Posts Tagged upper limb

[Abstract] Motor Impairment–Related Alterations in Biceps and Triceps Brachii Fascicle Lengths in Chronic Hemiparetic Stroke

Poststroke deficits in upper extremity function occur during activities of daily living due to motor impairments of the paretic arm, including weakness and abnormal synergies, both of which result in altered use of the paretic arm. Over time, chronic disuse and a resultant flexed elbow posture may result in secondary changes in the musculoskeletal system that may limit use of the arm and impact functional mobility.

This study utilized extended field-of-view ultrasound to measure fascicle lengths of the biceps (long head) and triceps (distal portion of the lateral head) brachii in order to investigate secondary alterations in muscles of the paretic elbow.

Data were collected from both arms in 11 individuals with chronic hemiparetic stroke, with moderate to severe impairment as classified by the Fugl-Meyer assessment score. Across all participants, significantly shorter fascicles were observed in both biceps and triceps brachii (P < .0005) in the paretic limb under passive conditions. The shortening in paretic fascicle length relative to the nonparetic arm measured under passive conditions remained observable during active muscle contraction for the biceps but not for the triceps brachii.

Finally, average fascicle length differences between arms were significantly correlated to impairment level, with more severely impaired participants showing greater shortening of paretic biceps fascicle length relative to changes seen in the triceps across all elbow positions (r= −0.82, P = .002). Characterization of this secondary adaptation is necessary to facilitate development of interventions designed to reduce or prevent the shortening from occurring in the acute stages of recovery poststroke.


via Motor Impairment–Related Alterations in Biceps and Triceps Brachii Fascicle Lengths in Chronic Hemiparetic Stroke – Christa M. Nelson, Wendy M. Murray, Julius P. A. Dewald, 2018

, , , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Feasibility of the UR5 Industrial Robot for Robotic Rehabilitation of the Upper Limbs After Stroke – Full Text PDF


Robot-assisted therapy is an emerging form of
rehabilitation treatment for motor recovery of the upper limbs
after neurological injuries such as stroke or spinal cord injury.
Robotic rehabilitation devices have the potential to reduce the
physical strain put on therapists due to the high-effort oneto-one
interactions between the therapist and patient involving
repetitive high-intensity movements to restore arm and
hand functions. Numerous custom robotic devices have been
developed in recent years to aid in physical rehabilitation
of stroke patients, but most commercially available systems
are high-cost devices because of low production volumes and
high development costs. In this paper, we analyse the safety
and functionality of the UR5 collaborative industrial robot
from Universal Robots equipped with an external force/torque
sensor in a real-time control system for typical rehabilitation
exercises. The aim of the paper is to show that a new class
of general-purpose industrial robots designed for human-robot
collaboration may prove a viable alternative to custom designs.
Experiments show that robotic rehabilitation of the upper
limbs using a standard industrial robot manipulator UR5
may be feasible. Results have the potential to reduce costs
and complexity for robotic rehabilitation devices, and thus
make robotic rehabilitation more affordable as a high-quality
therapeutic treatment for more patients.

Full Text PDF

, , , , , , , ,

Leave a comment

[ARTICLE] Interventions involving repetitive practice improve strength after stroke: a systematic review – Full Text



Do interventions involving repetitive practice improve strength after stroke? Are any improvements in strength accompanied by improvements in activity?


Systematic review of randomised trials with meta-analysis.


Adults who have had a stroke.


Any intervention involving repetitive practice compared with no intervention or a sham intervention.

Outcome measures

The primary outcome was voluntary strength in muscles trained as part of the intervention. The secondary outcomes were measures of lower limb and upper limb activity.


Fifty-two studies were included. The overall SMD of repetitive practice on strength was examined by pooling post-intervention scores from 46 studies involving 1928 participants. The SMD of repetitive practice on strength when the upper and lower limb studies were combined was 0.25 (95% CI 0.16 to 0.34, I2 = 44%) in favour of repetitive practice. Twenty-four studies with a total of 912 participants investigated the effects of repetitive practice on upper limb activity after stroke. The SMD was 0.15 (95% CI 0.02 to 0.29, I2 = 50%) in favour of repetitive practice on upper limb activity. Twenty studies with a total of 952 participants investigated the effects of repetitive practice on lower limb activity after stroke. The SMD was 0.25 (95% CI 0.12 to 0.38, I2 = 36%) in favour of repetitive practice on lower limb activity.


Interventions involving repetitive practice improve strength after stroke, and these improvements are accompanied by improvements in activity.


The loss of strength after stroke is a common and important impairment. The average strength of the affected upper and lower limb in people who have had a significant stroke ranges from 30 to 50% of age-matched controls.1, 2, 3, 4 This loss of strength can result in profound activity limitations5, 6, 7 and participation restrictions.8Therefore, it is important to know which interventions are effective for improving strength after stroke. Progressive resistance training is commonly used to improve strength in people without disability9 and can be used to improve strength in people after stroke.10 Progressive resistance training is characterised by muscles working at high loads with low repetitions, that is, a load of 8 to 12 repetitions maximum (RM) for at least two sets with a progressive increase in the load.9 However, progressive resistance training is not commonly used after stroke, and often when strengthening programs claim to be using progressive resistance training they are not adhering to the guidelines.11 This may be because progressive resistance training is time-consuming to set up and difficult to implement in people with very weak muscles. In contrast, repetitive practice of tasks can be set up with minimal equipment and modified so that even people with very weak muscles can do some form of training.

Repetitive practice of tasks, such as walking, reaching and manipulation of objects, is a major component of rehabilitation after stroke. Some interventions used to promote repetitive practice include constraint-induced movement therapy, treadmill walking with body-weight support, or robotic devices. These interventions are typically performed with an emphasis on high repetitions and no added resistance to movement; hence, the principles of repetitive practice are very different to the principles of progressive resistance training. Repetitive practice is known to be effective for reducing activity limitations, with many systematic reviews confirming this.12,13, 14, 15 However, less is known about the effects of repetitive practice on strength after stroke, and no systematic reviews have specifically investigated this issue. Eight systematic reviews with meta-analyses have investigated the effects of strengthening interventions on strength after stroke. These reviews included studies that used progressive resistance training10, 16, 17, 18, 19, 20 or an artificial drive of muscle contraction21, 22 (ie, electrical stimulation without attempts to move a limb) as an intervention and did not focus specifically on repetitive practice. Since repetitive practice is widely used and recommended in rehabilitation after stroke,23 it is important to understand if interventions involving repetitive practice are effective for improving strength.

Therefore, the research questions for this systematic review were:

  • 1. Do interventions involving repetitive practice improve strength after stroke?
  • 2. Are any improvements in strength accompanied by improvements in activity?

Continue —> Interventions involving repetitive practice improve strength after stroke: a systematic review – Journal of Physiotherapy

Figure 1

Figure 1
Flow of studies through the review.
a Studies may have been excluded for failing to meet more than one inclusion criterion.

, , , , , ,

Leave a comment

[Thesis] Robotic rehabilitation of upper-limb after stroke – Implementation of rehabilitation control strategy on robotic manipulator – Full Text PDF

Globally, stroke is one of the main causes of permanent neurological damage \cite{WHO}. Partial or total paralysis of the extremities is the most common complication, with paralysis in upper-limbs being the most prevalent. Efficient and available rehabilitation therapy is essential for the patient’s recovery process. Traditional physical therapy is a resource intensive and commonly used approach. Research on robotic rehabilitation aims to provide a viable rehabilitation tool.The main objective of this master thesis is to design and implement a safe real-time control system on an industrial six-axis manipulator with an external force/torque sensor for robotic upper-limb rehabilitation of stroke patients.The chosen approach is to implement control strategies directly in the tool frame of the manipulator. This is achieved by utilizing the UR5 from Universal Robot and the Mini45 F/T sensor from ATI Industrial Automation. Two verification test are chosen based on activities of daily life (ADL). The best low-level control strategy is achieved by indirect force and torque control through a joint velocity interface.The UR5 firmware operates with an unknown internal controller. An external controller is designed incrementally to investigate the unknown system dynamics and find the best possible low-level performance. Numerous safety mechanisms are added to the external controller. Four high-level control strategies are developed and implemented.Three main safety-related challenges with robotic rehabilitation are identified. Two of them are related to and solved by the external force/torque sensor. The third challenge is related to the self-collisions inside the workspace of the UR5 manipulator. This challenge is also applicable to all six-axis robot manipulators. The three challenges are analyzed and solved with a safety-oriented approach.The safety and functionality of the robotic rehabilitation system are experimentally verified. The behaviour of the rehabilitation modes is analyzed and discussed based on raw data and video recordings.The conclusion is that robotic upper-limb rehabilitation of stroke patients utilizing the UR5 manipulator and the Mini45 F/T sensor is safe and feasible.

via Robotic rehabilitation of upper-limb after stroke – Implementation of rehabilitation control strategy on robotic manipulator

, , , , , , ,

Leave a comment

[Abstract] Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis

Background. Enhancement of sensory input in the form of repetitive peripheral sensory stimulation (RPSS) can enhance excitability of the motor cortex and upper limb performance.

Objective. To perform a systematic review and meta-analysis of effects of RPSS compared with control stimulation on improvement of motor outcomes in the upper limb of subjects with stroke.

Methods. We searched studies published between 1948 and December 2017 and selected 5 studies that provided individual data and applied a specific paradigm of stimulation (trains of 1-ms pulses at 10 Hz, delivered at 1 Hz). Continuous data were analyzed with means and standard deviations of differences in performance before and after active or control interventions. Adverse events were also assessed.

Results. There was a statistically significant beneficial effect of RPSS on motor performance (standard mean difference between active and control RPSS, 0.67; 95% CI, 0.09-1.24; I2 = 65%). Only 1 study included subjects in the subacute phase after stroke. Subgroup analysis of studies that only included subjects in the chronic phase showed a significant effect (1.04; 95% CI, 0.66-1.42) with no heterogeneity. Significant results were obtained for outcomes of body structure and function as well as for outcomes of activity limitation according to the International Classification of Function, Disability and Health, when only studies that included subjects in the chronic phase were analyzed. No serious adverse events were reported.

Conclusions. RPSS is a safe intervention with potential to become an adjuvant tool for upper extremity paresis rehabilitation in subjects with stroke in the chronic phase.

via Repetitive Peripheral Sensory Stimulation and Upper Limb Performance in Stroke: A Systematic Review and Meta-analysis – Adriana Bastos Conforto, Sarah Monteiro dos Anjos, Wanderley Marques Bernardo, Arnaldo Alves da Silva, Juliana Conti, André G. Machado, Leonardo G. Cohen, 2018

, , , , , , , , , ,

Leave a comment

[Abstract] Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial



Virtual reality game system is one of novel approaches, which can improve hemiplegicextremity functions of stroke patients. We aimed to evaluate the effect of the Microsoft Xbox 360 Kinect video game system on upper limb motor functions for subacute stroke patients.


The study included 42 stroke patients of which 35 (19 Virtual reality group, 16 control group) completed the study. All patients received 60 minutes of conventional therapy for upper extremity, 5 times per-week for 4 weeks. Virtual reality group additionally received Xbox Kinect game system 30 minutes per-day. Patients were evaluated prior to the rehabilitation and at the end of 4 weeks. Box&Block Test, Functional independence measure self-care score, Brunnstorm stage and Fugl-Meyer upper extremity motor function scale were used as outcome measures.


The Brunnstrom stages and the scores on the Fugl-Meyer upper extremity, Box&Block Test and Functional independence measure improved significantly from baseline to post-treatment in both the experimental and the control groups. The Brunnstrom stage-upper extremity and Box&Block Test gain for the experimental group were significantly higher compared to the control group, while the Brunnstrom stage-hand, the Functional independence measure gain and Fugl-Meyer gain were similar between the groups.


We found evidence that kinect-based game system in addition to conventional therapy may have supplemental benefit for stroke patients. However, for virtual reality game systems to enter the routine practice of stroke rehabilitation, randomized controlled clinical trials with longer follow-up periods and larger sample sizes are needed especially to determine an optimal duration and intensity of the treatment.

via Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial – ScienceDirect

, , , , , ,

Leave a comment

[Study] Effects of Exoskeleton Robotic Training Device on Upper Extremity in Brain The Effects of Exoskeleton Robotic Training Device


The purpose of this study is to examine the effects of the EMG-driven exoskeleton hand robotic training device on upper extremity motor and physiological function, daily functions, quality of life and self-efficacy in brain injury patients.

Full Title of Study: “The Effects of the EMG-driven Exoskeleton Hand Robotic Training Device on Upper Extremity Motor and Physiological Function, Daily Functions, Quality of Life and Self-efficacy in Brain Injury Patients”

Study Type

  • Study Type: Interventional
  • Study Design
    • Allocation: Randomized
    • Intervention Model: Crossover Assignment
    • Primary Purpose: Treatment
    • Masking: Single (Outcomes Assessor)
  • Study Primary Completion Date: November 1, 2018

Detailed Description

In the Robot-assisted group, participants receive training including passive movement, active movement, and game practices.

Let’s see the operation of the robot system by video. First, the passive movement. Patients could perform a movement of full hand, or thumb/second/middle finger together.

Second, the active movement. There were three types of active movement, including full hand grasp/ release/ or grasp and release together.

The researcher chose two out of three of the movements. Third, the game mode. There were several games to practice the active movement, including only distal part/ or distal plus proximal part together.

In the Conventional group, participants receive conventional occupational therapy.

The intervention was conducted 1.5 hour a day, 3 days a week for consecutive 4 weeks.


more —>  Effects of Exoskeleton Robotic Training Device on Upper Extremity in Brain…

, , , , , , , ,

Leave a comment

[Abstract] Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications.


Stroke has become the leading cause of disability and the second-leading cause of mortality worldwide. Dyskinesia complications are the major reason of these high death and disability rates. As a tool for rapid motion function recovery in stroke patients, exoskeleton robots can reduce complications and thereby decrease stroke mortality rates. However, existing exoskeleton robots interfere with the wearer’s natural motion and damage joints and muscles due to poor human-machine coupling. In this paper, a novel ergonomic soft bionic exoskeleton robot with 7 degrees of freedom was proposed to address these problems based on the principles of functional anatomy and sports biomechanics. First, the human motion system was analysed according to the functional anatomy, and the muscles were modelled as tension lines. Second, a soft bionic robot was established based on the musculoskeletal tension line model. Third, a robot control method mimicking human muscle control principles was proposed and optimized on a humanoid platform manufactured using 3D printing. After the control method was optimized, the motion trajectory similarities between humans and the platform exceeded 87%. Fourth, the force-assisted effect was tested based on electromyogram signals, and the results showed that muscle signals decreased by 58.17% after robot assistance. Finally, motion-assistance experiments were performed with stroke patients. The joint movement level increased by 174% with assistance, which allowed patients to engage in activities of daily living. With this robot, stroke patients could recover their motion functions, preventing complications and decreasing fatality and disability rates.


via Bio-inspired upper limb soft exoskeleton to reduce stroke-induced complications. – PubMed – NCBI

, , , , , , , , ,

Leave a comment

[Abstract] Addition of botulinum toxin type A to casting may improve wrist extension in people with chronic stroke and spasticity: a pilot double-blind randomized trial


Aims: Does the addition of botulinum toxin type A increase the effect of casting for improving wrist extension after stroke in people with upper limb spasticity?

Methods: Randomized trial with concealed allocation, assessor blinding and intention-to-treat analysis which was part of a larger trial included 18 adults with upper limb spasticity two years after stroke (89%) or stroke-like conditions (11%). The experimental group (n=7) received botulinum toxin type A injections to upper limb muscles for spasticity management followed by two weeks of wrist casting into maximum extension. The control group (n=11) received two weeks of casting only. Range of motion (goniometry) measured at baseline and after two weeks of casting.

Results: Passive wrist extension for the experimental group improved over two weeks from 22 degrees (SD 16) to 54 degrees (SD 16), while the control group improved from 21 degrees (SD 29) to 43 degrees (SD 26). The experimental group increased passive wrist extension 13 degrees (95% CI 4 to 31) more than the control group which was not statistically significant.

Conclusion: Joint range of motion improved over a two-week period for both groups. Botulinum toxin type A injection followed-by casting produced a mean, clinically greater range of motion than casting alone, therefore, a fully-powered trial is warranted.

via Addition of botulinum toxin type A to casting may improve wrist extension in people with chronic stroke and spasticity: a pilot double-blind randomized trial

, , , , , , , , , ,

Leave a comment

[Abstract + References] A Bilateral Training System for Upper-limb Rehabilitation: A Follow-up Study


Previously, we reported a novel bilateral upper-limb rehabilitation system, an adaptive admittance controller and a related bilateral recovery strategy. In this study, we want to get a stronger evidence to verify the robustness of the proposed system, controller and recovery strategy as well as to further investigate the possibility of bilateral trainings for clinical applications. To this end, ten healthy subjects took part in a 60-minute experiment. Trajectories of robots and interaction force were recorded under the proposed bilateral recovery strategy which contained four exercise modes. For mode-l and mode-2, results showed that the trajectories of master and slave robots can catch the reference trajectory very well, and be changed with active interaction force applied by participants. For mode-3 and mode-4, participants finished tasks very well by drawing the ‘square-shaped’ trajectories through their own force. In conclusion, the experimental results were good enough to provide a strong and positive evidence for the proposed system and controller. Moreover, according to the feedbacks from participants, the bilateral recovery strategy can be treated as a new and interesting training as compared to the traditional unilateral training, and could be tested in clinical applications further.

I. Introduction

Compared to the traditional manual therapy, the robot involved therapy can alleviate labor-intensive aspects of conventional rehabilitation trainings, and provide precise passive/active repetitive trainings in a sufficiently long timeframe [1], [2]. In terms of upper-limb rehabilitation trainings, some robotic systems have been developed for bilateral exercises, and figured out a problem that performing most activities of daily living tasks with one-hand is awkward, difficult and time-consuming [2].


1. M. Cortese, M. Cempini, P. R. de Almeida Ribeiro, S. R. Soekadar, M. C. Carrozza, N. Vitiello, “A mechatronic system for robot-mediated hand telerehabilitation”, IEEE/ASME Transactions on Mechatronics, vol. 20, pp. 1753-1764, September 2015.

2. P. S. Lum, C. G. Burgar, P. C. Shor, “Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke”, Archives of physical medicine and rehabilitation, vol. 83, pp. 952-959, July 2002.

3. B. Sheng, Y. Zhang, W. Meng, C. Deng, S. Xie, “Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects”, Medical engineering & physics, vol. 38, pp. 587-606, July 2016.

4. P. R. Culmer, A. E. Jackson, S. Makower, R. Richardson, J. A. Cozens, M. C. Levesley et al., “A control strategy for upper limb robotic rehabilitation with a dual robot system”, IEEE/ASME Transactions on Mechatronics, vol. 15, pp. 575-585, September 2010.

5. Z. Song, S. Guo, M. Pang, S. Zhang, N. Xiao, B. Gao et al., “Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint”, J. Med. Biol. Eng, vol. 34, pp. 188-196, 2014.

6. R. C. Loureiro, W. S. Harwin, K. Nagai, M. Johnson, “Advances in upper limb stroke rehabilitation: a technology push”, Medical & biological engineering & computing, vol. 49, pp. 1103, July 2011.

7. S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, M. Lingnau, “Computerized arm training improves the motor control of the severely affected arm after stroke”, Stroke, vol. 36, pp. 1960-1966, August 2005.

8. C.-L. Yang, K.-C. Lin, H.-C. Chen, C.-Y. Wu, C.-L. Chen, “Pilot comparative study of unilateral and bilateral robot-assisted training on upper-extremity performance in patients with stroke”, American Journal of Occupational Therapy, vol. 66, pp. 198-206, March 2012.

9. E. Taub, G. Uswatte, R. Pidikiti, “Constraint-Induced Movement Therapy: a new family of techniques with broad application to physical rehabilitation-a clinical review”, Journal of rehabilitation research and development, vol. 36, pp. 237, July 1999.

10. S. B. Brotzman, R. C. Manske, “Clinical Orthopaedic Rehabilitation E-Book: An Evidence-Based Approach-Expert Consult” in Elsevier Health Sciences, 2011.

11. K. C. Lin, Y. F. Chang, C. Y. Wu, Y. A. Chen, “Effects of constraint-induced therapy versus bilateral arm training on motor performance daily functions and quality of life in stroke survivors”, Neurorehabilitation and Neural Repair, vol. 23, pp. 441-448, December 2009.

12. J. Chen, N. Y. Yu, D. G. Huang, B. T. Ann, G. C. Chang, “Applying fuzzy logic to control cycling movement induced by functional electrical stimulation”, IEEE transactions on rehabilitation engineering, vol. 5, pp. 158-169, Jun 1997.

13. D. A. Winter, “Biomechanics and motor control of human movement” in John Wiley & Sons, 2009.


via A Bilateral Training System for Upper-limb Rehabilitation: A Follow-up Study – IEEE Conference Publication

, , , , , , , , , , ,

Leave a comment

%d bloggers like this: