Posts Tagged Trauma

[Abstract] Design a solution and a prototype for hand rehabilitation after trauma injures and post stroke

Abstract

Hand injuries are common but if left untreated, it may result in loss of function. Common causes of upper limb injuries are Post Stroke or Trauma. Trauma include falls, cuts from knives or glass as well as workplace injuries. The impairment of finger movements after injures results in a significant deficit in hands everyday performances.

Rehabilitation helps the patient to regain the hands full functionality. Hand therapy is the art that fills the gap between surgery and practical life. It helps the patient to regain the hands full functionality after a certain injury, surgery or Stroke. Hand therapy could be a very tedious process that implies physical exhaustion. Rehabilitation at home is a long process . And it should be done under therapist control. Also finding appointments with the therapist frequent enough for an efficient healing process, is difficult and costly.

Since trying new technologies is usually exciting to people, using the advancements in the field of artificial intelligence could be a solution to this. Different rehabilitation techniques have been developed, nevertheless, they require the presence of a tutor to be executed. To overcome this issue have been designed several apparatuses that allow the patient to perform the training by itself. Trying new technologies is exciting to people.

Hand exoskeleton was implemented to help the patients do their exercises at home in an engaging gamified environment. The objective is to design a portable, lightweight exoskeleton with adjustment fast assemble system. The device support fingers and excluding second injuries. It reproduce pinch exercise. Thus, an easy to use and effective device is needed to provide the right training and complete the rehabilitation techniques in the best way.

In this paper, a review of state of the art in this field is provided, along with an introduc- tion to the problems caused by a hand injuries and the consequences for the mobility of the hand. Then follows a complete review of the exoskeleton project design. The objective is to design a device that can be used at home, with a lightweight and affordable structure and a fast mounting system. For implementing all these features, many aspects have been analysed, starting from the rehabilitation requirements and the ergonomic issues. This device should be able to reproduce the training movements on an injured hand without the need for assistance by an external tutor.

The control system is based on Arduino UNO board, and the user interface is based on UNITY, the objective is to create an online media that allows the patient to exploit the capabilities of the exoskeleton, following the indication of its medic. On the other side, this interface should provide all the data related to the performances of the patient to allow a more precise therapy.

via Design a solution and a prototype for hand rehabilitation after trauma injures and post stroke | POLITesi – Politecnico di Milano

 

, , , , , , , , , ,

Leave a comment

[WEB SITE] New method based on artificial intelligence may help predict epilepsy outcomes

 

Medical University of South Carolina (MUSC) neurologists have developed a new method based on artificial intelligence that may eventually help both patients and doctors weigh the pros and cons of using brain surgery to treat debilitating seizures caused by epilepsy. This study, which focused on mesial temporal lobe epilepsy (TLE), was published in the September 2018 issue of Epilepsia. Beyond the clinical implications of incorporating this analytical method into clinicians’ decision making processes, this work also highlights how artificial intelligence is driving change in the medical field.

Despite the increase in the number of epilepsy medications available, as many as one-third of patients are refractory, or non-responders, to the medication. Uncontrolled epilepsy has many dangers associated with seizures, including injury from falls, breathing problems, and even sudden death. Debilitating seizures from epilepsy also greatly reduce quality of life, as normal activities are impaired.

Epilepsy surgery is often recommended to patients who do not respond to medications. Many patients are hesitant to undergo brain surgery, in part, due to fear of operative risks and the fact that only about two-thirds of patients are seizure-free one year after surgery. To tackle this critical gap in the treatment of this epilepsy population, Dr. Leonardo Bonilha and his team in the Department of Neurology at MUSC looked to predict which patients are likely to have success in being seizure free after the surgery.

Neurology Department Chief Resident Dr. Gleichgerrcht explains that they tried “to incorporate advanced neuroimaging and computational techniques to anticipate surgical outcomes in treating seizures that occur with loss of consciousness in order to eventually enhance quality of life”. In order to do this, the team turned to a computational technique, called deep learning, due to the massive amount of data analysis required for this project.

The whole-brain connectome, the key component of this study, is a map of all physical connections in a person’s brain. The brain map is created by in-depth analysis of diffusion magnetic resonance imaging (dMRI), which patients receive as standard-of-care in the clinic. The brains of epilepsy patients were imaged by dMRI prior to having surgery.

Deep learning is a statistical computational approach, within the realm of artificial intelligence, where patterns in data are automatically learned. The physical connections in the brain are very individualized and thus it is challenging to find patterns across multiple patients. Fortunately, the deep learning method is able to isolate the patterns in a more statistically reliable method in order to provide a highly accurate prediction.

Currently, the decision to perform brain surgery on a refractory epilepsy patient is made based on a set of clinical variables including visual interpretation of radiologic studies. Unfortunately, the current classification model is 50 to 70 percent accurate in predicting patient outcomes post-surgery. The deep learning method that the MUSC neurologists developed was 79 to 88 percent accurate. This gives the doctors a more reliable tool for deciding whether the benefits of surgery outweigh the risks for the patient.

A further benefit of this new technique is that no extra diagnostic tests are required for the patients, since dMRIs are routinely performed with epilepsy patients at most centers.

This first study was retrospective in nature, meaning that the clinicians looked at past data. The researchers propose that an ideal next step would include a multi-site prospective study. In a prospective study, they would analyze the dMRI scans of patients prior to surgery and follow-up with the patients for at least one year after surgery. The MUSC neurologists also believe that integrating the brain’s functional connectome, which is a map of simultaneously occurring neural activity across different brain regions, could enhance the prediction of outcomes.

Dr. Gleichgerrcht says that the novelty in the development of this study lies in the fact that this “is not a question of human versus machine, as is often the fear when we hear about artificial intelligence. In this case, we are using artificial intelligence as an extra tool to eventually make better informed decisions regarding a surgical intervention that holds the hope for a cure of epilepsy in a large number of patients.”

 

via New method based on artificial intelligence may help predict epilepsy outcomes

, , , , , , , , , , ,

Leave a comment

[WEB SITE] Christiana Care Health System opens first Epilepsy Monitoring Unit in Delaware

 

To increase access to advanced neurological care, Christiana Care Health System has opened the first Epilepsy Monitoring Unit (EMU) in the First State.

Specially outfitted private hospital rooms in the Transition Neuro Unit at Christiana Hospital provide state-of-the-art equipment for video and audio monitoring. In the rooms, brain waves are tracked with electroencephalography (EEG) and electrical activity in the heart is recorded with electrocardiography (EKG), helping clinicians understand what is happening during a seizure. To further enhance safety, nurses assist patients whenever they are out of their bed. And patients wear mobility vests that connect to a stationary lift, a system that allows patients to move around a room – and prevents them from falling if they have a seizure. This is one of the few EMUs in the U.S. that uses a patient lift to prevent falls.

Epilepsy is a central nervous system disorder, in which brain activity becomes abnormal, leading to seizures or periods of unusual behavior, sensations or loss of awareness. The U.S. Centers for Disease Control and Prevention report that there are 3.4 million Americans with epilepsy and there is a growing incidence of the disease among the adult population in Delaware, especially among people 60 and older.

“Our community deserves the very best in neurological care,” said Valerie Dechant, M.D., physician leader, Neuroscience Service Line, and medical director, Neurocritical Care and Acute Neurologic Services. “Our new Epilepsy Monitoring Unit will enable us to serve the complex neurologic needs of our adult patients.”

Christiana Care’s EMU is part of a larger effort to establish an epilepsy center of excellence, so adults of any age can receive the highest quality routine and specialty care for seizure disorders.

“We want to help patients who believe they have been over-diagnosed or under-diagnosed so they can see improvement in their lives,” said Neurologist John R. Pollard, M.D., medical director of the new EMU.

While most patients with epilepsy are successfully treated by a general neurologist or epileptologist, a significant number of patients have persistent fainting or seizure episodes – or they have unwanted side effects from medications. This new facility enables physicians to work more closely with these patients to understand their seizures and determine appropriate treatment.

“Typically, these patients visit an EMU where they may stay for several days so they can be safely taken off medications, inducing seizures that are recorded and studied so a proper diagnosis and treatment can be planned,” said Christy L. Poole, RN, BSN CRNI CCRC, a neurosciences program manager. Visiting an EMU to induce a seizure could be a source of anxiety for patients and their families.

“Our staff works with patients and families to reduce any fear by providing information on what to expect, stressing procedures that enhance patient safety and making the stay as pleasant as possible,” said Susan Craig, MSN, RNIII-BC, epilepsy clinical nurse practice coordinator.

via Christiana Care Health System opens first Epilepsy Monitoring Unit in Delaware

, , , , , , , , , ,

Leave a comment

[WEB SITE] UC study explores how low risk stress reduction treatments may benefit epilepsy patients

Patients with epilepsy face many challenges, but perhaps the most difficult of all is the unpredictability of seizure occurrence. One of the most commonly reported triggers for seizures is stress.

A recent review article in the European journal Seizure, by researchers at University of Cincinnati Epilepsy Center at the UC Gardner Neuroscience Institute, looks at the stress-seizure relationship and how adopting stress reduction techniques may provide benefit as a low risk form of treatment.

The relationship between stress and seizures has been well documented over the last 50 years. It has been noted that stress can not only increase seizure susceptibility and in rare cases a form of reflex epilepsy, but also increase the risk of the development of epilepsy, especially when stressors are severe, prolonged, or experienced early in life.

“Studies to date have looked at the relationship from many angles,” says Michael Privitera, MD, director of the UC Epilepsy Center and professor in the Department of Neurology and Rehabilitation Medicine at the UC College of Medicine. “The earliest studies from the 1980s were primarily diaries of patients who described experiencing more seizures on ‘high-stress days’ than on ‘low-stress days.'”

Privitera and Heather McKee, MD, an assistant professor in the Department of Neurology and Rehabilitation Medicine, looked at 21 studies from the 1980s to present–from patients who kept diaries of stress levels and correlation of seizure frequency, to tracking seizures after major life events, to fMRI studies that looked at responses to stressful verbal/auditory stimuli.

“Most all [of these studies] show increases in seizure frequency after high-stress events. Studies have also followed populations who have collectively experienced stressful events, such as the effects of war, trauma or natural disaster, or the death of a loved one,” says Privitera. All of which found increased seizure risk during such a time of stress.

For example, a 2002 study evaluated the occurrence of epileptic seizures during the war in Croatia in the early 1990s. Children from war-affected areas had epileptic seizures more often than children not affected by the war. Additionally, the 10-year follow up showed that patients who had their first epileptic seizure during a time of stress were more likely to have controlled epilepsy or even be off medication years later.

“Stress is a subjective and highly individualized state of mental or emotional strain. Although it’s quite clear that stress is an important and common seizure precipitant, it remains difficult to obtain objective conclusions about a direct causal factor for individual epilepsy patients,” says McKee.

Another aspect of the stress-seizure relationship is the finding by UC researchers that there were higher anxiety levels in patients with epilepsy who report stress as a seizure precipitant. The researchers suggest patients who believe stress is a seizure trigger may want to talk with their health care provider about screening for anxiety.

“Any patient reporting stress as a seizure trigger should be screened for a treatable mood disorder, especially considering that mood disorders are so common within this population,” adds McKee.

The researchers report that while some small prospective trials using general stress reduction methods have shown promise in improving outcomes in people with epilepsy, large-scale, randomized, controlled trials are needed to convince both patients and providers that stress reduction methods should be standard adjunctive treatments for people with epilepsy.

“What I think some of these studies point to is that efforts toward stress reduction techniques, though somewhat inconsistent, have shown promise in reducing seizure frequency. We need future research to establish evidence-based treatments and clarify biological mechanisms of the stress-seizure relationship,” says Privitera.

Overall, he says, recommending stress reduction methods to patients with epilepsy “could improve overall quality of life and reduce seizure frequency at little to no risk.”

Some low risk stress reduction techniques may include controlled deep breathing, relaxation or mindfulness therapy, as well as exercise, or establishing routines.

Source: UC study explores how low risk stress reduction treatments may benefit epilepsy patients

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: