abilities, alertness and focus.”

In today’s world, most working professionals, college and grad students, video gamers, musicians, and athletes are chemically stimulating their brains through caffeine, sugar, snacks, and performance enhancers. Liftid Neurostimulation uses a safe and effective technology as an alternative to these forms of chemical stimulation.

RPW Technology is proud to be on the forefront of this emerging technology by bringing to market a tDCS device for healthy individuals (ages 18 & up) that is stylish, extremely lightweight (70 grams) including a soft, comfortable, adjustable headband, and easy to operate. Designed and developed by a team of world renowned neuroscientists, Liftid is preset for a 20 minute stimulation session and has many unique features built-in to the device. Using Liftid Neurostimulation for 20 minutes a day trains the brain to maximize attention, focus, alertness, and memory, thus putting the Liftid user in the right mindset to accomplish tasks and elevate performance.

For more information, purchase, and/or instructional video, please visit the Liftid Neurostimulation website at: www.GetLiftid.com. Unit price is $149.00, which includes an attractive and functional storage case with custom accessories and free shipping within the United States. Liftid is packaged for retail sales.

RPW Technology is a New York startup dedicated to the development and marketing of transcranial electrical stimulation devices. The company, in association with Dr. Schwartz and several neuroscientists, set out to develop a high quality, hi-tech, recreational tDCS device to introduce to consumers worldwide.

Contact for RPW Technology, LLC:
Bridget Argana
Orca Communications Unlimited, LLC
bridget.argana@orcapr.com
(480) 231-3582

Cision View original content to download multimedia:http://www.prnewswire.com/news-releases/rpw-technology-announces-the-launch-of-liftid-neurostimulation-300902988.html

SOURCE RPW Technology, LLC

via RPW Technology Announces The Launch Of Liftid Neurostimulation | BioSpace

, , , ,

Leave a comment

%d bloggers like this: