Posts Tagged Upper Extremity

[Abstract] Home-based upper extremity stroke therapy using a multi-user virtual reality environment: a randomized trial

Abstract

Objective

To compare participation and subjective experience of participants in both home-based multi-user VR therapy and home-based single-user VR therapy.

Design

Crossover, randomized trial

Setting

Initial training and evaluations occurred in a rehabilitation hospital; the interventions took place in participants’ homes

Participants

Stroke survivors with chronic upper extremity impairment (n=20)

Interventions

4 weeks of in-home treatment using a custom, multi-user virtual reality system (VERGE): two weeks of both multi-user (MU) and single-user (SU) versions of VERGE. The order of presentation of SU and MU versions was randomized such that participants were divided into two groups, first multi-user (FMU) and first single-user (FSU).

Main Outcome Measures

We measured arm displacement during each session (meters) as the primary outcome measure. Secondary outcome measures include: time participants spent using each MU and SU VERGE, and Intrinsic Motivation Inventory (IMI) scores. Fugl-Meyer Upper-Extremity (FMUE) score and compliance with prescribed training were also evaluated. Measures were recorded before, midway, and after the treatment. Activity and movement were measured during each training session.

Results

Arm displacement during a session was significantly affected the mode of therapy (MU: 414.6m, SU: 327.0m, p=0.019). Compliance was very high (99% compliance for MU mode and 89% for SU mode). Within a given session, participants spent significantly more time training in the MU mode than in the SU mode (p=0.04). FMUE score improved significantly across all participants (Δ3.2, p=0.001).

Conclusions

Multi-user VR exercises may provide an effective means of extending clinical therapy into the home.

via Home-based upper extremity stroke therapy using a multi-user virtual reality environment: a randomized trial – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[ARTICLE] An Exploratory Study of Predictors of Response to Vagus Nerve Stimulation Paired with Upper-Limb Rehabilitation After Ischemic Stroke – Full Text

Abstract

We have previously shown the safety and feasibility of vagus nerve stimulation (VNS) paired with upper-limb rehabilitation after ischemic stroke. In this exploratory study, we assessed whether clinical and brain MRI variables predict response to treatment. We used data from two completed randomised and blinded clinical trials (N = 35). All participants had moderate to severe upper-limb weakness and were randomised to 6-weeks intensive physiotherapy with or without VNS. Participants had 3 T brain MRI at baseline. The primary outcome was change in Fugl-Meyer Assessment, upper-extremity score (FMA-UE) from baseline to the first day after therapy completion. We used general linear regression to identify clinical and brain MRI predictors of change in FMA-UE. VNS-treated participants had greater improvement in FMA-UE at day-1 post therapy than controls (8.63 ± 5.02 versus 3.79 ± 5.04 points, t = 2.83, Cohen’s d = 0.96, P = 0.008). Higher cerebrospinal fluid volume was associated with less improvement in FMA-UE in the control but not VNS group. This was also true for white matter hyperintensity volume but not after removal of an outlying participant from the control group. Responders in the VNS group had more severe arm impairment at baseline than responders to control. A phase III trial is now underway to formally determine whether VNS improves outcomes and will explore whether these differ in people with more severe baseline upper-limb disability and cerebrovascular disease.

Introduction

Vagus nerve stimulation (VNS) paired with upper-limb rehabilitation is a potential novel treatment for arm weakness after stroke. VNS triggers release of plasticity promoting neuromodulators, such as acetylcholine and norepinephrine, throughout the cortex1. Timing this with motor training drives task-specific plasticity in the motor cortex2 and VNS paired with rehabilitative training has been shown to improve recovery in different preclinical models of stroke, both in comparison to VNS alone and rehabilitation alone3,4. These improvements were associated with synaptic reorganization of cortical motor networks and recruitment of residual motor neurons controlling the impaired forelimb5. Two clinical studies comparing VNS paired with upper-limb rehabilitation with upper-limb rehabilitation alone have shown it to be acceptably safe and feasible and that it may improve arm weakness after ischemic stroke6,7.

Arm weakness is the most common symptom of stroke and approximately half of stroke survivors with arm weakness have prolonged disability, which is associated with reduced quality of life8,9. Restoration of arm function after stroke is a priority for many stroke survivors10. However, recovery of motor function after stroke varies, so identifying factors that help predict response is important to aid patient selection and identify those most likely to respond. This is particularly true where therapies are invasive (involving surgery) and/or time consuming; VNS requires implantation of a nerve stimulator which is costly and associated with risks of anaesthesia, a small risk of infection and small risk of vocal cord palsy. There are several clinical and brain imaging markers that predict cognitive and functional recovery after stroke including age, level of impairment, white matter hyperintensity (WMH) volume, stroke lesion volume, corticospinal tract damage and blood pressure level11,12,13.

In the present study, we combined clinical and brain magnetic resonance imaging (MRI) data from our two previous randomised trials of VNS paired with rehabilitation for the upper-limb after ischemic stroke6,7. We performed exploratory analyses to assess predictors of response to VNS paired with upper-limb rehabilitation. Our goal was to identify predictive factors for further study that may help with patient selection for this promising novel therapy. […]

 

Continue —->  An Exploratory Study of Predictors of Response to Vagus Nerve Stimulation Paired with Upper-Limb Rehabilitation After Ischemic Stroke | Scientific Reports

figure1

Illustration of brain MRI measures obtained. (A) Raw FLAIR image. (B) Segmentation of white matter hyperintensities (WMH; bright red) and ischaemic stroke infarct volumes (royal blue). (C) Estimate of the left (cyan) and right (pink) corticospinal tracts. (D) Interaction between stroke lesion (dull red) and corticospinal tract (light blue) in a 3D rendering. Images A and B come from the same patient, C and D are from separate patients and all are shown in neurological (“left is left”) convention.

, , , , , , ,

Leave a comment

[Abstract] Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study

Abstract

Background and Purpose

Transcranial direct current stimulation (tDCS) is a treatment used in the rehabilitation of stroke patients aiming to improve functionality of the plegic upper extremity. Currently, tDCS is not routinely used in post stroke rehabilitation. The aim of this study was to establish the effects of bihemspheric tDCS combined with physical therapy (PT) and occupational therapy (OT) on upper extremity motor function.

Methods

Thirty-two stroke inpatients were randomised into 2 groups. All patients received 15 sessions of conventional upper extremity PT and OT over 3 weeks. The tDCS group (n = 16) also received 30 minutes of bihemispheric tDCS and the sham group (n = 16) 30 minutes of sham bihemispheric tDCS simultaneously to OT. Patients were evaluated before and after treatment using the Fugl Meyer upper extremity (FMUE), functional independence measure (FIM), and Brunnstrom stages of stroke recovery (BSSR) by a physiatrist blind to the treatment group

Results

The improvement in FIM was higher in the tDCS group compared to the sham group (P = .001). There was a significant within group improvement in FMUE, FIM and BSSR in those receiving tDCS (P = .001). There was a significant improvement in FIM in the chronic (> 6months) stroke sufferers who received tDCS when compared to those who received sham tDCS and when compared to subacute stroke (3-6 months) sufferers who received tDCS/sham.

Conclusions

Upper extremity motor function in hemiplegic stroke patients improves when bihemispheric tDCS is used alongside conventional PT and OT. The improvement in functionality is greater in chronic stroke patients.

via Effects of Bihemispheric Transcranial Direct Current Stimulation on Upper Extremity Function in Stroke Patients: A randomized Double-Blind Sham-Controlled Study – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[Abstract] The effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial

Abstract

Objective

To compare the effects of unilateral, proximal arm robot-assisted therapy combined with hand functional electrical stimulation to intensive conventional therapy for restoring arm function in subacute stroke survivors.

Design

This was a single blinded, randomized controlled trial.

Setting

Inpatient Rehabilitation University Hospital.

Participants

Forty patients diagnosed with ischemic stroke (time since stroke <8 weeks) and upper limb impairment were enrolled.

Interventions

Participants randomized to the experimental group received 30 sessions (5 sessions/week) of robot-assisted arm therapy and hand functional electrical stimulation (RAT + FES). Participants randomized to the control group received a time-matched intensive conventional therapy (ICT).

Main outcome measures

The primary outcome was arm motor recovery measured with the Fugl-Meyer Motor Assessment. Secondary outcomes included motor function, arm spasticity and activities of daily living. Measurements were performed at baseline, after 3 weeks, at the end of treatment and at 6-month follow-up. Presence of motor evoked potentials (MEPs) was also measured at baseline.

Results

Both groups significantly improved all outcome measures except for spasticity without differences between groups. Patients with moderate impairment and presence of MEPs who underwent early rehabilitation (<30 days post stroke) demonstrated the greatest clinical improvements.

Conclusions

A robot-assisted arm training plus hand functional electrical stimulation was no more effective than intensive conventional arm training. However, at the same level of arm impairment and corticospinal tract integrity, it induced a higher level of arm recovery.

 

via The effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial – ScienceDirect

, , , , , , , , , ,

Leave a comment

[Abstract] The influence of virtual reality on rehabilitation of upper limbs and gait after stroke: a systematic review – Full Text PDF

Abstract

Stroke is the leading cause of functional disability in adults. Its neurovascular origin and injury location indicates the possible functional consequences. Virtual rehabilitation (VR) using patient’s motion control is a new technological tool for conventional rehabilitation, allowing patterns of movements in varied environments, involving the patient in therapy through the playful components offered by VR applications. The objective of this systematic review is to collect data regarding the influence promoted by VR in upper limb and hemiparetic gait. Full articles published between 2009 and 2015 in english were searched and selected in PubMed, Cochrane and Pedro databases. Eleven articles included (5 for VR and upper limbs; 4 for VR, gait and balance; and 2 for VR and neural mechanisms). The articles included demonstrate efficacy in VR treatment in hemiparetic patients in the variables analyzed.

Download Full Text PDF

via The influence of virtual reality on rehabilitation of upper limbs and gait after stroke: a systematic review | Journal of Innovation and Healthcare Management

, , , , , , , , ,

Leave a comment

[ARTICLE] A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial – Full Text

Highlights

The rehabilitation effects of the NMES robotic hand and robotic hand were compared.

Both training systems could significantly improve the motor function of upper limb.

The NMES robot was more effective than the pure robot.

NMES applied on distal muscle could benefit the recovery in the entire upper limb.

 

Abstract

Objective

To compare the rehabilitation effects of the electromyography (EMG)-driven neuromuscular electrical stimulation (NMES) robotic hand and EMG-driven robotic hand for chronic stroke.

Methods

This study was a randomized controlled trial with a 3-month follow-up. Thirty chronic stroke patients were randomly assigned to receive 20-session upper limb training with either EMG-driven NMES robotic hand (NMES group, n = 15) or EMG-driven robotic hand (pure group, n = 15). The training effects were evaluated before and after the training, as well as 3 months later, using the clinical scores of Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Action Research Arm Test (ARAT), and Functional Independence Measure (FIM). Session-by-session EMG parameters, including the normalized EMG activation level and co-contraction indexes (CIs) of the target muscles were applied to monitor the recovery progress in muscular coordination patterns.

Results

Both groups achieved significantly increased FMA and ARAT scores (p < 0.05), and the NMES group improved more (p < 0.05). A significant improvement in MAS was obtained in the NMES group (p < 0.05) but absence in the pure group. Meanwhile, better performance could be obtained in the NMES group in releasing the EMG activation levels and CIs than the pure group across the training sessions (p < 0.05).

Conclusion

Both training systems were effective in improving the long-term distal motor functions in upper limb, where the NMES robot-assisted training achieved better voluntary motor recovery and muscle coordination and more release in muscle spasticity.

Significance

This study indicated more effective distal rehabilitation using the NMES robot than the pure robot-assisted rehabilitation.

1. Introduction

Upper limb motor deficits are common after stroke, and observed in over 80% of stroke survivors [1,2]. Various rehabilitation devices have been purposed to assist human physical therapists to provide effective long-term rehabilitation programs [[3][4][5]]. Among them, rehabilitation robots and neuromuscular electrical stimulation (NMES) are most widely used in stroke rehabilitation practices. Rehabilitation robots have been recognized as efficient in such cases and could represent a cost-effective addition to conventional rehabilitation services because they provide highly intensive and repetitive training [[6][7][8][9]]. It has been reported that the integration of voluntary effort (e.g. electromyography, EMG) into robotic design could contribute significantly to motor recovery in stroke patients [6,10]. This is because an EMG-driven strategy can maximize the involvement of voluntary effort in the training, and its effectiveness at improving upper limb voluntary motor functions have been proved by many EMG-driven robot-assisted upper-limb training systems [[11][12][13]]. However, rehabilitation robots are unable to directly activate the desired muscle groups, which may only assist, or even dominate limb movement such as continuous passive motions (CPM) [14]. In addition, stroke patients usually cooperate with compensatory motions from other muscular activities to activate the target muscles, which may lead to ‘learned disuse’ [15]. However, NMES can effectively limit compensatory motions by stimulating specific muscles via cyclic electrical currents, which provides repetitive sensorimotor experiences [16]. With the advantage of precisely activating the target muscle, NMES has been reported to be effective in evoking sensory feedback, improving muscle force, and thus promoting motor function in stroke patients [17,18]. Nevertheless, training programs assisted by NMES alone are also suboptimal due to the difficulty of controlling movement trajectories and the early appearance of fatigue [19,20].

Accordingly, various NMES robot-assisted upper-limb training programs which combine these two unique techniques have been proposed to integrate the benefits and minimize the disadvantages [7,12,14,21,22]. The rehabilitation effectiveness of these combined systems has been investigated and reported to be effective in improving motor recovery. Several studies have compared the training outcomes of NMES robot-assisted training and other training programs. For example, Qian et al. [22] reported that NMES-robot-assisted upper-limb training could achieve better motor outcomes when compared with conventional therapies for subacute stroke patients. Meanwhile, another study which compared the training effects between robot-aided training with NMES and robot-aided training solely using the InMotion ARM™ Robot in the subacute period demonstrated that the active ranges of motion of the NMES robot-training group were significantly higher compared with the robot-training group [23]. Coincidentally, investigations into applications in chronic stroke patients have also been carried out. For instance, Hu et al. [14] proposed an EMG-driven NMES robot system for wrist training; this combined device improved muscle activation levels related to the wrist and reduced compensatory muscular activities at the elbow, while these training outcomes were absent for the EMG-driven robot-assisted training alone. Indeed, a similar study by another research group also achieved better rehabilitation outcomes on some clinical assessments using the combined system compared to robot-assisted therapy alone [21].

In the literature, most studies on current rehabilitation devices combining the NMES and robotic systems targeted the elbow and wrist joints [7,[21][22][23]], while very few focused on the hand and fingers [24]. In addition, a comparison of the training effects for hand rehabilitation between the NMES robot and other hand rehabilitation devices has not yet been adequately conducted. Indeed, the primary upper-limb disability post-stroke is the loss of hand function, and rehabilitation of the distal joints after stroke is much more difficult than the motor recovery of the proximal joints due to the compensatory motions from the proximal joints [25]. Hence, developing effective rehabilitation devices to minimize compensatory movements for hand motor recovery is especially meaningful for stroke rehabilitation. In our previous work, we developed an EMG-driven NMES robotic hand and suggested it for use in hand rehabilitation after stroke [26]. Our device provides fine control of hand movements and activates the target muscles selectively for finger extension/flexion, and its feasibility and effectiveness have been verified by a single group trial [12]. However, whether the long-term rehabilitation effect of this EMG-driven NMES robotic hand is comparable or even better than other hand rehabilitation devices are still unclear and need to be investigated quantitively. Therefore, the objective of this study is to compare the training effects of hand rehabilitation assisted by an NMES robotic hand and by a pure robotic hand though a randomized controlled trial with a 3-month follow-up (3MFU).

2. Methodology

2.1. Participants

This work was approved by the Human Subjects Ethics Sub-Committee of the Hong Kong Polytechnic University. A total of 53 stroke survivors were screened for the training from local districts. 30 participants with chronic stroke satisfied the following inclusion criteria: (1) The participants were at least 6 months after the onset of a singular and unilateral brain lesion due to stroke, (2) both the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints could be extended to 180° passively, (3) muscle spasticity during extension at the finger joints and the wrist joint was below 3 as measured by the Modified Ashworth Scale (MAS) [27], ranged from 0 (no increase in muscle tone) to 4 (affected part rigid), (4) detectable voluntary EMG signals from the driving muscle on the affected side (three times of the standard deviation (SD) above the EMG baseline), and (5) no visual deficit and able to understand and follow simple instructions as assessed by the Mini-Mental State Examination (MMSE > 21) [28].

This work involved a randomized controlled trial with a 3-month follow-up (3MFU). The potential participants were first told that the training program they would receive could be either NMES robotic hand training or pure robotic hand training, and all recruited participants submitted their written consent before randomization. Then, the recruited participants were randomly assigned into two groups according to a computer-based random number generator, i.e., the computer program generated either “1” (denoting the NMES robotic hand training group) or “2” (the pure robotic hand group) with an equal probability of 0.5 (Matlab, 2017, Mathworks, Inc.). Fig. 1 shows the Consolidated Standards of Reporting Trials flowchart of the training program.

Fig. 1

Fig. 1. The consolidated standards of reporting trials flowchart of the experimental design.

2.2. Interventions

For both groups, each participant was invited to attend a 20-session robotic hand training with an intensity of 3–5 sessions/week, completed within 7 consecutive weeks. The training setup of both groups is shown in Fig. 2. This robotic hand training system can assist with finger extension and flexion of the paretic limb for patients after stroke. In this work, real-time voluntary EMG detected from the abductor pollicis brevis (APB) and extensor digitorum (ED) muscles were used to control the respective hand closing and opening movements, and the threshold level of each motion phase was set at three times the SD above the EMG baseline at resting state [12]. For example, during the motions of finger flexion, once the EMG activation level of the APB muscle reached a preset threshold, the robotic hand would provide mechanical assistance for hand closing. Similarly, during the motions of finger extension, the robotic hand would assist with hand opening when the EMG activation level of the ED muscle reached a preset threshold. For the NMES robot group, synchronized support from the NMES and the robot were both provided. The NMES electrode pair (30 mm diameter; Axelgaard Corp., Fallbrook, CA, USA) was attached over the ED muscle to provide stimulation during finger extension. The outputs of NMES were square pulses with a constant amplitude of 70 V, a stimulation frequency of 40 Hz, and a manually adjustable pulse width in the range 0–300 μs. Before the training, the pulse width was set at the minimum intensity, which achieved a fully extended position of the fingers in each patient. During the training, NMES would be triggered by the EMG from the ED muscle first and then provided stimulation to the ED muscle to assist hand-opening motions for the entire phase of finger extension, while no assistance from NMES was provided during finger flexion to avoid the possible increase of finger spasticity after stimulation [29]. For the pure robot group, the difference between the two groups was that no NMES was applied in the pure robot group. A detailed account of the working principles of the robotic hand have been described in our previous work [12,30,31].

Fig. 2

Fig. 2. The experimental setup of the robotic hand training: (A) pure robotic hand group; (B) neuromuscular electrical stimulation (NMES) robotic hand group.

 […]

 

Continue —-> A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial – ScienceDirect

, , , , , , , , , , , ,

Leave a comment

[Abstract] Robot-Assisted Arm Training in Chronic Stroke: Addition of Transition-to-Task Practice

Abstract

Background. Robot-assisted therapy provides high-intensity arm rehabilitation that can significantly reduce stroke-related upper extremity (UE) deficits. Motor improvement has been shown at the joints trained, but generalization to real-world function has not been profound.

Objective. To investigate the efficacy of robot-assisted therapy combined with therapist-assisted task training versus robot-assisted therapy alone on motor outcomes and use in participants with moderate to severe chronic stroke-related arm disability.

Methods. This was a single-blind randomized controlled trial of two 12-week robot-assisted interventions; 45 participants were stratified by Fugl-Meyer (FMA) impairment (mean 21 ± 1.36) to 60 minutes of robot therapy (RT; n = 22) or 45 minutes of RT combined with 15 minutes therapist-assisted transition-to-task training (TTT; n = 23). The primary outcome was the mean FMA change at week 12 using a linear mixed-model analysis. A subanalysis included the Wolf Motor Function Test (WMFT) and Stroke Impact Scale (SIS), with significance P <.05.

Results. There was no significant 12-week difference in FMA change between groups, and mean FMA gains were 2.87 ± 0.70 and 4.81 ± 0.68 for RT and TTT, respectively. TTT had greater 12-week secondary outcome improvements in the log WMFT (-0.52 ± 0.06 vs -0.18 ± 0.06; P = .01) and SIS hand (20.52 ± 2.94 vs 8.27 ± 3.03; P = .03).

Conclusion. Chronic UE motor deficits are responsive to intensive robot-assisted therapy of 45 or 60 minutes per session duration. The replacement of part of the robotic training with nonrobotic tasks did not reduce treatment effect and may benefit stroke-affected hand use and motor task performance.

 

via Robot-Assisted Arm Training in Chronic Stroke: Addition of Transition-to-Task Practice. – PubMed – NCBI

, , , , , , , , ,

Leave a comment

[Abstract] Variable impedance control of finger exoskeleton for hand rehabilitation following stroke

Abstract

Purpose

The purpose of this paper is to propose a variable impedance control method of finger exoskeleton for hand rehabilitation using the contact forces between the finger and the exoskeleton, making the output trajectory of finger exoskeleton comply with the natural flexion-extension (NFE) trajectory accurately and adaptively.

Design/methodology/approach

This paper presents a variable impedance control method based on fuzzy neural network (FNN). The impedance control system sets the contact forces and joint angles collected by sensors as input. Then it uses the offline-trained FNN system to acquire the impedance parameters in real time, thus realizing tracking the NFE trajectory. K-means clustering method is applied to construct FNN, which can obtain the number of fuzzy rules automatically.

Findings

The results of simulations and experiments both show that the finger exoskeleton has an accurate output trajectory and an adaptive performance on three subjects with different physiological parameters. The variable impedance control system can drive the finger exoskeleton to comply with the NFE trajectory accurately and adaptively using the continuously changing contact forces.

Originality/value

The finger is regarded as a part of the control system to get the contact forces between finger and exoskeleton, and the impedance parameters can be updated in real time to make the output trajectory comply with the NFE trajectory accurately and adaptively during the rehabilitation.

 

via Variable impedance control of finger exoskeleton for hand rehabilitation following stroke | Emerald Insight

, , , , , , , , , ,

Leave a comment

[ARTICLE] Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study – Full Text

Abstract

Background

Virtual reality (VR)-based rehabilitation is considered a beneficial therapeutic option for stroke rehabilitation. This pilot study assessed the clinical feasibility of a newly developed VR-based planar motion exercise apparatus (Rapael Smart Board™ [SB]; Neofect Inc., Yong-in, Korea) for the upper extremities as an intervention and assessment tool.

Methods

This single-blinded, randomized, controlled trial included 26 stroke survivors. Patients were randomized to the intervention group (SB group) or control (CON) group. During one session, patients in the SB group completed 30 min of intervention using the SB and an additional 30 min of standard occupational therapy; however, those in the CON group completed the same amount of conventional occupational therapy. The primary outcome was the change in the Fugl–Meyer assessment (FMA) score, and the secondary outcomes were changes in the Wolf motor function test (WMFT) score, active range of motion (AROM) of the proximal upper extremities, modified Barthel index (MBI), and Stroke Impact Scale (SIS) score. A within-group analysis was performed using the Wilcoxon signed-rank test, and a between-group analysis was performed using a repeated measures analysis of covariance. Additionally, correlations between SB assessment data and clinical scale scores were analyzed by repeated measures correlation. Assessments were performed three times (baseline, immediately after intervention, and 1 month after intervention).

Results

All functional outcome measures (FMA, WMFT, and MBI) showed significant improvements (p < 0.05) in the SB and CON groups. AROM showed greater improvements in the SB group, especially regarding shoulder abduction and internal rotation. There was a significant effect of time × group interactions for the SIS overall score (p = 0.038). Some parameters of the SB assessment, such as the explored area ratio, mean reaching distance, and smoothness, were significantly associated with clinical upper limb functional measurements with moderate correlation coefficients.

Conclusions

The SB was available for improving upper limb function and health-related quality of life and useful for assessing upper limb ability in stroke survivors.

Background

Virtual reality (VR)-based rehabilitation is being increasingly used for post-stroke rehabilitation []. A recent systematic review mentioned that VR is an emerging treatment option for upper limb rehabilitation among stroke patients []. The benefits of VR include real-time feedback, easy adaptability, and the provision of safe environments that mimic the real world []. The gaming property of VR allows patients to experience fun, active participation, positive emotions, and engagement []. Therefore, rehabilitation with VR enables more intense and repetitive training, which is important for rehabilitation and the promotion of neural plasticity [].

VR systems commonly used in the entertainment industry, such as Wii and Kinect, could be used for rehabilitation. However, these game-like systems are only applicable to patients with muscle strength above a certain value, thus limiting their use by more affected patients. Therefore, adjunct therapies, such as functional electrical stimulation and robotics, have been combined with these systems []. However, those adjunct therapies are costly and require continuous monitoring by healthcare professionals because of safety concerns []. Therefore, their use is restricted to clinical settings, and they are not actively used for telerehabilitation or home-based rehabilitation. A non-motorized or non-assisted device is required for more active use of VR for rehabilitation.

We developed the Rapael Smart Board™ (SB; Neofect Inc., Yong-in, Korea), which is a VR-based rehabilitation device incorporating planar motion exercise that does not require additional gravity compensation. This two-dimensional planar movement with full gravitational support, which lessens the need for antigravity muscle facilitation, allows for much easier participation than three-dimensional movement under gravity. Additionally, it is known to be safe and easy to learn, and it has been shown to improve motor ability with less aggravation of shoulder pain and spasticity; therefore, it is useful to patients with reduced motor ability []. Planar motion exercises provoke less maladaptive compensatory movements. Additionally, the nearly zero friction of the linear guides enable a wide range of repetitive active range of motion (AROM) exercises. Furthermore, the SB adopted Rapael Clinic software that was originally developed for patients with disabilities and has proven efficacy for stroke rehabilitation []. Therefore, the SB, which has multiple advantages because of its hardware and software, might be beneficial for the functional improvement of the upper extremities. Moreover, the SB could have a role as an assessment tool because VR has been reported to be useful for objective kinematic measurements of the upper extremities [].

The present pilot study aimed to assess the availability of this newly developed VR-based rehabilitation device incorporating planar exercises for the upper extremities as an intervention and assessment tool among stroke patients in the chronic phase of recovery. To assess the availability in terms of clinical effectiveness, we compared the effects of an intervention involving the SB and that involving dose-matched occupational therapy (OT) on upper extremity function and health-related quality of life (HRQoL). We also investigated the correlations between kinematic data from the SB and data from clinical scales regarding upper extremity function.

[…]

Continue —>  Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study | SpringerLink

Fig. 1Hardware of the Smart Board. The board and forearm-supported controller. Three linear guides with an H-shape configuration enable two-dimensional planar motion of the handlebar, which is attached to the horizontal linear guide

, , , , , , , , , ,

Leave a comment

%d bloggers like this: