Posts Tagged Virtual reality exposure therapy

[ARTICLE] Effects of Specific Virtual Reality-Based Therapy for the Rehabilitation of the Upper Limb Motor Function Post-Ictus: Randomized Controlled Trial – Full Text


This research analyzed the combined effect of conventional treatment and virtual reality exposure therapy on the motor function of the upper extremities in people with stroke. We designed a randomized controlled trial set in the rehabilitation and neurology departments of a hospital (Talavera de la Reina, Spain). The subjects included 43 participants, all randomized into experimental (conventional treatment + virtual reality exposure therapy) and control group (conventional treatment).; The main measures were Fugl-Meyer Assessment for upper extremity, Modified Ashworth Scale, and Stroke Impact Scale 3.0. The results included 23 patients in the experimental (62.6 ± 13.5 years) and 20 in the control group (63.6 ± 12.2 years) who completed the study. After the intervention, muscle tone diminished in both groups, more so in the experimental group (mean baseline/post-intervention: from 1.30 to 0.60; η2 = 0.237; p = 0.001). Difficulties in performing functional activities that implicate the upper limb also diminished. Regarding the global recovery from stroke, both groups improved scores, but the experimental group scored significantly higher than the controls (mean baseline/post-intervention: from 28.7 to 86.5; η2 = 0.633; p = 0.000). In conclusion, conventional rehabilitation combined with specific virtual reality seems to be more efficacious than conventional physiotherapy and occupational therapy alone in improving motor function of the upper extremities and the autonomy of survivors of stroke in activities of daily living.

1. Introduction

Stroke is one of the main causes of acquired disability in adulthood. The stroke epidemic is primarily driven by the aging of the world population, globalization and the urbanization of community settings [1,2]. The Stroke Alliance for Europe states that, every 20 s, a new case of stroke is detected in the adult population and predicts that the number of people affected will increase by 35% to 12 million people in 2040. As a result, it is estimated that the health and social costs for stroke diagnosis will increase to 75 million in 2030 (26% more than in 2017). In Spain, 550,941 people were diagnosed with stroke in 2017, generating a health expenditure of 1700 million euros and a total cost to the Spanish state of 3557 million euros [3].Around 80% of survivors present motor difficulties in the upper extremities, affecting the carrying out of activities of daily living (ADLs), the performance of roles in the community and the health-related quality of life (HRQoL) [4,5,6].Complications after stroke diagnosis can persist over time. Two-thirds of survivors are disabled 15 years later, two out of five are immersed in depressive states and more than a quarter develop cognitive impairment [7]. The costs derived from stroke diagnosis are high for survivors and their families, making their rehabilitation and survival processes a great challenge for health policymakers [8,9]. On average, an informal (non-professional) caregiver in Spain invests 2833 h per year in caring for the person affected by stroke and with limitations in ADLs [3].The general objective of neurological rehabilitation is to promote a rapid recovery from the multiple deficits after a stroke and the achievement of a lifestyle similar to the premorbid state [10,11]. Of all people diagnosed with stroke, only 30–40% regain certain skills in the upper limb after six months of intervention [12]. The upper limb remains non-functional for ADLs in up to 66% of survivors [13], constituting the most disabling of all residual disorders.In recent years, the use of neurorehabilitation approaches based on technology and virtual reality has increased, allowing the creation of effective rehabilitation environments and providing multimodal, controllable, and customizable stimulation [14], in which the recreation of virtual objects maximize visual feedback [15] and high intensity and high number of repetitions are key factors that influence neuroplasticity and functional improvement in patients [16]. Rehabilitation based on virtual reality offers the possibility of individualizing treatment needs, and at the same time, standardizing evaluation and training protocols [17,18]. In this sense, specific virtual reality technology for rehabilitation processes of people with neurological pathology allows working in a functional way and with specific intervention objectives, in addition to easily qualifying and documenting progress during the session [19]. Taking advantage of these characteristics, several researchers have used virtual reality exposure therapy (VRET) to recover motor function after stroke. In the treatment of the upper limb, studies indicate that this rehabilitation approach produces better motor and functional results than conventional therapy [20,21].The increasing clinical use of neurorehabilitation approaches based on technology and virtual reality leads to the assumption that spatial representations in virtual environments may vary slightly from the perceptions that the patient would experience in real spaces. In this sense, the team of Hruby et al. [22] insisted that spatial representations based in virtual reality systems should be realistic 1:1 replicas with regard to the individual characteristics of the subjects interacting with both virtual and real environments. This demand increases the validity of virtual reality techniques for therapeutic purposes, since interaction with a virtual space is safer and more profitable in the early phases of rehabilitation processes [23]. However, it is important for clinicians and researchers to consider that the interaction with a virtual environment continues to be different from the relationship that the subject maintains with the real environment [24] because people gradually build a mental representation of the geographic space that we work with or are immersed in. The locomotion techniques applied in the virtual model (software or hardware) can influence the cognitive representations of the person experiencing them [25].The present study aimed to analyze the combined effect of conventional treatment and VRET on motor function of the upper limb in people diagnosed with stroke in the acute phase and its evolution at three months in the Integrated Health Area of Talavera de la Reina.[…]


Figure 1. (a) Selection of analytical exergames; (b) selection of functional exergames; (c) adaptation of exergames at the beginning of a treatment session; (d) graphical representation of results or progress of the patient.

, , , , , , , , ,

Leave a comment

[ARTICLE] Use of client-centered virtual reality in rehabilitation after stroke: a feasibility study – Full Text


Patient-centered virtual reality (VR) programs could assist in the functional recovery of people after a stroke.


To analyze the feasibility of a rehabilitation protocol using client-centered VR and to evaluate changes in occupational performance and social participation.


This was a mixed methods study. Ten subacute and chronic stroke patients participated in the rehabilitation program using games in non-immersive VR for 40 minutes/day, three days/week, for 12 weeks. Sociodemographic information was collected and the outcome variables included were the Canadian Occupational Performance Measure (COPM) and the Participation Scale. A field diary was used to record the frequency of attendance and adherence of participants and an interview was conducted at the end of program.


There were significant and clinically-relevant statistical improvements in the COPM performance score (p < 0.001; CI = 1.29 − 4.858) and in the COPM satisfaction score (p < 0.001; CI = 1.37 − 5.124), with a difference greater than 4.28 points for performance and 4.58 points for satisfaction. The change in the scores for participation was statistically significant (p = 0.046), but there was no clinical improvement (dcohen = −0.596, CI = −1.862 − 0.671). The majority of participants reported more than 75% consecutive attendance of sessions and there was 100% adherence to the program. In the interviews, the participants described their post-stroke difficulties; how the video game motivated their engagement in rehabilitation; and the improvement of occupational performance and social participation after participating in the program.


VR is a viable tool for the rehabilitation of stroke patients with functional gains, mainly regarding occupational performance and performance satisfaction.


Every year, 16 million people suffer from a stroke, with great economic and social repercussions1. In Brazil, this is the leading cause of disability1,2. A stroke is a sudden syndrome, characterized by sensory, motor, and cognitive-perceptual alterations1. These alterations are associated with disability, limitations in activities of daily life (ADL) and restrictions in social participation, with loss of autonomy and independence3,4.

Different treatment protocols are used in post-stroke rehabilitation, and consist mainly of motor control approaches, and task oriented training5,6,7. Task-based training, mediated by technologies and computerized activities such as virtual reality (VR), has been promising for post-stroke patients8,9. Virtual reality is a technology for interaction between user and operating system using graphic resources that recreate a virtual environment10. One of its advantages is that the environment can be more interesting and pleasant when compared with traditional rehabilitation, increasing motivation, engagement and adherence of patients to the treatment10,11,12.

Recent clinical trials with post-stroke patients demonstrated the effectiveness of VR in the rehabilitation of dynamic balance13,14,15,16; motor function12,17,18,19,20,21; performance and independence in ADL12,14 and quality of life17,19,20,21. However, a systematic review found no significant difference in upper limb function when comparing VR with a conventional therapy8. Differences between groups were found only when VR was added to the usual treatments8. In another review, the VR effects varied from small to moderate for ADL and outcomes for social participation did not change with the intervention9.

Although systematic reviews and meta-analyses on VR effectiveness are growing, they were not conclusive regarding the protocol or intervention parameters, which makes the clinical use of VR difficult8,9,11. Higher frequencies of treatment are preferable; however, these findings were not statistically significant8,9. Personalized VR protocols that consider a specific patient’s requirements seem to offer more benefits. However, it should be noted that these results are also not conclusive and there is no consensus about the issue8,9.

As there is little consistency in the literature indicating better VR protocols to be used in clinical practice, it is fundamental to analyze the viability and the patient response potential regarding the intervention using VR. The studies with better quality methodologies evaluated outcomes related to the body structure and function8,9. To recommend the therapeutic use of VR in post-stroke patients it is essential to develop patient-centered interventions and focus on assessing performance-related outcomes in activity and participation.

A patient-centered practice is an approach that considers the person’s ability to deal with their health condition, to self-manage, to make decisions, to motivate themselves, and adhere to treatment7. In this context, this study aimed to analyze the feasibility of a rehabilitation protocol using patient-centered VR and to evaluate changes in occupational performance and social participation of patients after a stroke. The hypothesis was that VR would increase performance, reduce restrictions in participation, and be a viable tool for outpatient intervention with post-stroke patients.


This research was a feasibility study that used mixed methods, including a quantitative and qualitative approach. The quantitative study of the pre- and post-intervention type measured changes in occupational performance and social participation, after a rehabilitation program using VR. The feasibility of the VR was analyzed using qualitative methods. This study was approved by the Institution’s Research Ethics Committee.

Local and participants

The participants were recruited by convenience, at the Rehabilitation Center of the Clinical Hospital of the Federal University of Triângulo Mineiro (HC/UFTM), a public and free rehabilitation service with physical therapy, speech therapy, nutrition, nursing, psychology, and occupational therapy.

We selected participants with primary or recurrent stroke diagnoses, hemiparesis, age 18 or older, of either sex, who were in the rehabilitation program. We excluded participants with strokes older than five years, bilateral hemiparesis, and/or other diseases of the musculoskeletal and central nervous systems, wheelchair users, amputees, visually impaired patients, and those who could not understand or respond to the data collection instruments. The sample was selected from the medical records and by indication of the rehabilitation professionals. A total of 10 patients met the inclusion criteria and agreed to participate in the research.

Evaluation procedures and instruments

The procedures took place between January and August 2017 at the HC/UFTM Rehabilitation Center and was divided into three sequential phases.

Phase 1: Pre-intervention evaluation

The participants responded to a socio-demographic questionnaire and were evaluated according to self-reported occupational performance and social participation.

Occupational performance was measured by the Canadian Occupational Performance Measure (COPM). The patients selected the activities that they needed, but which they had not been able to perform, or were not satisfied with their performance23. The patients assigned a grade of 1-10 to the importance of each activity and selected the five with the most importance. Each activity selected was evaluated for the patient’s performance and satisfaction on a scale from 1-10. The total scores were calculated from the means of the performance and satisfaction. Changes in scores greater than two points indicated a clinically relevant improvement23.

Social participation was measured by the Participation Scale (P-Scale), version 6.0. The participants would compare themselves with a “peer without disability” and respond to how they perceived their own level of participation compared with the “peer”24. The score of any item varied from zero, when the individual did not have restrictions to his participation, to five when the restriction was considered a “big problem”. The total score varied from zero to 90, with smaller values indicating less restriction25.

Phase 2: Intervention

The rehabilitation program using VR was implemented at the HC/UFTM Rehabilitation Center. The literature does not have a standardization of interventions and/or games used in virtual reality programs. Thus, the protocol chosen had the number of sessions and duration following the findings of Aramaki et al26. Therefore, the protocol consisted of three weekly sessions lasting 40 minutes each, developed over 12 weeks, for a total of 36 sessions.

The participants were in an orthostatic position, four meters away from the screen and video game, in a room with natural light. The Xbox 360® was used with Kinect motion sensor technology.

The games were chosen according to the activities indicated in the COPM as difficult to perform in the initial evaluation. These required training in upper-limb and lower-limb motor skills, motor coordination, and cognitive skills. A detailed description of the information for each game and its main effects are shown in the Figure 1.

The sessions began with the game “20,000 Leaks” to familiarize the participant with the video game interface. Each participant played two or three games for 10 minutes each. In order to avoid fatigue, if necessary, a two-minute interval between games took place.



Continue —->  Use of client-centered virtual reality in rehabilitation after stroke: a feasibility study


, , , , , ,

Leave a comment

[ARTICLE] Virtual reality in the rehabilitation of patients with stroke: an integrative review – Full Text


Objective: To describe the intervention protocols to using commercial video games as virtual reality (VR) in rehabilitation of patients with stroke.

Methods: Integrative review using the descriptors “rehabilitation”, “virtual reality exposure therapy” and “videogames” in the LILACS and PUBMED databases. Articles published from 2011 to 2018 were selected.

Results: We found 1,396 articles, 1,383 were excluded and 13 were selected. Most of the articles were randomized clinical trials published in 2014 or later. The sample size varied from 5–47 adults, or adults and elders, with chronic stroke. The Nintendo Wii® was the most used video game system. The intervention happened two or three times a week, each session lasting from 30 to 60 minutes, over 2–12 weeks. Balance, upper limb motor functions, quality of life and daily living activities were the most common evaluated outcomes. The Fugl-Meyer Assessment, Berg Balance Scale, Timed Up and Go test, Barthel Scale and SF-36 were the most common outcome measurement tools.

Conclusions: The studies indicated improvement in dynamic balance, upper limb motor function and quality of life after rehabilitation using VR. The VR was more effective than conventional treatments for the outcome of dynamic balance. Two studies did not find any changes in static balance and daily living activities. Physical aspects and quality of life were the outcomes most evaluated by the researchers; as were the population with chronic strokes and protocols of long duration and low intensity. Few studies targeted immediate VR effects, performance in daily living activities and social participation.


Rehabilitation of a patient is a process that involves the knowledge of the professional regarding the health condition and the repercussion it has on the life of the individual, as well as a broad scientific knowledge about the functioning of the human body, so that consistent decisions may be made1. In this process, assessing the situation, planning and choosing the best available evidences to perform clinical tasks is paramount to systematize decisions and optimize results2.

Many rehabilitation techniques described in the literature may help guide the intervention of professionals, such as physical training, kinesitherapy, robotic therapy, hydrotherapy, music therapy, intracortical stimulation and mental health practices, task-oriented training, mirror therapy, among others36. Virtual reality (VR) is a therapeutic approach that has been used in the field of rehabilitation in recent years. In this approach, users interact with virtual objects through the movements of their hands and body, or through tactile interfaces (gloves, joysticks, mouse), performing actions in a simulated environment7. The invention of low-cost human movement sensors in commercial game systems has made it easier to use video games for rehabilitation8. Examples of these systems include the Kinect for Microsoft’s Xbox®, the Nintendo Wii® and the PlayStationMove® by Sony.

The use of VR has increased the potential for motor learning and neuroplasticity during rehabilitation. A study using magnetic resonance imaging found consistent results, showing a reorganization of the sensorimotor cortex9. Functional improvements have also been associated with the use of VR by rehabilitation professionals. Allain et al.10 pointed out that performing a task in a virtual kitchen anticipated carrying out the task in real life. The virtual practice of shopping for groceries is associated with an improvement in the performance of actual grocery shopping11, and patients who interact with the virtual world have fewer limitations when performing daily activities12.

When VR has been applied in the rehabilitation of patients after strokes, it has mainly been used to help in the functional recovery of upper limbs, cognitive function, posture control and balance13,14. Deficiencies in the upper limb after strokes may negatively impact the daily life of patients, by limiting their ability to carry out essential tasks that are necessary for an independent life15. The VR offers a rich environment in which patients may, after a stroke, solve problems and develop new abilities16. Considering the above, this study aimed to review and analyze information from the literature on the main intervention protocols delineated by rehabilitation professionals, using VR in commercial video game systems for the treatment of patients who had suffered strokes, while also identifying the most common outcomes found by these professionals.[…]

Continue —>  Virtual reality in the rehabilitation of patients with stroke: an integrative review

, , , , , , ,

Leave a comment

[ARTICLE] Effects of virtual reality therapy on upper limb function after stroke and the role of neuroimaging as a predictor of a better response – Full Text



Virtual reality therapy (VRT) is an interactive intervention that induces neuroplasticity. The aim was to evaluate the effects of VRT associated with conventional rehabilitation for an upper limb after stroke, and the neuroimaging predictors of a better response to VRT.


Patients with stroke were selected, and clinical neurological, upper limb function, and quality of life were evaluated. Statistical analysis was performed using a linear model comparing pre- and post-VRT. Lesions were segmented in the post-stroke computed tomography. A voxel-based lesion-symptom mapping approach was used to investigate the relationship between the lesion and upper limb function.


Eighteen patients were studied (55.5 ± 13.9 years of age). Quality of life, functional independence, and dexterity of the upper limb showed improvement after VRT (p < 0.001). Neuroimaging analysis showed negative correlations between the internal capsule lesion and functional recovery.


VRT showed benefits for patients with stroke, but when there was an internal capsule lesion, a worse response was observed.


Stroke can be defined as a neurological deficit resulting from focal and acute central nervous system injury. It is considered a major cause of mortality and disability worldwide1. Stroke is the second leading cause of death in Brazil and the leading cause of chronic disability in adults, resulting in socioeconomic consequences and reduced quality of life. Therefore, it is an important public health problem, particularly because of long-term dependence on public health services2,3.

Cerebrovascular injury may damage the cells of the cortex and emerging axons, generating dysfunction of the upper motor neurons. Motor function can be impaired, reducing functional capacity, particularly that of the upper limbs4. Approximately 85% of individuals experience hemiparesis immediately after the stroke, particularly in an upper limb, and 55%–75% of these individuals have persistence of motor deficits, making it difficult to return to work and leisure, consequently worsening their quality of life5.

Epidemiological clinical studies have suggested that 33%–66% of stroke patients had no motor recovery after six months. Several techniques aiming to improve upper limb function are still being developed. However, the implementation of these techniques requires great team work, a high degree of specialization, and requires more time5,6. Currently, there are new approaches to rehabilitation, and virtual reality is still developing, with the objective of restoring the functional capacity of individuals after stroke as an easy, interactive, and low-cost intervention7,8.

The objective of stroke rehabilitation is to provide maximal physical, functional, and psychosocial recovery for the patients9. Comprehensive rehabilitation initiated early after stroke (within the first 24 hours) is generally accepted as being associated with better motor outcomes for these patients9. Strength training is an important part of the therapeutic process for upper-limb motor impairment after stroke10.

Virtual reality is defined as any hardware or software system that provides a simulated environment with real or imagined conditions that allow participating individuals to interact with the environment. The interaction is made by body movements using motion capture technology or by manipulating a device11. This interaction generates information necessary for proper understanding of the movement with particular emphasis on the upper limbs12. The technique consists of an avatar (graphic representation of the person) generated by the video game, where the individual manages a wireless control, directing the movement during the practice of different activities5. This is a good option for rehabilitation for individuals with stroke due to the variety of nonimmersive video game systems developed by the entertainment industry for home use.

This wide availability makes virtual reality an accessible and inexpensive rehabilitation method for rehabilitation centers13. Despite the ease of application, virtual reality therapy (VRT), added to conventional physical therapy has not been associated with a better outcome than recreational activity13. Adverse events usually are mild and the main effects described are transient dizziness and headache, pain and numbness13,14. Time since the onset of stroke, severity of impairment, and the type of device (commercial or customized) usually do not influence the outcome14. However, the variable methodology is an important bias for these investigations14. Therefore, virtual reality is still a promising tool. Some authors have reported that VRT can be combined with conventional rehabilitation to improve upper limb function after stroke15,16. The clinical situations wherein VRT may best be used have not yet been established in the literature. Also, the exact mechanism of action of this treatment modality is not yet fully understood.

The objectives of this study were to evaluate the effects of VRT combined with conventional rehabilitation for upper limb function in the recovery of individuals after stroke. Neuroimaging characteristics that could be used as predictors of a better response to VRT were also investigated.[…]

Continue —>  Effects of virtual reality therapy on upper limb function after stroke and the role of neuroimaging as a predictor of a better response

Figure Brain areas affected in nine patients with stroke and upper limb impairment underwent virtual reality therapy (A). Findings are overlaid in a template of axial magnetic resonance image slices and in a three-dimensional model of the brain (B). The color code bar in the inferior portion of the figure indicates the number of patients with the area injured. 

, , , , , , ,

1 Comment

[ARTICLE] Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke – Full Text



Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke.


Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups.


At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05).


Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.


The maintenance of the core or upper body control, is essential for maintaining posture and stability while changing positions, performing activities of daily living (ADL), and ambulating [1,2]. Patients who are undergoing physical rehabilitation following stroke, tend to deviate towards the affected side, as a result of postural instability, which induces both asymmetrical trunk movement and trunk muscle weakness. Upper body instability makes it difficult to maintain postural control when performing tasks and leads to functional disability [3]. The lack of postural stability also affects the balance of patients following stroke, increasing the risk of falls, and negatively impacting on patient independence and safety. For example, it has been reported that up to 73% of patients with stroke experience a fall within six months after leaving hospital [4]. Falls following a stroke can have severe consequences, including hip fractures and reduced physical activity due to fear of repeat falls [5]. Therefore, because these factors can have a negative impact on patient rehabilitation following stroke, the improvement of postural stability is an important goal of patient rehabilitation following stroke [6].

Sports that involve paddling with a single oar, such as canoeing and kayaking, are effective outdoor activities that improve postural stability and upper body stabilization [7]. Continuous body adjustment and compensation are required during the single-oar paddling motion to maintain balance during perturbations caused by the movement of the canoe or kayak and the paddle in the water [8]. Currently, canoe paddling training can be conducted using an ergometer to provide a training opportunity that is independent of outdoor conditions and to better control training progression [9]. A paddling ergometer has also been studied for rehabilitation training of patients with paraplegia and has been shown to be effective in improving postural control, balance, motor performance, and upper extremity strength [8,9].

Game-based virtual reality (VR) using gaming consoles is now used as a therapeutic approach for the rehabilitation of patients with stroke and provides an opportunity for patients to perform activities that are difficult in a clinical setting. Furthermore, VR programs are often designed to be more entertaining and enjoyable than traditional physical therapy tasks, thereby encouraging patients to participate in the rehabilitation program.

The use of VR equipment specifically designed for physical rehabilitation is not yet commonly available in clinical settings. Therefore, VR rehabilitation programs using a game-based, motion-controlled console that can be used in clinical settings and at low cost that can utilize a variety of gaming software are needed.

The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke.[…]


Continue —>  Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke

An external file that holds a picture, illustration, etc.Object name is medscimonit-24-2590-g002.jpg

Figure 2
Game-based virtual reality (VR) canoe paddling training.

, , , , , , ,

Leave a comment

[Abstract] Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury


Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.

via Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury: Applied Neuropsychology: Adult: Vol 23, No 3

, , , , , , ,

Leave a comment

[Abstract] Virtual Rehabilitation through Nintendo Wii in Poststroke Patients: Follow-Up


To evaluate in the follow-up the sensory-motor recovery and quality of life patients 2 months after completion of the Nintendo Wii console intervention and determine whether learning retention was obtained through the technique.


Five hemiplegics patients participated in the study, of whom 3 were male with an average age of 54.8 years (SD = 4.6). Everyone practiced Nintendo Wii therapy for 2 months (50 minutes/day, 2 times/week, during 16 sessions). Each session lasting 60 minutes, under a protocol in which only the games played were changed, plus 10 minutes of stretching. In the first session, tennis and hula hoop games were used; in the second session, football (soccer) and boxing were used. For the evaluation, the Fulg-Meyer and Short Form Health Survey 36 (SF-36) scales were utilized. The patients were immediately evaluated upon the conclusion of the intervention and 2 months after the second evaluation (follow-up).


Values for the upper limb motor function sub-items and total score in the Fugl–Meyer scale evaluation and functional capacity in the SF-36 questionnaire were sustained, indicating a possible maintenance of the therapeutic effects.


The results suggest that after Nintendo Wii therapy, patients had motor learning retention, achieving a sustained benefit through the technique.

via Virtual Rehabilitation through Nintendo Wii in Poststroke Patients: Follow-Up

, , , , , , , , ,

Leave a comment

[ARTICLE] Effects of Virtual Reality Exercise Program on Balance, Emotion and Quality of Life in Patients with Cognitive Decline



In this study, we investigated the effectiveness of a 12-week virtual reality exercise program using the Nintendo Wii console (Wii) in improving balance, emotion, and quality of life among patients with cognitive decline.


The study included 30 patients with cognitive decline (12 female, 18 male) who were randomly assigned to an experimental (n=15) and control groups (n=15). All subjects performed a traditional cognitive rehabilitation program and the experimental group performed additional three 40-minute virtual reality based video game (Wii) sessions per week for 12 weeks. The berg balance scale (BBS) was used to assess balance abilities. The short form geriatric depression scale-Korean (GDS-K) and the Korean version of quality of life-Alzheimer’s disease (KQOL-AD) scale were both used to assess life quality in patients. Statistical significance was tested within and between groups before and after treatment, using Wilcoxon signed rank and Mann-Whitney u-tests.


After 36 training sessions, there were significant beneficial effects of the virtual reality game exercise on balance (BBS), GDS-K, and KQOL-AD in the experimental group when compared to the control group. No significant difference was observed within the control group.


These findings demonstrate that a virtual reality-training program could improve the outcomes in terms of balance, depression, and quality of life in patients with cognitive decline. Long-term follow-ups and further studies of more efficient virtual reality training programs are needed.


Dementia is a degenerative disease of the nervous system, which is prevalent in the elderly population. It involves deterioration in cognitive function and ability to perform everyday activities. As the early diagnosis and treatment of dementia is delayed, its economic costs and burden on families and society are gradually increasing and becoming a social problem.1 Older people with dementia have an increased risk of falls and lower levels of everyday activities being performed due to cognitive decline and decreased muscle mass. This is a result of reduced physical activity, which further deteriorates their quality of life.2 Therapeutic interventions to improve cognitive function and to increase activities of daily living (ADL) in patients with dementia are divided into pharmacological and non-pharmacological treatments. For pharmacological treatment, acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists are the most widely used in clinical practice.3 However, because pharmacological treatment alone cannot prevent the progression of cognitive decline and ADL deterioration in patients with dementia, various non-pharmacological treatments including cognitive therapy or physical exercise are used as additional treatments.4
Recent reports have stated that regular exercise was effective in delaying cognitive impairment in people with dementia.5 In a three-year follow-up study of healthy older people, a combination of cognitive activity and physical activity was found to be effective in reducing the risk for mild cognitive impairment.6 However, physical activity was found to be more important than cognitive activity in order to further reduce the risk for cognitive decline.6 When older people with dementia performed regular physical exercise, there was an improvement in the mini-mental state examination (MMSE) score.7 Physical exercise prevented the deterioration of ADL.8 The mechanism of the benefit of physical exercise on patients with dementia is thought to be that it can facilitate neuroplasticity, promote injury recovery mechanisms at a molecular level and facilitate self-healing of the brain through its neuroprotective effect.9
However, unless individuals perform exercise in the long run, such beneficial effects of exercise may wear off, leading to impaired brain function and worsened disease.10 Therefore, patients with dementia should continue exercise under the supervision of professional physical therapists in order to stop the progression of cognitive impairment for a long time. In order to achieve this, it is required to keep patients interested in the exercise therapy allowing them to maintain adherence. However, it is difficult to execute exercise treatment continuously in patients with dementia because of space, time, and cost issues in Korea. Patients get easily bored and tired of passive and simply repetitive forms of exercise treatment. In general, 20-50% of older people who start an exercise program will stop within six months.11 Patients with dementia are expected to be more likely to discontinue exercise program due to lowered levels of patience and self-regulation abilities. Therefore, exercise programs utilizing media, including games, attempt to keep patients interested in exercise programs and to improve therapeutic effects. With recent advances in scientific technologies and computer programs, exercise and rehabilitation interventions using virtual reality are being introduced in the medical field.12 Virtual reality refers to a computer-generated environment that allows users to have experiences similar to those in the real world. It is an interactive simulation characterized by technology that provides reality through various feedbacks.13 While performing predetermined tasks such as playing a game in virtual reality, users manipulate objects as if they were real and can control their movements by giving and receiving various feedbacks via numerous senses such as sight and hearing.14
The virtual reality-enhanced exercise consisting of exercise with computer-simulated environments and interactive videogame features allows patients to enjoy performing tasks, encourages competition, and creates motivation and interest in their treatment.15 Participation in a virtual reality-enhanced exercise was reported to lead to higher exercise frequency and intensity and enhanced health outcomes when compared with traditional exercise.16
However, despite these advantages, conventional virtual reality systems could not be widely available for patients in clinical settings due to several limitations including high costs and a large size.17 Therefore, it is necessary to develop virtual reality exercise programs that are easy to follow in hospitals and at home. As an alternative, the use of computer-based individual training programmes is becoming increasingly popular due to the low cost, independence and ease of use in the home. One such system that is increasing in popularity for use in exercise training is the Nintendo Wii (Wii; Nintendo Inc., Kyoto, Japan) personal game, which became commercially available. Wii is a video gaming console with a simple method, as its virtual reality system is implemented via a television monitor. It combine physical exercise with computer-simulated environments and interactive videogame features. Because the Wii console is inexpensive and small in size, it is easy to install or move it in hospitals or at home. This gaming console is designed to be controlled using a wireless controller, allowing user to interact with his/her own avatar, which is displayed on the screen through a movement sensing system. The controller is provided with an acceleration sensor that responds to acceleration changes recognizing direction and velocity changes.18 Wii-balance board is being used when playing a Wii Fit game. It is a force plate collecting movement information in the center of pressure of the standing user, enabling reflection of movements in a virtual environment on the monitor and thus constantly resending visual feedback to the user. Through this process, the user can adjust his/her postural responses. Studies have shown that the Wii balance board can be helpful in postural control training.19 Because Wii is a typical example of virtual reality applications and is simple, inexpensive, and easily accessible, Wii is expected to create interest among patients encouraging them to put more efforts in exercise via games and thus augmenting effects of the treatment.
Domestic studies on the use of Wii have reported its effects on the upper extremity function, visual perception and sense of balance in chronic stroke patients,20 spinal cord injury patients,21 Parkinson’s disease patients,22 and multiple sclerosis patients.23 However, there have been only a few controlled research studies about the effects of Wii on patients with cognitive decline. The present study aimed to analyze effects of virtual reality exercise program on balance function, emotions, and quality of life (QOL) in patients with cognitive decline.

Continue —> Effects of Virtual Reality Exercise Program on Balance, Emotion and Quality of Life in Patients with Cognitive Decline – ScienceCentral



Figure 1 The level of satisfaction about Wii game for dementia patients (Number=%).

, , , , , , , ,

Leave a comment

[ARTICLE] Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke

BACKGROUND: Executive function deficits negatively impact independence and participation in everyday life of individuals with chronic stroke. Therefore, it is important to explore therapeutic interventions to improve executive functions.
AIM: The aim of this study was to determine the effectiveness of a 3-month interactive video-game group intervention compared to a traditional motor group intervention for improving executive functions in individuals with chronic stroke.
DESIGN: This study is a secondary analysis of a single-blind randomized controlled trial for improving factors related to physical activity of individuals with chronic stroke. Assessments were administered pre and post the intervention and at 3-month follow-up by assessors blind to treatment allocation.
METHODS: Thirty-nine individuals with chronic stroke with executive function deficits participated in an interactive video-game group intervention (N.=20) or a traditional group intervention (N.=19). The intervention included two 1-hour group sessions per week for three months, either playing video-games or performing traditional exercises/activities. Executive function deficits were assessed using The Trail Making Test (Parts A and B) and by two performance-based assessments; the Bill Paying Task from the Executive Function Performance Test (EFPT) and the Executive Function Route-Finding Task (EFRT).
RESULTS: Following intervention, scores for the Bill Paying Task (EFPT) decreased by 27.5% and 36.6% for the participants in the video-game and traditional intervention, respectively (F=17.3, P<0.000) and continued to decrease in the video-game group with small effect sizes. Effect size was small to medium for the TMT-B (F=0.003, P=0.954) and EFRT (F=1.2, P=0.28), without any statistical significance difference.
CONCLUSIONS: Interactive video-games provide combined cognitive-motor stimulation and therefore have potential to improve executive functioning of individuals with chronic stroke. Further research is needed.
CLINICAL REHABILITATION IMPACT: These findings highlight the potential of utilizing interactive video-games in a small group for keeping these individuals active, while maintaining and improving executive functioning especially for individuals with chronic stroke, who have completed their formal rehabilitation.

Source: Improving executive function deficits by playing interactive video-games: secondary analysis of a randomized controlled trial for individuals with chronic stroke – European Journal of Physical and Rehabilitation Medicine 2016 August;52(4):508-15 – Minerva Medica – Journals


, , , , , ,

Leave a comment

[Abstract] Virtual Reality to Assess and Treat Lower Extremity Disorders in Post-stroke Patients


Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Methodologies, Models and Algorithms for Patients Rehabilitation”.

Objectives: To identify support of a virtual reality system in the kinematic assessment and physiotherapy approach to gait disorders in individuals with stroke.

Methods: We adapt Virtual Reality Rehabilitation System (VRRS), software widely used in the functional recovery of the upper limb, for its use on the lower limb of hemiplegic patients. Clinical scales have been used to relate them with the kinematic assessment provided by the system. A description of the use of reinforced feedback provided by the system on the recovery of deficits in several real cases in the field of physiotherapy is performed. Specific examples of functional tasks have been detailed, to be considered in creating intelligent health technologies to improve post-stroke gait.

Results: Both participants improved scores on the clinical scales, the kinematic parameters in leg stance on plegic lower extremity and walking speed > Minimally Clinically Important Difference (MCID).

Conclusion: The use of the VRRS software attached to a motion tracking capture system showed their practical utility and safety in enriching physiotherapeutic assessment and treatment in post-stroke gait disorders.

Source: Methods of Information in Medicine: December 10, 2015

, , , , ,

Leave a comment

%d bloggers like this: