Posts Tagged Traumatic Brain Injury

[BLOG POST] Every Little Thing You Do – BrainLine

Every Little Thing You Do

Hugh Rawlins
Every Little Thing You Do Hugh Rawlins

When I sustained a severe traumatic brain injury fifteen years ago, I learned that every small step I took to return to health made a difference.

It took over a year of intense occupational, physical, speech, and cognitive therapy to regain the use of my left side, my balance, ability to walk, run, ride my bike, speak coherently, and increase my attention span and memory. In short, I began enjoying life once the cloud lifted (brain injuries heal slowly). It also took nearly a year for me to motivate myself to work hard again since I had executive function issues, but once I was able to motivate myself, my healing accelerated.

It wasn’t always easy, and I often felt like quitting, but the important thing is that I didn’t quit. I stuck with my rehab and listened to my family and friends even when I felt they were annoying.

In the past twelve years, I’ve lost count of the number of people who have asked me, “How did you do it? What did you do differently?” The first and only response to that question is that every individual and every brain injury is unique. Some injuries make it impossible for a person to regain his or her speech, balance, or memory. Other injuries require persistence, a healthy lifestyle, and rehab to reach success.

There are no guarantees, but there are smart choices and strategies that can optimize recovery after TBI. The following is a list I compiled as my answer to the many people in the beginning stages of TBI who have asked about my success over the years. I hope it helps.

1. Find doctors that you trust and follow sound advice.

Some doctors are more informed about TBI than others. This seems like obvious advice, but you’d be amazed at the number of people who do not follow through—who don’t exercise, eat right, or make an effort to rest and follow instructions—especially when it comes to doing the “homework” required of therapy.

2. I take short naps when I need them.

They help me rejuvenate myself and give me the energy to enjoy a full day that lasts well into the night.

3. I think about multiple ways to accomplish something.

Mental fatigue is harder on me than physical fatigue.

For this reason, I break my mental work into smaller segments of time. I might read the newspaper in the morning, balance my checkbook an hour or two later, and check email or work on the computer for only thirty minutes at a time. Taking a break in between mental work sessions allows me to stay energized.

4. I’m able to laugh at myself when I mess up.

This puts others at ease and helps me because then I’m not so hard on myself when I fail at something. In my book, the only failure in life is a failure to keep trying.

5. I (still) always consider the people in my company.

When in the company of new acquaintances, I tell myself to be quiet and not say too much because I know I’ll be at risk of saying something offensive off the top of my head. When I’m with family or friends, I am open and more talkative because they know me and understand that I sometimes express myself in unclear ways, and usually, we have a good laugh.

6. I always evaluate risk: both physically and mentally.

I ask myself these questions: How could I get hurt if I do this? If I do get hurt, what will be the likely injury? What plan do I have for escape? (If riding my bicycle on a road, I make sure there is a safe landing spot, grass, etc.) I leave extra length between other cyclists and especially vehicles. For mental risk, I think about places that are loud, noisy or have flashing lights (all three aggravate my symptoms and give me a headache). So I might choose to sit in a corner away from the crowd, or I may use earplugs (during a concert) to dull the noise.

7. I make sure to keep up social ties.

I will visit the surf shop to see a friend, make a phone call to reconnect with someone out of town or text a friend to catch up. These relationships enhance my life, and focusing on recreation is a welcome rest from “thinking” too much.

8. I make it a priority to exercise regularly.

I am fortunate that I love to exercise and be outdoors. I ride my bike, swim, surf, and walk with my wife. Exercise is a way of life and involves planning and research to maintain and improve physical and mental health. I also set goals by using a heart monitor, power meter, and Strava (a social network for athletes). Keeping track of progress provides motivation!

9. A few simple strategies that help me throughout the day include:

  • I manage my meds with a plastic med keeper to be sure I take my medicine on time and don’t take it twice.
  • I use alarms on my cell phone as reminders to do various activities.
  • I make an extra effort to drink liquids whenever I can to stay hydrated and because I have dry mouth from certain medications.
  • I still struggle with sleeping through the night so naps help.
  • When driving, if I feel tired, I pull over and take a power nap in the car.
  • I keep my wife’s cell phone number in my phone designated as ICE (In Case of Emergency), and wear an I.D. bracelet when cycling.
  • I talk about my feelings with trusted family members because it reduces stress and stress can exacerbate symptoms of TBI.

TBI is something that happened to me, but it’s not what defines me. Knowing that any moment could be my last makes me want to see, do, and enjoy as many people and as many experiences as possible.

Posted on BrainLine July 17, 2017

Source: Every Little Thing You Do | BrainLine

,

Leave a comment

[WEB SITE] Traumatic Brain Injury Resource Guide – Neuroplasticity

Neuroplasticity

Source: Traumatic Brain Injury Resource Guide – Neuroplasticity

, , ,

Leave a comment

[WEB SITE] How OCD and Traumatic Brain Injury Are Linked

Traumatic brain injuries can cause symptoms of obsessive compulsive disorder

Head bandage

Andrew Simpson / Getty Images

Traumatic brain injury (TBI) caused by motor vehicle accidents, falls or other accidents and firearms can cause a wide variety of cognitive issues. In addition to cognitive problems, if you’ve experienced a brain injury, you may also develop symptoms consistent with one or more forms of mental illness including obsessive-compulsive disorder (OCD).

TBI occurs when the brain is injured or damaged by an outside force such as a blow to the head or a gunshot.

TBIs can occur as a closed head injury in which the skull and brain remain intact, like what is seen among professional athletes such as football players, or as a penetrating head injury in which an object penetrates the skull and brain. TBI is often classified according to the severity of injury—mild, moderate or severe.

Common Changes Caused By TBI

If you have experienced a TBI you may also notice a change in your cognitive functioning. After a TBI, your performance on everyday tasks requiring memory, language, spatial or verbal ability may be negatively affected. This can be either temporarily or permanently.

If the TBI affects motor centers within the brain, mobility may also be impaired, and you may need a mobility device like a wheelchair or help with day to day tasks. TBI can also affect your behavior, causing changes in your personality. It is possible, after a TBI, that a previously calm person may become impulsive or aggressive.

Likewise, an outgoing individual may become shy and withdrawn.

TBI and Symptoms of OCD

In addition to changes in cognitive function, behavior, and mobility, TBI can trigger symptoms of OCD including obsessions and compulsions. OCD following a TBI usually occurs soon, if not immediately, after the event has taken place.

However, there have been reports of TBI-induced OCD being diagnosed months after the initial injury. In each case, localized brain damage may or may not be present when viewing a brain scan.

Research has indicated that OCD following a TBI is usually accompanied by symptoms of major depression. Whether this depression is a result of the TBI, the psychosocial stress caused by the injury, the onset of OCD, or a combination of these factors is unclear.

Treating TBI-Related OCD

If you developed OCD after a traumatic brain injury, your doctor may recommend a selective serotonin reuptake inhibitors such as Prozac (fluoxetine) or a tricyclic antidepressant such as Anafranil (clomipramine).

Psychotherapy for OCD following a TBI may also be helpful. However, since cognitive impairment is common among those with TBI, cognitive-based therapies may not be the best option for everyone and should be evaluated on a case by case basis. If you can, choose a supportive therapy which assists you and helps you cope with both the practical and emotional challenges associated with TBI and OCD.

Sources

  • Coetzer, B.R.“Obsessive-compulsive disorder following brain surgery” International Journal of Psychiatry and Medicine 2004 34: 363-377.
  • Grados, M.A. “Obsessive-compulsive disorder after traumatic brain injury” International Review of Psychiatry 2003 15: 350-358.

Source: How OCD and Traumatic Brain Injury Are Linked

, , ,

Leave a comment

[A Case Study] A Clinical Framework for Functional Recovery in a Person With Chronic Traumatic Brain Injury – Full Text

Abstract

Background and Purpose: This case study describes a task-specific training program for gait walking and functional recovery in a young man with severe chronic traumatic brain injury.

Case Description: The individual was a 26-year-old man 4 years post–traumatic brain injury with severe motor impairments who had not walked outside of therapy since his injury. He had received extensive gait training prior to initiation of services. His goal was to recover the ability to walk.

Intervention: The primary focus of the interventions was the restoration of walking. A variety of interventions were used, including locomotor treadmill training, electrical stimulation, orthoses, and specialized assistive devices. A total of 79 treatments were delivered over a period of 62 weeks.

Outcomes: At the conclusion of therapy, the client was able to walk independently with a gait trainer for approximately 1km (over 3000 ft) and walked in the community with the assistance of his mother using a rocker bottom crutch for distances of 100m (330 ft).

Discussion: Specific interventions were intentionally selected in the development of the treatment plan. The program emphasized structured practice of the salient task, that is, walking, with adequate intensity and frequency. Given the chronicity of this individual’s injury, the magnitude of his functional improvements was unexpected.

Video Abstract available for additional insights from the Authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A175).

INTRODUCTION

Each year at least 1.7 million traumatic brain injuries (TBIs) occur in the United States, which cost an estimated $76.5 billion.1 In addition, 43% of persons discharged home after hospitalization develop long-term disability.1 The sequelae of a TBI can include motor, cognitive, behavioral, and emotional dysfunctions.2 The resulting motor impairments can impact a person’s independence and participation in his or her life roles.3

Independent gait is a common therapy goal for most individuals post–brain injury. In one study, 73.3% of persons achieved independent gait by 5 months postinjury.4 It is interesting that gait recovery occurred early, suggesting that recovery of independent gait more than 3 to 4 months after injury is much less likely.4 Impairments of gait after TBI are common, including decreased velocity, step length, altered stance and swing times, and varied kinematics.5 The inability of a person post-TBI to traverse his environment using upright mobility can limit performance of basic care skills. One study estimated that approximately 33% of individuals post-TBI required assistance with at least 2 activities of daily living (ADLs).6 This high level of dependence places an extraordinary burden on caregivers.7

There is not a consensus on best practice for gait recovery after TBI.8 Although it is generally understood that early intervention creates the best environment for promoting neuroplasticity,9 addressing gait recovery after TBI is often complicated and delayed by musculoskeletal and internal injuries and by altered levels of consciousness.4,10 There is limited and conflicting literature to support the use of locomotor treadmill training (LTT) as a gait training method. There have been 2 randomized controlled trials comparing LTT with conventional gait training and neither found LTT to be superior.11,12 A third study compared manually assisted LTT with robotic-assisted LTT and found gait improvements in persons with chronic TBI with both interventions.13 In addition to these 3 research articles, there have been 3 case series/studies, Seif-Naraghi and Herman14 reported on 2 individuals in which LTT improved ambulatory independence. Likewise, Wilson and Swaboda15 found improvements in gait using LTT with 2 individuals. Scherer16 used LTT with an individual 7 months post-TBI and saw improvements in gait.

Beyond LTT, there is limited evidence to support the use of other interventions for improving gait in persons with TBI. One study found functional electrical stimulation (FES) to be successful for gait recovery with a patient with a chronic TBI when many other interventions had failed.17 There is, however, stronger evidence for the use of FES in other populations. A systematic review found a modest benefit of FES for strengthening in persons with stroke.18 Functional electrical stimulation–assisted gait has been studied in the spinal cord injury population with good outcomes.19–21

Considering the prevalence of TBI and the associated costs, it is critical to explore viable treatment options for recovery of function, especially gait. It is particularly critical to consider treatment options for the growing number of individuals with chronic TBI, many of whom have poor gait prognosis.4 Despite the limited TBI-specific evidence available to guide treatment planning, there is a substantial body of motor learning research available to guide the development of effective treatment plans.9,22–26 Critical to these plans are elements such as salience, intensity, repetition, and task specificity. This case study details a comprehensive outpatient treatment program, which included LTT and FES, as well as other interventions, for a 26-year-old man with a severe chronic TBI after a motor vehicle accident. […]

Continue —> A Clinical Framework for Functional Recovery in a Person Wit… : Journal of Neurologic Physical Therapy

, , , , , , ,

Leave a comment

[WEB SITE] 9 1/2 Need-to-Know Facts About Traumatic Brain Injury

9 1/2 Need-to-Know Things About Traumatic Brian InjuryAn estimated 5.3 million Americans — about 2 percent of the U.S. population — currently have a long-term or lifelong need for help with everyday activities due to traumatic brain injury (TBI). (1) Many believe this number to be low as it only takes into account the number of reported injuries to hospital emergency rooms and by health care professionals. We’ve compiled the top 9 1/2 things to know about traumatic brain injury, it would have been 10 but the last 1/2 was left off because memory is often affected by traumatic brain injury.

Multimedia

  1. A traumatic brain injury is a blow or jolt to the head or a penetrating head injury that disrupts the function of the brain. You do not need to lose consciousness to sustain a concussion.
  2. 1.7 million people sustain a TBI each year in the United States. By the numbers, every American has more than a 1:300 chance of sustaining a traumatic brain injury each year. (2)

  3. The three groups at highest risk for traumatic brain injury are children (0-4 year olds), teenagers (15-19 year olds), and adults (65 and older). (2)

  4. Estimates peg the number of sports-related traumatic brain injuries as high as 3.8 million per year. (2)

  5. Using a seatbelt and wearing a helmet are the best ways to prevent a TBI.

  6. Males are almost twice as likely as females to sustain a TBI.

  7. A concussion is a mild brain injury. The consequences of multiple concussions can be far more dangerous than those of a first TBI. (3)

  8. The area most often injured are the frontal lobes that control thinking and emotional regulation.

  9. A blow to one part of the brain can cause damage throughout.

9 1/2. Most people do make a good recovery from TBI.

If you found this useful, please share with family and friends or leave a comment below if you think we’ve left something off.

References:

  1. Centers for Disease Control. http://www.cdc.gov/traumaticbraininjury/pdf/BlueBook_factsheet-a.pdf
  2. Langlois JA, Rutland-Brown W, Thomas KE. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta (GA): Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2006.
  3. Cifu, David, MD. eMedicine.com. www.emedicine.com/sports/TOPIC113.HTM.

Source: 9 1/2 Need-to-Know Facts About Traumatic Brain Injury

, ,

Leave a comment

[ARTICLE] Diffusion MRI and the detection of alterations following traumatic brain injury – Full Text

Abstract

This article provides a review of brain tissue alterations that may be detectable using diffusion magnetic resonance imaging MRI (dMRI) approaches and an overview and perspective on the modern dMRI toolkits for characterizing alterations that follow traumatic brain injury (TBI). Noninvasive imaging is a cornerstone of clinical treatment of TBI and has become increasingly used for preclinical and basic research studies. In particular, quantitative MRI methods have the potential to distinguish and evaluate the complex collection of neurobiological responses to TBI arising from pathology, neuroprotection, and recovery. dMRI provides unique information about the physical environment in tissue and can be used to probe physiological, architectural, and microstructural features. Although well-established approaches such as diffusion tensor imaging are known to be highly sensitive to changes in the tissue environment, more advanced dMRI techniques have been developed that may offer increased specificity or new information for describing abnormalities. These tools are promising, but incompletely understood in the context of TBI. Furthermore, model dependencies and relative limitations may impact the implementation of these approaches and the interpretation of abnormalities in their metrics. The objective of this paper is to present a basic review and comparison across dMRI methods as they pertain to the detection of the most commonly observed tissue and cellular alterations following TBI.

1 INTRODUCTION

Despite the long history of traumatic brain injury (TBI) as a prevalent cause of death and disability in humans, defining the neurobiological underpinnings of damage and recovery following TBI remains a central challenge. The complex collection of physiological, cellular, and molecular changes that follow TBI can appear to be remarkably heterogeneous, but at the same time they are highly organized into coordinated responses such as neurodegeneration, inflammation, and regeneration. The corpus of histological studies spanning a variety of experimental animal models of TBI have provided crucial insights about the pathomechanisms and cellular alterations that accompany posttraumatic tissue change, but considerable work remains to determine the spatiotemporal evolution of abnormalities, interrelationships among different tissue responses, and their impact on health and behavioral outcomes. Noninvasive imaging in animal models has the potential to build on what is known from histology by providing longitudinal and whole-brain information, but for this approach to be successful it is essential to first improve the understanding of how imaging abnormalities correspond to tissue and cellular changes.

Diffusion magnetic resonance imaging (dMRI) methods are particularly promising for the development of imaging markers of TBI pathology because they are sensitive to microscale water displacement as a proxy for tissue environment geometry and provide a range of quantitative scalar metrics across the whole brain. Furthermore, dMRI may be combined with other conventional or advanced magnetic resonance imaging (MRI) methods such as arterial spin labeling, susceptibility-weighted imaging, or a variety of contrast agent MRI approaches to provide complementary and comprehensive outcome measures. Standard dMRI methods and especially diffusion tensor imaging (DTI) have already demonstrated sensitive detection of abnormalities in a number of experimental models of TBI. In the past decade, multiple advanced dMRI approaches have extended beyond the conventional models with the goals of improving the physical description of water diffusion (e.g., by modeling “non-Gaussian” diffusion) or parameterizing dMRI with respect to the expected biological environment (e.g., by modeling cellular compartments and/or fiber geometry). These new tools will be valuable if they are able to improve the sensitivity or specificity of dMRI following TBI; however, we lack a systematic understanding of how dMRI methods differ from one another for detecting and describing tissue alterations.

A number of excellent reviews exist to describe the current understanding of cellular mechanisms of TBI in general (Bramlett & Dietrich, 2015; Pekna & Pekny, 2012) and within particular areas of neurobiology including neurodegeneration (Johnson, Stewart, & Smith, 2013; Stoica & Faden, 2010), inflammation (Burda, Bernstein, & Sofroniew, 2016; Ziebell & Morganti-Kossmann, 2010), and myelin changes (Armstrong, Mierzwa, Marion, & Sullivan, 2016), among others. As well, several existing reviews have been published regarding MRI and DTI to study human TBI (Brody, Mac Donald, & Shimony, 2015; Duhaime et al., 2010; Hulkower, Poliak, Rosenbaum, Zimmerman, & Lipton, 2013), and recently a pertinent overview and summary of advanced dMRI tools and their relevance to clinical outcomes was published (Douglas et al., 2015). The focus of the present review is to combine what is known from work in experimental models of TBI about tissue and cellular alterations that may affect the physical tissue environment with a comparative description of the major methods for dMRI that may be differentially sensitive to TBI-related tissue change alongside several important caveats for their use and interpretation. The first section provides a categorical summary of cellular response to trauma, emphasizing alterations with microstructural, architectural, or neuroanatomical manifestations that may give rise to detectable dMRI abnormalities, including a review of the existing dMRI studies in experimental TBI models. The second section contains a comparative overview of presently available dMRI methods from standard approaches to advanced techniques. The objective of this article is to provide a reference for the current understanding of these topics as well as a perspective to help guide selection of dMRI tools based on particular aspects of TBI questions.

Continue —> Diffusion MRI and the detection of alterations following traumatic brain injury – Hutchinson – 2017 – Journal of Neuroscience Research – Wiley Online Library

Figure 2. Cross-model comparison of scalar maps in the injured brain. A range of tissue and injury-related contrasts may be visually observed in this collage of 16 representative metrics in the same slice from different dMRI models. This cross-model view of scalar maps demonstrates the potential for nonredundant information about regions of injury that may be gleaned from different models. DTI metrics of fractional anisotropy (FA), trace (TR), axial and radial diffusivity (Dax and Drad), directionally encoded color (DEC) map weighted by lattice index, DEC weighted by Westin linear anisotropy (WL) and DEC weighted by Westin planar anisotropy (WP), DKI metrics of mean kurtosis (MK), axial and radial kurtosis (AK and RK) and kurtosis FA (KFA), MAP-MRI metrics of return to the origin, axis, and plane probabilities (RTOP, RTAP, and RTPP), propagator anisotropy (PA) and non-Gaussianity (NG) and NODDI metrics of compartment volume fractions for isotropic free water (Viso), intracellular water (Vic) and intracellular restricted water (Vir), and orientation dispersion index (ODI). Insets of each map show tissue near the injury site where dMRI values are expected to be abnormal.

, , , , ,

Leave a comment

[BOOK] Chapter 5: Hand Rehabilitation after Chronic Brain Damage: Effectiveness, Usability and Acceptance of Technological Devices: A Pilot Study – Full Text

THE BOOK:  “Physical Disabilities – Therapeutic Implications”, book edited by Uner Tan, ISBN 978-953-51-3248-6, Print ISBN 978-953-51-3247-9, Published: June 14, 2017 under CC BY 3.0 license. © The Author(s).

CHAPTER 5: By Marta Rodríguez-Hernández, Carmen Fernández-Panadero, Olga López-Martín and Begoña Polonio-López

 

Abstract

Purpose: The aim is to present an overview of existing tools for hand rehabilitation after brain injury and a pilot study to test HandTutor® in patients with chronic brain damage (CBD).

Method: Eighteen patients with CBD have been selected to test perception on effectiveness, usability and acceptance of the device. This group is a sample of people belonging to a wider study consisting in a randomized clinical trial (RCT) that compares: (1) experimental group that received a treatment that combines the use of HandTutor® with conventional occupational therapy (COT) and (2) control group that receives only COT.

Results: Although no statistical significance has been analysed, patients report acceptance and satisfaction with the treatment, decrease of muscle tone, increase of mobility and better performance in activities of daily life. Subjective perceptions have been contrasted with objective measures of the range of motion before and after the session. Although no side effects have been observed after intervention, there has been some usability problems during setup related with putting on gloves in patients with spasticity.

Conclusions: This chapter is a step further of evaluating the acceptance of technological devices in chronic patients with CBD, but more research is needed to validate this preliminary results.

1. Introduction

According to the World Health Organization [1], cerebrovascular accidents (stroke) are the second leading cause of death and the third leading cause of disability. The last update of the global Burden of Ischemic and Haemorrhagic Stroke [2] indicates that although age-standardized rates of stroke mortality have decreased worldwide in the past two decades, the absolute numbers of people who have a stroke every year are increasing. In 2013, there were 10.3 million of new strokes, 6.5 million deaths from stroke, almost 25.7 million stroke survivors and 113 million of people with disability-adjusted life years (DALYs) due to stroke.

One of the most frequent problems after stroke is upper limb (UL) impairments such as muscle weakness, contractures, changes in muscle tone, and other problems related to coordination of arms, hands or fingers [3, 4]. These impairments induce disabilities in common movements such as reaching, picking up or holding objects and difficult activities of daily living (ADLs) such as washing, eating or dressing, their participation in society, and their professional activities [5]. Most of people experiencing this upper limb impairment will still have problems chronically several years after the stroke. Impairment in the upper limbs is one of the most prevalent consequences of stroke. For this reason making rehabilitation is an essential step towards clinical recovery, patient empowerment and improvement of their quality of life. [6, 7].

Traditionally, therapies are usually provided to patients during their period of hospitalization by physical and occupational therapists and consist in mechanical exercises conducted by the therapists. However, in the last decades, many changes have been introduced in the rehabilitation of post-stroke patients. On the one hand, increasingly, treatments extend in time beyond the period of hospitalization and extend in the space, beyond the hospital to the patient’s home [8]. On the other hand, new agents are involved in treatments, health professionals (doctors, nurses) and non-health professionals (engineers, exercise professionals, carers and family). Most of these changes have been made possible thanks to the development of technology [9].

2. Technological devices for upper limb rehabilitation

In the last 10 years, there has been increasing interest in the use of different technological devices for upper limb (UL) rehabilitation generally [5, 9], and particularly hand rehabilitation for stroke patients [10]. These studies have approached the problem from different points of view: (1) on the one hand, by analysing the physiological and psychophysical characteristics of different devices [11], (2) on the other analysing the key aspects of design and usability [12] and (3) finally studying its effectiveness in therapy [13, 14]. According to Kuchinke [12], these technical devices can be organized into two big groups: (1) on the one hand, devices based on virtual reality (VR) and (2) on the other robotic glove-like devices (GDs).

One of the main advantage of VRs and serious games [15] is to promote task-oriented and repetitive movement training of motor skill while using a variety of stimulating environments and facilitates adherence to treatment in the long term [16]. These devices can be used at home and in most cases do not require special investment in therapeutic hardware because they can use game consumables existing at home such as Nintendo(R) Wii1 [17, 18], Leapmotion2 [19, 20] or Kinect sensor3 [21, 22]. Although first systematic studies based in VRs indicate that there is insufficient evidence to determine its effectiveness compared to conventional therapies [8], more recent studies [13, 14, 23] offer moderate evidence on the benefits of VR for UL motor improvement. Most researchers agree that VRs work well as coadjuvant to complement more conventional therapies; however, further studies with larger samples are needed to identify most suitable type of VR systems, to determine if VR results are sustained in the long term and to define the most appropriate treatment frequency and intensity using VR systems in post-stroke patients.

On the other hand, robotic systems and glove-like devices that provide extrinsic feedback like kinaesthetic and/or tactile stimulation have stronger evidence in the literature that improve motion ability of post-stroke patients [10, 24, 25]. Most of the evidences about effectiveness of GDs are based in pilot studies with non-commercial prototypes [2630], but nowadays, there are also several commercial glove-like devices that support hand rehabilitation therapies for these patients such as HandTutor® [31, 32], Music Glove [3335], Rapael Smart Glove [36] or CyberTouch [16, 37]. The main disadvantages of GDs are price, availability, because they are not yet widespread, and in some case the difficulty of setup handling and ergonomics.

As far as we know, there is little evidence in the literature supporting commercial glove-like devices for hand rehabilitation. This chapter presents a randomized clinical study (RCS) to test HandTutor® System in patients with chronic brain damage (CBD). There are some promising studies that show positive results by applying the HandTutor® in different groups of patients with stroke and traumatic brain injury (TBI) [31, 32], but samples include only people who are in the acute or subacute disease or injury but do not include chronic patients. This may be due to the added difficulty of obtaining positive results in interventions aimed at this group, in addition to the characteristics of adaptability and usability of the device that it is also harder for this kind of patients. The present work focuses on hand rehabilitation for chronic post-stroke patients.

3. Experimental design

We have conducted a pilot study (PS) to test acceptance, usability and adaptability of HandTutor® device in patients with chronic brain damage (CBD). This work describes setup, study protocol and preliminary results.

3.1. Participants description

Eligible participants met the following inclusion criteria: (1) At least 18-year age, (2) diagnosed with acquired brain injury: stroke or traumatic brain injury (TBI) and (3) chronic brain damage (more than 24 months from injury). In the final sample, 18 participants aged between 30 and 75 years old, 28% of subjects included in the pilot study are diagnosed with TBI and the remaining 72% of stroke; of these, more than half (56%) have left hemiplegia. The time from injury time exceeds 24 months, reaching 61% of cases 5 years of evolution. All the subjects included in the study attend regularly to a direct care acquired brain injury centre.

3.2. Device description

HandTutor® is a task-oriented device consistent on an ergonomic wearable glove and a laptop with rehabilitation software to enable functional training of hand, wrist and fingers. There are different models to fit both hands (left and right) and different sizes. The system allows the realization of an intensive and repetitive training but, at the same time, is flexible and adaptable to different motor abilities of patients after suffering a neurological, traumatological or rheumatological injury. The software allows the therapist to obtain different types of measures and to customize treatments for different patients, adapting the exercises to their physical and cognitive impairments. The HandTutor® provides augmented feedback and allows the participation of the user in different games that require practising their motor skills to achieve the game objective. Game objectives are highly challenging for patients and promote the improvement of deteriorated skills.

3.3. Study protocol

A randomized clinical trial (RCT) has been conducted with an experimental group and a control group. Participants in the experimental group have been treated with HandTutor® technological device, combined with conventional occupational therapy (set of functional tasks aimed at the mobility of the upper limb in ADLs). The control group only received conventional occupational therapy. All participants in the experimental group attend two weekly sessions with HandTutor®. Both groups received a weekly session of conventional therapy. It is a longitudinal study with pre-post intervention assessment, in which each subject is his control.

This chapter describes the first phase of the RCT, consisting of a pilot study (PS) to test the acceptance, usability and adaptability of the device by patients. For the PS, 18 patients of the global group were selected. Each subject completed four sessions using HandTutor® in both hands and a weekly session of COT. Each session includes quantitative and qualitative evaluation. The former one includes pre-intervention, and post-intervention assessment evaluating passive and active joint range of fingers and wrist, the latter include patients’ interviews and therapist’s observations. During the session, participants receive immediate visual and sensory feedback about their performance during exercises.

Each session includes a pre-intervention assessment and a back, wrist and hand. At the beginning of the session, the therapist evaluated the passive and active joint range of all fingers and wrist (flexion and extension). After the session, patient and therapist reviewed the increased joint range achieved during therapy on the joints involved. The software allows analysing and comparing the minimum and maximum levels in each of the movements required by the exercise. Each session lasts 45 minutes and consists of two exercises that focus their activity in flexion and extension of wrist and fingers independently, reaction speed and accuracy of the selected motion to move some elements included in the exercise.

First exercise of the session consisted in score as many balls as possible in the basket situated at the left of the patient. Every ball came to the patient from his right side. The goal of the second exercise of the session was destroying cylindrical rocks that were going from the right side to a planet situated in the left side. In both exercises, none of the elements appeared at the same height. That is why the patient had to adjust the degrees of flexion and extension of wrist, fingers or both. The occupational therapist could modify the speed, number of balls and minimum and maximum of degrees to achieve the accomplishment.

In addition to the quantitative variables described above, the therapist evaluated with qualitative methodology through interviews and observation, the condition of the skin (redness in the contact area with the glove), increased muscle tone, pain, motivation and difficulty understanding the instructions, level of usability, applicability and functionality of the patient. During the intervention, the therapist verbally corrected offsets trunk and lower limbs, annotating associated reactions in the facial muscles.

4. Results and discussion

All the participants of the experimental group completed the pilot study (n = 18). Table 1 shows the passive and active range of motion (ROM) of the preseason evaluation in fingers and wrist, divided by diagnostic (stroke vs. traumatic brain injury). Every data about ROM is shown in millimetres (average score). In the evaluation, it is noted that the hand of the participants with traumatic brain injury showed lower passive and active joints in all of the fingers (active: V: 9, IV: 10, III: 9, II: 8 and I: 10; passive: V and IV: 14, III: 11, II: 17 and I: 16), except in the wrist (stroke: active 8; passive 23 vs. traumatic brain injury: active 18; passive 20).

Stroke (average in mm) Traumatic brain injury (average in mm)
Range of motion (flexo-extension)
Wrist
Little
Ring
Middle
Index
Thumb
Active

8
11
14.3
11
10
8.3
Passive

23
20.3
22.6
22.6
22.6
20.6
Active

18
9
10
9
8
10
Passive

20
14
14
11
17
16
Active flexion deficit
Wrist
Little
Ring
Middle
Index
Thumb

9
5.6
5
4.3
5.6
9

2
0
0
2
0
1
Active extension deficit
Wrist
Little
Ring
Middle
Index
Thumb

6
3.3
3.3
8.4
7
3.3

0
5
4
0
9
5
Treatments sessions log
Reaction speed
Accuracy
Time in seconds (half)
Number of objects
Primary ranger

10
Full
240
1
Full

10
Full
240
1
Full

Table 1.

Hand ROM evaluation pre-session and treatments sessions log.

Participants with stroke show higher deficits in the flexion active of the first, second and fifth fingers (9, 5.6 and 5.6, respectively), while the extension appears more weakened in the second and third fingers (7 and 8.4, respectively). However, the participants with traumatic brain injury show higher deficit of flexion in the third finger and the extension in the second, fourth and fifth fingers.

In every session, exercises were configured with the same reaction speed and the same number of objects, to allow the participants to achieve the maximum number of hits. Some of them showed deficit of attention, which means that the speed and the increase of stimulations could decrease the final scores and the motivation of the intervention. In the case of the participants who show spasticity, this speed allows them to autorelax and control the hand between the stimulations. The length of exercises were modified according to the muscular and attentional fatigue of the participant, starting with 5 minutes and decreasing, in some cases, up to 3 minutes. All the participants reached the accuracy of movement calculated by the system, according to the preseason ROM evaluation. Also, all of them were allowed to work all of the primary movement range calculated in the evaluation.

At the beginning of the session, the occupational therapist explained the exercise to the participant and conducted a 1-minute test to check understanding. Only was necessary to provide additional verbal instruction to improve comprehension in the 11% of the cases.

Figures 1 and 2 show the ROM evaluation of the hand. In Figure 1, the active evaluation of flexion of wrist and extension of fingers is observed. Figure 2 includes the graphic representation of the millimetres of active movements (in red colour) versus the passive ones (in blue colour) of two hands with left hemiplegia (1 and 2) and two hands of participants with traumatic brain injury (tetraparesis and predominance of affectation in the right hemibody).

media/F1.png

Figure 1.

Hand ROM evaluation (active).

media/F2.png

Figure 2.

Hand ROM evaluation HandTutor® (passive and active).

Figures 3 and 4 display the functioning of the HandTutor® during the intervention. Figure 3 shows the glove with the hand in flexo-extension, while Figure 4 shows the assisted movement of the occupational therapist to obtain the higher ranges of flexion in a participant who shows rigidity and attentional issues. Besides, in the contralateral hand, it can be seen the associated reactions in the top member, which is not forming a part of the intervention. The hand replicates the movement that the occupational therapist is trying to get in the most affected member.

media/F3.png

Figure 3.

Flexo-extension hand with HandTutor®.

media/F4.png

Figure 4.

Example of assisted movement with HandTutor®.

Figures 5 and 6 show maximum and minimum scores for diagnostic. In them, it can be observed the heterogeneity of the flexion and extension movement of the participants in the study. Regarding the wrist, it is not observed huge differences by diagnostic, except in the minimum flexo-extension of the stroke group, especially in the extension. Nevertheless, the articular ranges of the fingers differ until they reach a difference of 20 millimetres in the third finger in the case of the group diagnosed with stroke, coinciding with the group diagnosed with traumatic brain injury.

media/F5.png

Figure 5.

Flexo-extension maximum and minimum of fingers in treatments sessions log.

media/F6.png

Figure 6.

Flexo-extension maximum and minimum of wrist in treatments session logs.

Participants referred increasing satisfaction with this new therapy. During the intervention, the software provided quantitative measures and immediate feedback of variations in patient mobility showing that HandTutor® sensors are highly sensitive to small variations in patient movement. In post-intervention interviews, patients reported that the glove decreases muscle tone of the hand and wrist, allowing ending the session with increased mobility.

All sessions evaluated qualitatively, through an interview, the following parameters: skin condition, motivation, difficulty in the understanding of instructions, level of HandTutor® utility, clinic applicability and satisfaction.

During the sessions, no side effects were observed related to the skin or post-intervention pain related with the hand use. Every participant ended the sessions without any visible injury in the skin (absence of redness, marks or changes in the coloration) and without any kind of pain. This was evaluated both at the end of the session and at the beginning of the next. To be able to contrast the information in relation with the skin condition and the pain, the data were triangulated by asking the participant and his/her primary caregiver the following day of every intervention. In both cases, they confirmed our data.

All participants referred high level of motivation and satisfaction at the end of the intervention due to the perceived higher performance of limb segments and joins involved in the exercises in their activities of daily life (ADLs). The subjective perception of the patient was checked by comparing the ROM (active vs. passive) pre-post measurement session. All participants showed and transmitted a great motivation and satisfaction with the HandTutor® intervention, except for one user. This one presents acoustic, visual and tactile hypersensitivity. After the pilot study, this participant transmitted that the glove, the sound and the images of the system induced in him/her nervousness and rejection. This information was contrasted with caregivers and professionals of the centre.

Some difficulties were found at the following of the exercise instructions, the motivation and interest maintenance during the 11% of the cases, as a consequence of the presence of attention and/or memory impairments.

All participants shared the sensation of decreasing the muscular tone, immediately at the end of every session and transmitted that this feeling stayed all day long, allowing them a higher mobility and independence at the ADLs.

During the study, some problems were observed associated with the difficulty in putting on the HandTutor® glove, especially in hands with high degrees of spasticity, mainly in diagnosed cases of traumatic brain injury (27.8%; Figure 7). Participants with lower ROM valued positively that the exercise was adapted to their possibilities, so they can reach and move objects even with their limited mobility. The 20% of the users valued negatively the weight of the system placed in the forearm, especially those with weak musculature. The occupational therapists reduced the gravity effect including a cradle to facility the placement of the forearm.

media/F7.png

Figure 7.

Spastic hand with HandTutor®.

In those patients that showed sweating, there were placed vinyl or latex gloves on their hands to avoid direct contact with the glove.

Therefore, it seems that the HandTutor® is a device with high degrees of acceptance and usability among patients with CBD.

5. Conclusions

This chapter is a step further of evaluating the acceptance of technological devices in chronic patients with CBD. On one hand, in the theoretical part of the study, we have found in the literature strong evidence confirming the effectiveness of glove-like devices in hand rehabilitation after brain injury, but no so solid evidence of VRs effectiveness over traditional treatment. On the other hand, the practical pilot study to test HandTutor points in the expected direction confirming participants’ satisfaction about effectiveness and ergonomics of glove-like devices, but according to Ref. [12], there are still some issues to be solved in the usability of these devices for patients with spasticity.

The grade of usability of the HandTutor® device with chronic patients with CBD is high; we only find difficulties in those who show attention disorders and/or memory issues or sensorial hypersensibility. The degree of spasticity should also be taken into account in the design of the experience, because difficulties may arise in the placement of the device when the degree of spasticity is high or there is rigidity or other associated reactions.

Most of the studies performed with active gloves similar to HandTutor® device have been performed in patients in the acute or subacute phase of brain damage. It is important to emphasize that in this study, unlike the previous ones, the rehabilitation has been done with patients with more than 24 months of evolution since the diagnosis of the damage and therefore with a very high degree of chronicity in the neurological sequelae. This is one of the main contributions of the presented work since the more time has passed since the diagnosis of brain damage; the more difficult it is to achieve significant improvements with rehabilitation.

In our study, the HandTutor® device has performed effectively for the spasticity treatment in patients with CBD, producing improvements in the performance of the ADLs and elevating the motivation and satisfaction grades with his use in rehabilitation processes. However, this trial does not provide significant statistical evidence about HandTutor® effectiveness, and it would be recommendable to replicate the study with more participants to confirm our findings.

6. Acknowledgements

Work partially funded by SYMBHYO-ITC [MCINN PTQ-15-0705], RESET [MCINN TIN2014-53199-C3-1-R], eMadrid [CAM S2013/ICE-2715] and PhyMEL [UC3M 2015/00402/001] projects. Authors would like to thank Maria Pulido for their feedback in VR devices, and we also want to express our gratitude to the patients involved in the pilot study.

References

1 – Johnson, W., Onuma, O., Owolabic, M., & Sachdeva, S. (2016). Stroke: A global response is needed. Bulletin of the World Health Organization 94:634–634A. doi:10.2471/BLT.16.181636

2 – Feigin, V. L., Krishnamurthi, R. V., Parmar, P., Norrving, B., Mensah, G. A., Bennett, D. A., Barker-Collo S., Moran A.E., Sacco R.L., Truelsen T., Davis S., Pandian J.D., Naghavi M., Forouzanfar M.H., Nguyen G., Johnson C.O., Vos T., Meretoja A., Murray C.J.L. & Roth G.A. (2015). Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: The GBD 2013 study. Neuroepidemiology 45(3): 161–176. doi:10.1159/000441085

3 – Bleyenheuft, Y., & Gordon, A. M. (2014). Precision grip in congenital and acquired hemiparesis: Similarities in impairments and implications for neurorehabilitation. Frontiers in Human Neuroscience 8:459. doi:10.3389/fnhum.2014.00459

4 – Henderson, A., Korner-Bitensky, N., & Levin, M. (2014). Virtual reality in stroke rehabilitation: A systematic review of its effectiveness for upper limb motor recovery. Topics in Stroke Rehabilitation 14(2):52–61. doi:10.1310/tsr1402-52

5 – Hatem, S. M., Saussez, G., della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery. Frontiers in Human Neuroscience 10. doi:10.3389/fnhum.2016.00442

6 – Teasell, R. W., Foley, N. C., Bhogal, S. K., & Speechley, M. R. (2015). An evidence-based review of stroke rehabilitation. Topics in Stroke Rehabilitation 10(1):29–58. doi:10.1310/8YNA-1YHK-YMHB-XTE1

7 – Schneider, E. J., Lannin, N. A., Ada, L., & Schmidt, J. (2016). Increasing the amount of usual rehabilitation improves activity after stroke: A systematic review. Journal of Physiotherapy 62(4):182–187. doi:10.1016/j.jphys.2016.08.006

8 – Coupar, F., Pollock, A., Legg, L. A., Sackley, C., & van Vliet, P. (2012). Home based therapy programmes for upper limb functional recovery following stroke. The Cochrane Database Of Systematic Reviews 16;(5):CD006755. doi:10.1002/14651858. CD006755.pub2/abstract

9 – Pollock, A., Farmer, S. E., Brady, M. C., Langhorne, P., Mead, G. E., Mehrholz, J., & van Wijck, F. (2014). Interventions for improving upper limb function after stroke. The Cochrane Database Of Systematic Reviews 12;(11):CD010820. doi:10.1002/14651858

10 – Merrett, G. V., Metcalf, C. D., Zheng, D., Cunningham, S., Barrow, S., & Demain, S. H. (2011). Design and qualitative evaluation of tactile devices for stroke rehabilitation. In IET Seminar on Assisted Living, (pp. 1–6). IET London. http://eprints.soton.ac.uk/271802/1/merrett.pdf. doi:10.1049/ic.2011.0025

11 – Demain, S., Metcalf, C. D., Merrett, G. V., Zheng, D., & Cunningham, S. (2013). A narrative review on haptic devices: Relating the physiology and psychophysical properties of the hand to devices for rehabilitation in central nervous system disorders. Disability and Rehabilitation: Assistive Technology 8(3): 181–189. http://eprints.soton.ac.uk/339891/3/haptic_devices.pdf. doi:10.3109/17483107.2012.697532

12 – Kuchinke, L. M., & Bender, B. (2016). Technical view on requirements for future development of hand-held rehabilitation devices. In 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), (pp. 804–809). IEEE Singapore. doi:10.1109/BIOROB.2016.7523726

13 – Laver, K. E., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. The Cochrane Database Of Systematic Reviews 7;(9):CD008349. doi:10.1161/STROKEAHA.111.642439

14 – Viñas-Diz, S., & Sobrido-Prieto, M. (2016). Virtual reality for therapeutic purposes in stroke: A systematic review. Neurología (English Edition), 31(4): 255–277. doi:10.1016/j.nrleng.2015.06.007

15 – Joo, L. Y., Yin, T. S., Xu, D., Thia, E., Chia, P. F., Kuah, C. W. K., & He, K. K. (2010). A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. Journal of Rehabilitation Medicine 42(5): 437–441. doi:10.2340/16501977-0528

16 – Dimbwadyo-Terrer, I., Trincado-Alonso, F., de los Reyes-Guzmán, A., Aznar, M. A., Alcubilla, C., Pérez-Nombela, S., Ama-Espinosa, A., Polonio-López, B. & Gil-Agudo, Á. (2015). Upper limb rehabilitation after spinal cord injury: A treatment based on a data glove and an immersive virtual reality environment. Disability and Rehabilitation: Assistive Technology 11(6):462–467. doi:10.3109/17483107.2015.1027293

17 – Matamoros, M., Negrete, M., Haddad, Y., & Leder, R. S. (2010, March). Nintendo WII remote and Nunchuck as a wireless data subsystem for digital acquisition of analog physiologic data relevant to motor rehabilitation after stroke; part II. In 2010 Pan American Health Care Exchanges (pp. 198–200). Lima, Peru. IEEE. doi:10.1109/PAHCE.2010.5474568

18 – Adie, K., Schofield, C., Berrow, M., Wingham, J., Freeman, J., Humfryes, J., & Pritchard, C. (2014). Does the use of Nintendo Wii Sports™ improve arm function and is it acceptable to patients after stroke? Publication of the Protocol of the Trial of Wii™ in Stroke–TWIST. International Journal of General Medicine 7: 475. doi:10.2147/IJGM.S65379

19 – Eldem, C. (2014). Visual Neglect Assessment and Rehabilitation Using the Leap Motion. Saarbrücken: LAMBERT Academic Publishing

20 – Iosa, M. et al. (2015). Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: A feasibility pilot study. Topics in Stroke Rehabilitation 22(4): 306–316. doi:10.1179/1074935714Z.0000000036

21 – Shires, L., Battersby, S., Lewis, J., Brown, D., Sherkat, N., & Standen, P. (2013). Enhancing the tracking capabilities of the Microsoft Kinect for stroke rehabilitation. In IEEE 2nd International Conference on Serious Games and Applications for Health (SeGAH), (pp. 1–8). IEEE Portugal. doi:10.1109/SeGAH.2013.6665316

22 – Bamrungthai, P., & Pleehachinda, W. (2015, November). Development of a game-based system to support stroke rehabilitation using kinect device. In International Conference on Science and Technology (TICST), (pp. 323–326). IEEE London. doi:10.1109/TICST.2015.7369379

23 – Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., & Piron, L. (2013). Virtual reality for the rehabilitation of the upper limb motor function after stroke: A prospective controlled trial. Journal of Neuroengineering and Rehabilitation 10(1): 1. doi:10.1186/1743-0003-10-85

24 – Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., Ringer R.J., Wagner T.H., Krebs H.I., Volpe B.T., Bever C.T.Jr., Bravata D.M., Duncan P.W., Corn B.H., Maffucci A.D., Nadeau S.E., Conroy S.S., Powell J.M., Huang G.D., & Peduzzi P. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine 362(19): 1772–1783. doi:10.1056/NEJMoa0911341

25 – Subramanian, S. K., Massie, C. L., Malcolm, M. P., & Levin, M. F. (2010). Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabilitation and Neural Repair 24(2): 113–124. doi:10.1177/1545968309349941

26 – Huang, M. C., Xu, W., Su, Y., Lange, B., Chang, C. Y., & Sarrafzadeh, M. (2012). Smartglove for upper extremities rehabilitative gaming assessment. In Proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments (p. 20). ACM Heraklion, Crete, Greece. doi:10.1145/2413097.2413122

27 – Hiob, M. (2016). Interactive glove for mobility training and rehabilitation after stroke. Bachelor Thesis. In Certec – Rehabilitation Engineering and DesignCertec – Rehabilitation Engineering and DesignCertec – Rehabilitation Engineering and DesignCertec report TNS820 20161. Lund University Publications Student Papers. Lund, Sweden.

28 – Kang, B. B., Lee, H., In, H., Jeong, U., Chung, J., & Cho, K. J. (2016). Development of a polymer-based tendon-driven wearable robotic hand. In IEEE International Conference on Robotics and Automation (ICRA), 2016 (pp. 3750–3755). IEEE Stockholm. doi:10.1109/ICRA.2016.7487562

29 – Fischer, H. C., Triandafilou, K. M., Thielbar, K. O., Ochoa, J. M., Lazzaro, E. D., Pacholski, K. A., & Kamper, D. G. (2016). Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 24(3): 344–351. doi:10.1109/TNSRE.2015.2513675

30 – Isnin, S. J., Hamid, D. H. T. A. H. & Sunar, S. Design of 3D immersive learning environment to enhanced hand skill after stroke. Man in India 96(6): 1727–1736.

31 – Carmeli, E., Vatine, J. J., Peleg, S., Bartur, G., & Elbo, E. (2009). Upper limb rehabilitation using augmented feedback: Impairment focused augmented feedback with HandTutor®. In 2009 Virtual Rehabilitation International Conference. Haifa, Israel. doi:10.1109/ICVR.2009.5174258

32 – Carmeli, E., Peleg, S., Bartur, G., Elbo, E., & Vatine, J. J. (2011). HandTutor® enhanced hand rehabilitation after stroke—A pilot study. Physiotherapy Research International 16(4): 191–200. doi:10.1002/pri.485

33 – Zondervan, D., Friedman, N. Chang, E., Zhao, X., & Cramer, S. C. (2016). Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. Journal of Rehabilitation Research and Development 53(4): 457. doi:10.1682/JRRD.2015.04.0057

34 – Friedman, N., Chan, V., Zondervan, D., Bachman, M., & Reinkensmeyer, D. J. (2011, August). MusicGlove: Motivating and quantifying hand movement rehabilitation by using functional grips to play music. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2359–2363). IEEE Boston, Massachusetts, USA doi:10.1109/IEMBS.2011.6090659

35 – Friedman, N., Chan, V., Reinkensmeyer, A. N., Beroukhim, A., Zambrano, G. J., Bachman, M., & Reinkensmeyer, D. J. (2014). Retraining and assessing hand movement after stroke using the MusicGlove: Comparison with conventional hand therapy and isometric grip training. Journal of Neuroengineering and Rehabilitation 11(1): 1. doi:10.1186/1743-0003-11-76

36 – Shin, J. H., Kim, M. Y., Lee, J. Y., Jeon, Y. J., Kim, S., Lee, S., Seo B., & Choi, Y. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: A single-blinded, randomized controlled trial. Journal of Neuroengineering and Rehabilitation 13(1): 1. doi:10.1186/s12984-016-0125-x

37 – Kayyali, R., Shirmohammadi, S., El Saddik, A., & Lemaire, E. (2007). Daily-life exercises for haptic motor rehabilitation. In 2007 IEEE International Workshop on Haptic, Audio and Visual Environments and Games (pp. 118–123). IEEE Lyon, France.

Source: Hand Rehabilitation after Chronic Brain Damage: Effectiveness, Usability and Acceptance of Technological Devices: A Pilot Study | InTechOpen

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Role of Interleukin-10 in Acute Brain Injuries – Full Text

 

Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.

Introduction

Stroke and traumatic brain injury (TBI) are devastating acute neurological disorders that can result in high mortality rates or long-lasting disability. Approximately 87% of strokes are ischemic and 13% are hemorrhagic, with 10 and 3% of the latter representing intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH), respectively (1). Stroke is the fourth most common cause of death in the United States, and ischemic stroke (IS) in particular is the seventh most frequent emergency department presentation (2, 3). TBI and concussions have over twice the incidence of all strokes combined (4), with more than three million people in the United States alone living with long-term disability as a result of TBI (5). Collectively, stroke and TBI have very few treatments, and despite advances in clinical management of these disorders, they are still associated with significant disability and mortality (6, 7).

Inflammation plays a central role in the pathophysiology of stroke and TBI and can have both protective and harmful effects on brain tissue (815). Although there are some distinct differences in the inflammatory cascades following the various types of acute brain injury, there are also numerous commonalities. Acute neuroinflammation is characterized by the activation of resident central nervous system (CNS) immune surveillance glial cells that release cytokines, chemokines, and other immunologic mediators, which facilitate the recruitment of peripheral cells such as monocytes, neutrophils, and lymphocytes (8, 9, 12, 15). Collectively, this initial response is helpful in the clearance of toxic entities and the restoration and repair of damaged tissue. However, during the resolution phase, with an uncontrolled and prolonged inflammatory response, secondary damage results from overactivation of this inflammatory surge and release of additional factors that led to breakdown of the blood–brain barrier (BBB), cerebral edema, cerebral hypertension, and ischemia.

Interleukin-10 is generally known as an anti-inflammatory cytokine that exerts a plethora of immunomodulatory functions during an inflammatory response and is particularly important during the resolution phase. Expression of IL-10 in the brain increases with CNS pathology, promoting neuronal and glial cell survival, and dampening of inflammatory responses via a number of signaling pathways (16). IL-10 was originally described as cytokine synthesis inhibitory factor and in addition to attenuating the synthesis of proinflammatory cytokines, IL-10 also limits inflammation by reducing cytokine receptor expression and inhibiting receptor activation (16). Furthermore, IL-10 has potent and diverse effects on essentially all hematopoetic cells that infiltrate the brain following injury. For example, IL-10 reduces the activation and effector functions of T cells, monocytes, and macrophages, ultimately ending the inflammatory response to injury (17). The structure, function, and regulation of IL-10 have been extensively reviewed elsewhere, including a review of IL-10 in the brain (1620), although not in the context of the various forms of acute brain injury. Please refer to the aforementioned reviews for additional details, including the potential cellular sources, target cells, signal transduction, and mode of action of IL-10.

Given the intriguing multifactorial role of IL-10 in the resolution of inflammatory cascades that are important for promoting neurologic recovery from acute brain injury, here we present a comprehensive literature review of preclinical and clinical studies in this area. We focus on the contribution of IL-10 in modulating various important parameters and pathophysiologic processes important for IS, SAH, ICH, and TBI outcomes, and whether IL-10 has therapeutic or biomarker potential. A better understanding of the many functions of IL-10 in the brain after injury, particularly in the resolution phase of inflammatory processes, will promote our knowledge of the pathophysiology of these debilitating disorders and guide future development of novel therapeutic approaches.[…]

Continue —> Frontiers | Role of Interleukin-10 in Acute Brain Injuries | Neurology

, , , , , , ,

Leave a comment

[ARTICLE] Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI – Full Text

Abstract

Background

Motion capture virtual reality-based rehabilitation has become more common. However, therapists face challenges to the implementation of virtual reality (VR) in clinical settings. Use of motion capture technology such as the Xbox Kinect may provide a useful rehabilitation tool for the treatment of postural instability and cardiovascular deconditioning in individuals with chronic severe traumatic brain injury (TBI). The primary purpose of this study was to evaluate the effects of a Kinect-based VR intervention using commercially available motion capture games on balance outcomes for an individual with chronic TBI. The secondary purpose was to assess the feasibility of this intervention for eliciting cardiovascular adaptations.

Methods

A single system experimental design (n = 1) was utilized, which included baseline, intervention, and retention phases. Repeated measures were used to evaluate the effects of an 8-week supervised exercise intervention using two Xbox One Kinect games. Balance was characterized using the dynamic gait index (DGI), functional reach test (FRT), and Limits of Stability (LOS) test on the NeuroCom Balance Master. The LOS assesses end-point excursion (EPE), maximal excursion (MXE), and directional control (DCL) during weight-shifting tasks. Cardiovascular and activity measures were characterized by heart rate at the end of exercise (HRe), total gameplay time (TAT), and time spent in a therapeutic heart rate (TTR) during the Kinect intervention. Chi-square and ANOVA testing were used to analyze the data.

Results

Dynamic balance, characterized by the DGI, increased during the intervention phase χ 2 (1, N = 12) = 12, p = .001. Static balance, characterized by the FRT showed no significant changes. The EPE increased during the intervention phase in the backward direction χ 2 (1, N = 12) = 5.6, p = .02, and notable improvements of DCL were demonstrated in all directions. HRe (F (2,174) = 29.65, p = < .001) and time in a TTR (F (2, 12) = 4.19, p = .04) decreased over the course of the intervention phase.

Conclusions

Use of a supervised Kinect-based program that incorporated commercial games improved dynamic balance for an individual post severe TBI. Additionally, moderate cardiovascular activity was achieved through motion capture gaming. Further studies appear warranted to determine the potential therapeutic utility of commercial VR games in this patient population.

Trial registration

Clinicaltrial.gov ID – NCT02889289

Background

The last two decades demonstrated an exponential trend in the implementation of virtual reality (VR) in clinical settings [1]. Researchers and clinicians alike are enticed by the potential of this technology to enhance neuroplasticity secondary to rehabilitation interventions. Currently, Nintendo Wii, Sony PlayStation, and Microsoft Xbox offer commercially developed semi-immersive VR platforms which are used for rehabilitation [2]. Several studies report positive effects of these commercial technologies for improving balance, coordination and strength [345]. In 2010, Microsoft introduced a novel infrared camera that works on the Xbox platform called Kinect. The Kinect camera replaces hand held remote controls through the use of whole body motion capture technology.

Whole body motion capture VR allows a unique opportunity for individuals to experience a heightened sense of realism during task-specific therapeutic activities. However, clinicians need to be able to match a game’s components to an individual’s functional deficits. Seamon et al. [6] provided a clinical demonstration of how the Kinect platform can be used with Gentiles taxonomy for progressively challenging postural stability and influencing motor learning in a patient with progressive supranuclear palsy. Similarly, Levac et al. [7] developed a clinical framework titled, “Kinecting with Clinicians” (KWiC) to broadly address implementation barriers. The KWiC resource describes mini-games from Kinect Adventures on the Xbox 360 in order to provide a comprehensive document for clinicians to reference. Clinicians can use KWiC to base game selection and play on their client’s goals and the therapist’s plan of care for that individual.

In parallel with knowledge translation research, several studies found postural control improvements in multiple diagnostic groups including individuals with chronic stroke [8910], Friedrich’s Ataxia [11], multiple sclerosis [12], Parkinson’s disease [13], and mild to moderate traumatic brain injury (TBI) [14] when using Kinect based rehabilitation. Additional research shows that exercising with the Kinect system can reach an appropriate intensity for cardiovascular adaptation. For example, Neves et al. [15] and Salonini et al. [16] reported increases in exercise heart rate and blood pressure in healthy individuals and children with cystic fibrosis while playing Kinect games. Similarly, Kafri et al. [17] reported the ability of individuals post-stroke to reach levels of light to moderate intensity using Kinect games.

Individuals with TBI are likely to have a peak aerobic capacity 65–74% to that of healthy control subjects [18]. There is limited research on cardiovascular training after severe TBI [18]. However, Bateman et al. [19] demonstrated that individuals with severe TBI can improve cardiovascular fitness during a 12-week program participants exercised at an intensity equal to 60–80% of their maximum heart rate 3 days per week. Commercial Xbox Kinect games, such as Just Dance 3, have been shown to improve cardiovascular outcomes for individuals with chronic stroke [20]. However, there is a lack of research investigating the efficacy of motion capture VR on cardiovascular health for individuals with chronic severe TBI. Walker et al. [21] makes the recommendation for rehabilitation programs to go beyond independence in basic mobility and to develop treatment strategies to address high-level physical activities. The high rates of sedentary behavior in individuals across all severities of TBI could be attributed the lack of addressing these limitations in activity.

Postural instability is the second most frequent, self-reported limitation, 5 years post injury for individuals with severe TBI [22]. It is unknown whether use of motion capture VR in individuals with severe, chronic TBI can address neuromotor impairments related to high-level activities such as maintaining postural control during walking. Similarly, there is a need to determine if training with VR motion capture can attain necessary intensity levels for inducing cardiovascular adaptation. Due to this knowledge gap and heterogencity of individuals post TBI, feasibility of investigatory interventions should be explored prior to examining effectiveness with randomized control trials. Single system experimental design (SSED) provides a higher level of rigor compared to case studies based on the ability to compare outcomes across phase conditions with the participant acting as their own control. The value of SSED within rehabilitation has been noted by other investigators [2324] making it an attractive design for practitioners aiming to gain insight into novel clinical interventions prior to large scale clinical trials. The purpose of this proof of concept and feasibility study was to evaluate the effectiveness of commercially available Xbox One Kinect games as a treatment modality for the rehabilitation of balance and cardiovascular fitness for a veteran with chronic severe TBI. Additionally, we provide herein a description of the Kinect games to assist providers with clinical implementation. […]

Continue —>  Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI | Archives of Physiotherapy | Full Text

 

Fig. 1 Dynamic gait index (DGI) scores across phases with celeration line analyses. Two-standard deviation (2 SD) celeration line was used for chi-square analysis between baseline and intervention phases as no trend present in baseline phase. The celeration line was carried through the retention phase for Chi-square analysis due to presence of upward trend in intervention phase

, , , , , , , ,

Leave a comment

[BLOG POST] 5 Things Every TBI Survivor Wants You to Understand – HuffPost

2015-03-04-1425489683-4035103-TBI5things.jpg

March is National Brain Injury Awareness Month, and as promised, I am writing a series of blogs to help educate others and bring awareness to traumatic brain injuries (TBI).

1. Our brains no longer work the same. 
We have cognitive deficiencies that don’t make sense, even to us. Some of us struggle to find the right word, while others can’t remember what they ate for breakfast. People who don’t understand, including some close to us, get annoyed with us and think we’re being “flaky” or not paying attention. Which couldn’t be further from the truth, we have to try even harder to pay attention to things because we know we have deficiencies.

Martha Gibbs from Richmond, VA, suffered a TBI in May of 2013 after the car she was a passenger in hit a tree at 50 mph. She sums up her “new brain” with these words:

Almost 2 years post-accident, I still suffer short-term memory loss and language/speech problems. I have learned to write everything down immediately or else it is more than likely that information is gone and cannot be retrieved. My brain sometimes does not allow my mouth to speak the words that I am trying to get out.

2. We suffer a great deal of fatigue.
We may seem “lazy” to those who don’t understand, but the reality is that our brains need a LOT more sleep than normal, healthy brains. We also have crazy sleep patterns, sometimes sleeping only three hours each night (those hours between 1 and 5 a.m. are very lonely when you’re wide awake) and at other times sleeping up to 14 hours each night (these nights are usually after exerting a lot of physical or mental energy).

Every single thing we do, whether physical or mental, takes a toll on our brain. The more we use it, the more it needs to rest. If we go out to a crowded restaurant with a lot of noise and stimulation, we may simply get overloaded and need to go home and rest. Even reading or watching tv causes our brains to fatigue.

Toni P from Alexandria, VA, has sustained multiple TBI’s from three auto accidents, her most recent one being in 2014. She sums up fatigue perfectly:

I love doing things others do, however my body does not appreciate the strain and causes me to ‘pay the price,’ which is something that others don’t see.  I like to describe that my cognitive/physical energy is like a change jar. Everything I do costs a little something out of the jar.  If I keep taking money out of the jar, without depositing anything back into the jar, eventually I run out of energy. I just don’t know when this will happen.  Sometimes it’s from an activity that seemed very simple, but was more work then I intended. For me, like others with TBIs, I’m not always aware of it until after I’ve done too much.

3. We live with fear and anxiety. 
Many of us live in a constant state of fear of hurting ourselves again. For myself personally, I have a fear of falling on the ice, and of hitting my head in general. I know I suffered a really hard blow to my head, and I am not sure exactly how much it can endure if I were to injure it again. I am deeply afraid that if it were to take another blow, I may not recover (ie, death) or I may find myself completely disabled. I am fortunate to have a great understanding of the Law of Attraction and am trying my hardest to change my fears into postive thoughts with the help of a therapist.

Others have a daily struggle of even trying to get out of bed in the morning. They are terrified of what might happen next to them. These are legitimate fears that many TBI survivors live with. For many, it manifests into anxiety. Some have such profound anxiety that they can hardly leave their home.

Jason Donarski-Wichlacz from Duluth, MN, received a TBI in December of 2014 after being kicked in the head by a patient in a behavioral health facility. He speaks of his struggles with anxiety:

I never had anxiety before, but now I have panic attacks everyday. Sometimes about my future and will I get better, will my wife leave me, am I still a good father. Other times it is because matching socks is overwhelming or someone ate the last peanut butter cup.

I startle and jump at almost everything. I can send my wife a text when she is in the room. I just sent the text, I know her phone is going to chime… Still I jump every time it chimes.

Grocery stores are terrifying. All the colors, the stimulation, and words everywhere. I get overwhelmed and can’t remember where anything is or what I came for.

4. We deal with chronic pain.
Many of us sustained multiple injuries in our accidents. Once the broken bones are healed, and the bruises and scars have faded, we still deal with a lot of chronic pain. For myself, I suffered a considerable amount of neck and chest damage. This pain is sometimes so bad that I am not able to get comfortable in bed to fall asleep. Others have constant migraines from hitting their head. For most of us, a change in weather wreaks all sort of havoc on our bodies.

Lynnika Butler, of Eureka, CA, fell on to concrete while having a seizure in 2011, fracturing her skull and resulting in a TBI. She speaks about her chronic migraine headaches (which are all too common for TBI survivors)

I never had migraines until I sustained a head injury. Now I have one, or sometimes a cluster of two or three, every few weeks. They also crop up when I am stressed or sleep deprived. Sometimes medication works like magic, but other times I have to wait out the pain. When the migraine is over, I am usually exhausted and spacey for a day or two.

5. We often feel isolated and alone.
Because of all the issues I stated above, we sometimes have a hard time leaving the house. Recently I attended a get together of friends at a restaurant. There were TVs all over the room, all on different channels. The lights were dim and there was a lot of buzz from all of the talking. I had a very hard time concentrating on what anyone at our table was saying, and the constantly changing lights on the TVs were just too much for me to bear. It was sensory stimulation overload. I lasted about two hours before I had to go home and collapse into bed. My friends don’t see that part. They don’t understand what it’s like. This is what causes many of us to feel so isolated and alone. The “invisible” aspect of what we deal with on a daily basis is a lonely struggle.

Kirsten Selberg from San Francisco, CA, fell while ice skating just over a year ago and sustained a TBI. She speaks to the feelings of depression and isolation so perfectly:

Even though my TBI was a ‘mild’ one, I found myself dealing with a depression that was two-fold. I was not only depressed because of my new mental and physical limitations, but also because many of my symptoms forced me to spend long periods of time self-isolating from the things — like social interactions — that would trigger problems for me. With TBI it is very easy to get mentally and emotionally turned inward, which is a very lonely place to be.

Also, check out my other blogs on the Huffington Post:
“Life With a Traumatic Brain Injury”
“Life With a TBI: March is National Brain Injury Awareness Month”

I invite you to join my TBI Tribe on Facebook if you are a survivor, or loved one of a survivor.

Source: 5 Things Every TBI Survivor Wants You to Understand | HuffPost

, , , , ,

Leave a comment

%d bloggers like this: