Posts Tagged VRT

[ARTICLE] Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial – Full Text

Abstract

Background

Virtual reality training (VRT) uses computer software to track a user’s movements and allow him or her to interact with a game presented on a television screen. VRT is increasingly being used for the rehabilitation of arm function, balance and walking after stroke. Patients often require ongoing therapy post discharge from inpatient rehabilitation. Outpatient therapy may be limited or inaccessible due to waiting lists, transportation issues, distance etc.; therefore, home-based VRT could provide the required therapy in a more convenient and accessible setting. The objectives of this parallel randomized feasibility trial are to determine (1) the feasibility of using VRT in the home post stroke and (2) the feasibility of a battery of quantitative and qualitative outcome measures of stroke recovery.

Methods

Forty patients who can stand for at least 2 min and are soon to be discharged from inpatient or outpatient rehabilitation post stroke are being recruited in Ottawa, Canada and being randomized to control and experimental groups. Participants in the experimental group use home-based VRT to do rehabilitative exercises for standing balance, stepping, reaching, strengthening and gentle aerobic fitness. Control group participants use an iPad with apps selected to rehabilitate cognition, hand fine motor skills and visual tracking/scanning. Both groups are instructed to perform 30 min of exercise 5 days a week for 6 weeks. VRT intensity and difficulty are monitored and adjusted remotely. Weekly telephone contact is made with all participants. Ability to recruit participants, ability to handle the technology and learn the activities, compliance, safety, enjoyment, perceived efficacy and cost of program delivery will be assessed. A battery of assessments of standing balance, gait and community integration will be assessed for feasibility of completion within this population and potential for improvement following the intervention. Effect sizes will be calculated.

Discussion

The results of this study will be used to support the creation of a definitive randomized controlled trial on the efficacy of home-based VRT for rehabilitation post stroke.

Introduction and objectives

Stroke causes approximately 17,600 hospital admissions per year in Ontario and 50% of individuals who have had a stroke are left with moderate to severe impairment [12]. Most patients who are discharged from inpatient stroke rehabilitation are only 8–10 weeks post stroke and have not completely recovered. Their central nervous systems are still in a period of enhanced neuroplasticity, during which great functional change can be made [34]. Therapy outcomes are dose-dependent; intensive, high-repetition, task-oriented and task-specific therapies are most effective [56]. Therefore, for the greatest recovery possible, these patients require ongoing, intensive therapy. Most are offered this on an outpatient basis. However, for many reasons (transportation difficulties, distance from the rehabilitation center, weather etc.), not all eligible patients are able to attend outpatient therapy. Also, there is a waiting list and a limited number of outpatient therapy sessions are offered to each patient. Home-based therapy may fill an important role towards increasing the availability of rehabilitation, enabling patients to enhance or prolong their therapy and potentially improving outcomes.

Non-immersive virtual reality training (VRT) uses computer software to track the user’s movements and allow him or her to interact with a game or activity presented on a TV screen. It is convenient, timely, enjoyable and may be used for an unlimited period post stroke [78]. VRT has been shown to benefit upper extremity function, standing balance, gait and overall function in the sub-acute and chronic phases post stroke, at least as much as or more than conventional therapy [7910111213].

Home-based VRT offers a promising addition or alternative to existing rehabilitation programs that could make a significant difference in the lives of stroke survivors. A few preliminary studies have investigated the use of home-based VRT for standing balance and upper extremity recovery after stroke and shown potential feasibility of these systems for ongoing rehabilitation in the home [1415161718]. Some VRT platforms allow the user to interface via tactile devices (for example, a dynamic standing frame [14] or robotic glove [18]) while others use motion-tracking via a camera [16]. Some platforms use asynchronous monitoring to allow the therapist to monitor VRT usage and performance after the actual event [16] while others use synchronous monitoring to enable the therapist to watch in while the participant exercises; some even require constant real-time patient/therapist interaction [1719] throughout the therapy session. Users report high satisfaction with home-based VRT [1617], although actual usage can vary greatly [18]. Barriers to the use of home-based VRT include technical issues and lack of previous technical experience [18]. While some previous experience with computers is helpful, those who play video games regularly can become bored with VRT. Facilitators include the flexibility of home-based exercise, support from family and motivation from the VRT itself. Early results, available from a single randomized controlled trial (RCT) with 30 participants, suggest that home-based VRT improves standing balance and gait equally to in-clinic VRT, but that the costs are 44% lower [16].

We wish to add to these early studies of home-based VRT using a virtual reality system (Jintronix Inc.) that was initially developed for stroke rehabilitation and has also been used extensively with healthy and frail elderly individuals. The Jintronix system is marketed for institutional and home use and has a simple-to-use interface, but its home use has not yet been fully evaluated. The games are designed to incorporate motor learning principles such as multiple forms of feedback and task-specific practice that can be progressed to maintain an appropriate level of challenge. Unlike systems used in previous research, the Jintronix system includes a wide selection of games and exercises designed for the rehabilitation of sitting and standing balance, gait and upper extremity use. The system is simple to use and relatively inexpensive; a motion-tracking camera and software eliminates the need for gloves/controllers etc. It is straightforward enough for the patient to use independently; asynchronous monitoring is used to track usage and the therapist can change games and parameters remotely. The purpose of this study is to investigate the feasibility, acceptance and safety of this new, simple-to-use VRT system for use in the home, combined with asynchronous, remote support for the user. The results of this trial will support a definitive RCT in the future.

The primary objective is to assess the feasibility of using VRT in the home with patients post stroke, using quantitative and qualitative methods. Specific objectives are:

  1. 1.

    To estimate the recruitment rate of participants into the study;

  2. 2.

    To assess the ability and compliance of the participants with respect to the components of the research protocol (ability to learn VRT through the training program; ability to comply with the exercise protocol; participant retention);

  3. 3.

    To determine the safety of home-based VRT (presence of minor and major adverse events);

  4. 4.

    To assess the ability of stroke survivors and their study partners to use VRT technology in the home (i.e. technical difficulties, difficulty learning the games);

  5. 5.

    To assess the acceptability of the VRT intervention (enjoyment; perceived efficacy);

  6. 6.

    To estimate the cost for a future definitive RCT on in-home VRT.

The secondary objective is to assess the feasibility of the outcome measures, using quantitative and qualitative methods. Specific objectives are:

  1. 1.

    To assess the feasibility and acceptance of a battery of outcome measures, including physical assessments, questionnaires, an interview and a log book;

  2. 2.

    To assess the potential that home-based VRT might maintain or improve physical outcomes of standing balance, gait and general function and community integration after discharge from hospital-based stroke rehabilitation, compared to those who perform a program of iPad apps designed for fine hand motor skills and cognitive training;

  3. 3.

    To determine the sample size required for a future definitive RCT on in-home VRT.

This study is a prospective, single-site, single-blinded, parallel-group (1:1 ratio) randomized, superiority feasibility trial on the use of VRT for ongoing stroke rehabilitation after discharge from inpatient or outpatient stroke rehabilitation. A feasibility RCT was chosen in order to provide the most useful results to prepare for a future definitive RCT on the efficacy of home-based VRT. iPad apps were chosen as a comparator to VRT because they provide a control group that has equal contact with the researchers and equal time spent in an engaging activity. The use of an active control group (rather than providing control group participants with nothing) was also chosen to facilitate recruitment. The iPad apps chosen to work on hand fine motor control and cognition were not deemed to have any influence on the physical outcome measures of standing balance, gait and gross motor function. The Standard Protocol Items: Recommendation for Interventional Trials (SPIRIT) checklist is available as Additional file 1: Figure S1.[…]

 

Continue —>  Home-based virtual reality training after discharge from hospital-based stroke rehabilitation: a parallel randomized feasibility trial | Trials | Full Text

Fig. 1a  Experimental intervention – home-based virtual reality training targeting standing balance, stepping, reaching, strengthening and aerobic exercise. b Control intervention – iPad apps targeting cognition and hand fine motor control

, , , , , ,

Leave a comment

[WEB SITE] Verizon’s 5G Network Could Make Virtual Rehabilitation For Patients A Reality

Verizon’s 5G Network Could Make Virtual Rehabilitation For Patients A Reality

Instead of grappling with limited mobility to attend physical therapy sessions, recovering patients can don VR gear as part of rehab, potentially enabling remote therapy and treatment from the privacy of their homes thanks to Verizon’s latest lab project

TODD NEIKIRK, 13 JUNE 2018

 

Most patients who are recovering from serious surgery must go through some form of rehabilitation. These patients are often hindered in their mobility, making getting to and from places a challenge. Professor Steven Feiner and his students at Verizon‘s incubator lab Alley are working on a potential virtual rehab program that could make life easier for both those patients and their therapists.

The program works by “creating a collaborate virtual environment in which the therapist and patient use virtual reality to perform exercises focused on motor rehabilitation when they’re both in different locations.” While this ability would have been unthinkable just a few years ago, the advances in both VR as well as the incredible speed of a 5G connection have made it something possible to test out.

The potential benefits are obvious for both the patient and therapist. Rather than having to leave the home with limited mobility, patients could perform their rehab in their home by simply donning VR eyewear. Doctors and therapists also would be able to take on more patients, as their sessions become more streamlined. While this idea is still in the testing stage, it has the potential to optimize—if not—revolutionize a crucial aspect of healthcare.

 

via Verizon’s 5G Network Could Make Virtual Rehabilitation For Patients A Reality

, , , ,

Leave a comment

[Abstract+References] Combined Transcranial Direct Current Stimulation and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study

Abstract

Background

Visual field defects after posterior cerebral artery stroke can be improved by vision restoration training (VRT), but when combined with transcranial direct current stimulation (tDCS), which alters brain excitability, vision recovery can be potentiated in the chronic stage. To date, the combination of VRT and tDCS has not been evaluated in postacute stroke rehabilitation.

Objectives

To determine whether combined tDCS and VRT can be effectively implemented in the early recovery phase following stroke, and to explore the feasibility, safety and efficacy of an early intervention.

Design

Open-label pilot study including a case series of 7 tDCS/VRT versus a convenience sample of 7 control patients (ClinicalTrials.gov ID: NCT02935413).

Setting

Rehabilitation center.

Subjects

Patients with homonymous visual field defects following a posterior cerebral artery stroke.

Methods

Seven homonymous hemianopia patients were prospectively treated with 10 sessions of combined tDCS (2.mA, 10 daily sessions of 20 minutes) and VRT at 66 (±50) days on average poststroke. Visual field recovery was compared with the retrospective data of 7 controls, whose defect sizes and age of lesions were matched to those of the experimental subjects and who had received standard rehabilitation with compensatory eye movement and exploration training.

Results

All 7 patients in the treatment group completed the treatment protocol. The safety and acceptance were excellent, and patients reported occasional skin itching beneath the electrodes as the only minor side effect. Irrespective of their treatment, both groups (treatment and control) showed improved visual fields as documented by an increased mean sensitivity threshold in decibels in standard static perimetry. Recovery was significantly greater (P < .05) in the tDCS/VRT patients (36.73% ± 37.0%) than in the controls (10.74% ± 8.86%).

Conclusion

In this open-label pilot study, tDCS/VRT in subacute stroke was demonstrated to be safe, with excellent applicability and acceptance of the treatment. Preliminary effectiveness calculations show that tDCS/VRT may be superior to standard vision training procedures. A confirmatory, larger-sample, controlled, randomized, and double-blind trial is now underway to compare real-tDCS− versus sham-tDCS−supported visual field training in the early vision rehabilitation phase.

References

  1. Roux, F. Perimetric visual field and functional MRI correlation: Implications for image-guided surgery in occipital brain tumours. J Neurol Neurosurg Psychiatry. 2001;71:505–514.
  2. Gray, C., French, J., Bates, D., Cartlidgen, Venables, G., James, O. Recovery of visual fields in acute stroke: Homonymous hemianopia associated with adverse prognosis. Age Ageing. 1989;18:419–421.
  3. Zhang, X., Kedar, S., Lynn, M., Newman, N., Biousse, V. Natural history of homonymous hemianopia. Neurology. 2006;66:901–905.
  4. Romano, J. Progress in rehabilitation of hemianopic visual field defects. Cerebrovasc Dis. 2009;27:187–190.
  5. Pöppel, E., Held, R., Frost, D. Residual visual function after brain wounds involving the central visual pathways in man. Nature. 1973;243:295–296.
  6. Weiskrantz, L., Warrington, E., Sanders, M., Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain. 1974;97:709–728.
  7. Wüst, S., Kasten, E., Sabel, B. Blindsight after optic nerve injury indicates functionality of spared fibers. J Cogn Neurosci. 2002;14:243–253.
  8. Sabel, B.A., Fedorov, A., Naue, N., Borrmann, A., Herrmann, C., Gall, C. Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor Neurol Neurosci. 2011;29:493–505.
  9. Sabel, B.A., Henrich-Noack, P., Fedorov, A., Gall, C. Vision restoration after brain and retina damage: The “residual vision activation theory”. Prog Brain Res. 2011;192:199–262.
  10. Bola, M., Gall, C., Sabel, B.A. “Sightblind”: Perceptual deficits in the “intact” visual field.Front Neurol. 2013;4:80.
  11. Bola, M., Gall, C., Moewes, C., Fedorov, A., Hinrichs, H., Sabel, B.A. Brain functional connectivity network breakdown and restoration in blindness. Neurology. 2014;83:542–551.
  12. Bola, M., Sabel, B.A. Dynamic reorganization of brain functional networks during cognition.NeuroImage. 2015;114:398–413.
  13. Bridge, H., Thomas, O., Jbabdi, S., Cowey, A. Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain. 2008;131:1433–1444.
  14. Kasten, E., Wüst, S., Behrens-Baumann, W., Sabel, B.A. Computer-based training for the treatment of partial blindness. Nature Med. 1998;4:1083–1087.
  15. Gall, C., Antal, A., Sabel, B.A. Non-invasive electrical brain stimulation induces vision restoration in patients with visual pathway damage. Graefes Arch Clin Exp Ophthalmol. 2013;251:1041–1043.
  16. Eysel, U.T., Schweigart, G., Mittmann, T. et al, Reorganization in the visual cortex after retinal and cortical damage. Restor Neurol Neurosci. 1999;15:153–164.
  17. Poggel, D., Kasten, E., Sabel, B.A. Attentional cueing improves vision restoration therapy in patients with visual field defects. Neurology. 2004;63:2069–2076.
  18. Kasten, E., Bunzenthal, U., Sabel, B.A. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: An eye tracker study. Behav Brain Res. 2006;175:18–26.
  19. Nitsche, M.A., Schauenburg, A., Lang, N. et al, Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15:619–626.
  20. Nitsche, M.A., Cohen, L.G., Wassermann, E.M. et al, Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008;1:206–223.
  21. Antal, A., Kincses, T., Nitsche, M.A., Bartfai, O., Paulus, W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004;45:702.
  22. Kraft, A., Roehmel, J., Olma, M., Schmidt, S., Irlbacher, K., Brandt, S. Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res. 2010;207:283–290.
  23. Plow, E.B., Obretenova, S.N., Halko, M.A. et al, Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: A comparative case study. PM R. 2011;3:825–835.
  24. Plow, E., Obretenova, S., Fregni, F., Pascual-Leone, A., Merabet, L.B. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation.Neurorehabil Neural Repair. 2012;26:616–626.
  25. Plow, E., Obretenova, S., Jackson, M., Merabet, L.B. Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation.Neuromodulation. 2012;15:367–373.
  26. Hummel, F., Celnik, P., Pascual-Leone, A. et al, Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul. 2008;1:370–382.
  27. Alber, R., Cardoso, A.M., Nafee, T. Effects of non-invasive brain stimulation in cerebral stroke related vision loss. Princip Pract Clin Res. 2015;1:15–20.
  28. Rossi, S., Hallett, M., Rossini, P., Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–2039.
  29. Anops [computer program]. Version 2.9.6. Aachen, Germany: LinguAdapt.
  30. Bowen, D.J., Kreuter, M., Spring, B. et al, How we design feasibility studies. Am J Prev Med. 2009;36:452–457.

Source: Combined Transcranial Direct Current Stimulation and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study – PM&R

, , , ,

Leave a comment

[Abstract] Combined tDCS and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study

Abstract

Background

Visual field defects after posterior cerebral artery stroke can be improved by vision restoration training (VRT), but when combined with transcranial direct current stimulation (tDCS) which alters brain excitability, vision recovery can be potentiated in the chronic stage. To date the combination of VRT and tDCS has not been evaluated in post-acute stroke rehabilitation.

Objective

To determine whether combined tDCS and VRT can be effectively implemented in the early recovery phase following a stroke, we wished to explore the feasibility, safety and efficacy of an early intervention.

Design

Open-label pilot study including a case series of seven tDCS/VRT versus a convenience sample of seven control patients (clinicalTrials.gov ID: NCT02935413).

Setting

Rehabilitation center

Subjects

Patients with homonymous visual field defects following a posterior cerebral artery stroke.

Methods

Seven homonymous hemianopia patients were prospectively treated with 10 sessions of combined tDCS (2mA, 10 daily sessions of 20 min) and VRT at 66 (±50) days on average post-stroke. Visual field recovery was compared with retrospective data of 7 controls, whose defect sizes and age of lesions were matched to the experimental subjects and who had received standard rehabilitation with compensatory eye movement and exploration training.

Results

All seven patients of the treatment group completed the treatment protocol. Safety and acceptance were excellent, and patients reported occasional skin itching beneath the electrodes as the only minor side effect. Irrespective of their treatment, both groups (treatment and control) showed improved visual fields as documented by an increased mean sensitivity threshold in dB (decibel) in standard static perimetry. Recovery was significantly greater (p<.05) in tDCS/VRT patients (36.73 ± 37.0%) than in controls (10.74 ± 8.86).

Conclusion

In this open-label pilot study, tDCS/VRT in sub-acute stroke was safe, with excellent applicability and acceptance of the treatment. Preliminary effectiveness calculations show that tDCS/VRT may be superior to standard vision training procedures. A confirmatory, larger-sample, controlled, randomized and double-blind trial is now underway to compare real- vs. sham-tDCS supported visual field training in the early vision rehabilitation phase.

This study was supported by the ERA-net neuron network “Restoration of Vision after Stroke (REVIS)”, (BMBF grant nr: 01EW1210).
clinicalTrials.gov ID: NCT02935413

Source: Combined tDCS and Vision Restoration Training in Subacute Stroke Rehabilitation: A Pilot Study

, , , , , , , , , ,

Leave a comment

[ARTICLE] Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings

Neuropsychological training methods of visual rehabilitation for homonymous vision loss caused by postchiasmatic damage fall into two fundamental paradigms: “compensation” and “restoration”. Existing methods can be classified into three groups: Visual Scanning Training (VST), Audio-Visual Scanning Training (AViST) and Vision Restoration Training (VRT). VST and AViST aim at compensating vision loss by training eye scanning movements, whereas VRT aims at improving lost vision by activating residual visual functions by training light detection and discrimination of visual stimuli.

This review discusses the rationale underlying these paradigms and summarizes the available evidence with respect to treatment efficacy. The issues raised in our review should help guide clinical care and stimulate new ideas for future research uncovering the underlying neural correlates of the different treatment paradigms. We propose that both local “within-system” interactions (i.e., relying on plasticity within peri-lesional spared tissue) and changes in more global “between-system” networks (i.e., recruiting alternative visual pathways) contribute to both vision restoration and compensatory rehabilitation that ultimately have implications for the rehabilitation of cognitive functions.

Download Provisional Article

via Frontiers | Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings | Frontiers in Behavioral Neuroscience.

, , , , , , , , , ,

Leave a comment

[WEB SITE] NovaVision Vision Restoration Therapy

About VRT

NovaVision’s Vision Restoration Therapy, or VRT, is a restoration therapy specifically developed for patients who suffer from a visual field deficit resulting from a neurological trauma such as stroke or traumatic brain injury (TBI). VRT is a prescription therapy undertaken in the comfort of a patient’s own home, clinically supported by more than 15 years of research and 20 studies with FDA 510(k) clearance to be marketed in the US

While other rehabilitation modalities such as speech, physical and occupational therapy have been considered a standard of care for stroke and traumatic brain injury, NovaVision Vision Restoration Therapy addresses a previously unmet need for vision rehabilitation. Unlike other rehabilitation approaches that help patients compensate for their vision loss, VRT is developed to increase the sensitivity within the blind areas. Patients normally undergo VRT for six months, during which time they perform twice daily sessions six days per week, focusing and responding to light stimuli. Recent studies indicate that the mechanisms for recovery is based on neuroplasticity, the brain’s ability to adapt and form new connections or strengthen the pre-existing alternative pathways to overcome injury.

via NovaVision Vision Restoration Therapy.

, , ,

Leave a comment

WEB SITE: NovaVision | Vision Rehabilitation Therapy for Stroke

NovaVision provides non-invasive, computer-based vision solutions targeted at a substantial and largely un-addressed market of people who have lost their sight as a result of Stroke or Traumatic Brain Injury (neurological brain damage). NovaVision has a family of therapies that both restore lost vision and help to compensate for lost vision and which complement each other to maximize patient benefit. NovaVision’s therapies are clinically supported by decades of scientific research.

μέσω NovaVision | Vision Rehabilitation Therapy for Stroke.

, , ,

Leave a comment

%d bloggers like this: