Posts Tagged Wolf Motor Function Test

[Abstract] Effectiveness of Virtual Reality Using PS4 Gaming Technology in Stroke Rehabilitation for Improving Upper Limb Function-A Pilot Study

Background: Hemiparesis resulting in functional limitation of an upper extremity and lower limb is common among stroke survivors. Virtual reality is one of the way of improving motor function in stroke, limited evidence is available on the efficacy of virtual reality for stroke rehabilitaton.

Methods: In this pilot study 2 parallel groups involving stroke patients, we compared the feasibility, safety and efficacy of virtual reality using the sony PS4 gaming technology to evaluate upper limb motor improvement. The primary feasibility outcome was the total time receiving the intervention. The… primary safety outcome was the proportion of patients experiencing intervention-related adverse events during the study period. Efficacy, a secondary outcome measure, was evaluated with wolf motor function test and Spasticity Grading at 4 weeks after intervention. OUTCOME MEASURE: WOLF Motor function test and Box and Block test.

Result: This study shows that mean values obtained from WOLF motor function test showed no statistical significance and the mean values of Box and Block test showed statistical significance.

Conclusion: This study concludes that the PS4 gaming technology is a feasible, safe, and potentially effective intervention to enhance motor function recovery in patients with a recent stroke.

Indian Journals

, , , , , , , , ,

Leave a comment

[ARTICLE] Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients – Full Text

 

Abstract

Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

Introduction

Chronic conditions such as stroke are becoming more prevalent as the world’s population ages (Christensen et al., 2009). Although the number of fatalities caused by stroke has fallen in most countries, stroke is still a leading cause of acquired adult hemiparesis (Langhorne et al., 2009; Liu and Duan, 2017). Up to 85% of patients who survive a stroke experience hemiparesis, resulting in impaired movement of an arm and hand (Nakayama et al., 1994). Among them, a large proportion (46% to 95%) remain symptomatic six months after experiencing an ischemic stroke (Kong et al., 2011). The loss of upper limb function adversely affects the quality of life and impedes the normal use of other body parts. The motor function recovery of the upper limbs is more difficult than that of the lower extremities (Kwakkel et al., 1996; Nichols-Larsen et al., 2005; Día and Gutiérrez, 2013). Functional motor recovery in the affected upper extremities in patients with hemiparesis is the primary goal of physical therapists (Page et al., 2001). Evidence suggests that repetitive, task-oriented training of the paretic upper extremity is beneficial (Barreca et al., 2003; Wolf et al., 2006). Rehabilitation intervention is a critical part of the recovery and studies have reported that intensive repeated practice is likely necessary to modify the neural organization and favor the recovery of the functional upper limb motor skills of stroke survivors (Brunnstrom, 1966; Kopp et al., 1999; Taub et al., 1999; Wolf et al., 2006; Nudo, 2011). Meta-analyses of clinical trials have indicated that longer sessions of practice promote better outcomes in the case of impairments, thus improving the daily activities of people after a stroke (Nudo, 2011; Veerbeek et al., 2014; Sehatzadeh, 2015; French et al., 2016). However, the execution of these conventional rehabilitation techniques is tedious, resource-intensive, and often requires the transportation of patients to specialized facilities (Jutai and Teasell, 2003; Teasell et al., 2009).

Virtual reality training is becoming a promising technology that can promote motor recovery by providing high-intensity, repetitive, and task-orientated training with computer programs simulating three-dimensional situations in which patients play by moving their body parts (Saposnik et al., 2010, 2011; Kim et al., 2011; Laver et al., 2015; Tsoupikova et al., 2015). The gaming industry has developed a variety of virtual reality systems for both home and clinical applications (Saposnik et al., 2010; Bao et al., 2013; Orihuela-Espina et al., 2013; Gatica-Rojas and Méndez-Rebolledo, 2014). The most difficult task related to hemiparesis rehabilitation after a stroke is the functional recovery of the affected hand (Carey et al., 2002). To facilitate the functional recovery of a paretic hand along with that of the proximal upper extremity, an ideal virtual reality system should be able to track hand position and motion, which is not a feature of most existing virtual reality systems (Jang et al., 2005; Merians et al., 2009). The leap motion controller developed by Leap Motion (https://www.leapmotion.com) provides a means of capturing and tracking the fine movements of the hand and fingers, while controlling a virtual environment requiring hand-arm coordination as part of the practicing of virtual tasks (Iosa et al., 2015; Smeragliuolo et al., 2016).

Most virtual reality studies have often only involved patients who have experienced chronic stroke (Piron et al., 2003; Yavuzer et al., 2008; Saposnik et al., 2010; da Silva Cameirao et al., 2011). For patients in the chronic stage, who had missed the window of opportunity present at the acute and subacute stages (in which the brain plasticity peaks), rehabilitation-therapy-induced neuroplasticity can only be effective within a relatively narrow range (Chen et al., 2002). No motor function recovery of the hands, six months after the onset of a stroke, indicates a poor prognosis for hand function (Duncan et al., 1992).

We hypothesized that Leap Motion-based virtual reality training would facilitate motor functional recovery of the affected upper limb, as well as neural reorganization in subacute stroke patients. Functional magnetic resonance imaging (fMRI), also called blood oxygenation level-dependent fMRI (BOLD-fMRI), is widely used as a non-invasive, convenient, and economical method to examine cerebral function (Ogawa et al., 1990; Iosa et al., 2015; Yu et al., 2016). In the present study, we evaluated the brain function reorganization by fMRI, as well as the motor function recovery of the affected upper limb in patients with subacute stroke using Leap Motion-based virtual reality training.[…]

Continue —>  Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients Wang Zr, Wang P, Xing L, Mei Lp, Zhao J, Zhang T – Neural Regen Res

Figure 1: Leap Motion-based virtual reality system and training games.
(A, B) Leap Motion-based virtual reality system; (C) petal-picking game; (D) piano-playing game; (E) robot-assembling game; (F) object-catching with balance board game; (G) firefly game; (H) bee-batting game.

 

 

, , , , , , , , ,

Leave a comment

[ARTICLE] Constraint-Induced Movement Therapy in Compared to Traditional Therapy in Chronic Post-stroke patients – Full Text PDF

Abstract

Introduction: Constraint-induced movement therapy (CIMT) forces the use of the affected side by restraining the unaffected side. The purpose of this article is to explore the changes of motor and functional performance after modified CIMT (mCIMT) in comparison with traditional rehabilitation (TR) in chronic post-stroke patients.

Material and Methods: A total of 12 patients randomly assigned into two treatment groups. Six patients in the mCIMT group received intensive training in a more affected limb for 2 hours daily, 5 days/week using shaping method over a period of 21 days. Participants less affected limb were restrained in arm – hand splint with a target of wearing it for 5 hours daily. The patients in TR group received bimanual and unilateral activities, stretching, strengthening and coordination exercises of the impaired side, tone modification and coordination exercises of the affected side. The focus was to increase independence in activities of daily living activities using affected side. The motor activity log (MAL), wolf motor function test (WMFT), and modified ashworth scale were measured at pre-test (1 day before training), posttest (1 day after training) and follow-up in 3 weeks after training.

Results: The Friedman test found significant differences between pre-test, post-test, and follow-up in MAL and WMFT in mCIMT group. Furthermore, mCIMT group showed significant decreased spasticity (P = 0.030) that measured by ash worth scale. The effect sizes between post-test and pre-test in the above-mentioned outcome measures were moderate to large in mCIMT, ranging from 0.3 to 0.76, but in TR group the effect size were small, ranging from 0 to 0.2.

Conclusion: Therefore, it seems that the mCIMT treatment was more effective than TR in improving some parameters.

Download the PDF file 

, , , , ,

Leave a comment

[ARTICLE] Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review – Full Text

Abstract

Background

Establishing which upper limb outcome measures are most commonly used in stroke studies may help in improving consensus among scientists and clinicians.

Objective

In this study we aimed to identify the most commonly used upper limb outcome measures in intervention studies after stroke and to describe domains covered according to ICF, how measures are combined, and how their use varies geographically and over time.

Methods

Pubmed, CinHAL, and PeDRO databases were searched for upper limb intervention studies in stroke according to PRISMA guidelines and477 studies were included.

Results

In studies 48different outcome measures were found. Only 15 of these outcome measures were used in more than 5% of the studies. The Fugl-Meyer Test (FMT)was the most commonly used measure (in 36% of studies). Commonly used measures covered ICF domains of body function and activity to varying extents. Most studies (72%) combined multiple outcome measures: the FMT was often combined with the Motor Activity Log (MAL), the Wolf Motor Function Test and the Action Research Arm Test, but infrequently combined with the Motor Assessment Scale or the Nine Hole Peg Test. Key components of manual dexterity such as selective finger movements were rarely measured. Frequency of use increased over a twelve-year period for the FMT and for assessments of kinematics, whereas other measures, such as the MAL and the Jebsen Taylor Hand Test showed decreased use over time. Use varied largely between countries showing low international consensus.

Conclusions

The results showed a large diversity of outcome measures used across studies. However, a growing number of studies used the FMT, a neurological test with good psychometric properties. For thorough assessment the FMT needs to be combined with functional measures. These findings illustrate the need for strategies to build international consensus on appropriate outcome measures for upper limb function after stroke.

Continue —> PLOS ONE: Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review

Fig 2. Frequency of use of different upper limb outcome measures (in % of studies). Frequency of use varies widely, between 36% and 1%. Only 15 measures were used in more than 5% of studies (dotted line). The 48 outcome measures are in alphabetic order: AMAT = Arm Motor Ability Test, ARAT = Action Research Arm Test, Ashworth = Ashworth scale, BBT = Box and Blocks Test, CAHAI = Chedoke Arm Hand Inventory, CMSA = Chedoke McMaster Stroke Assessment, COPM = Canadian Occupational Performance Measure, DAS = Disability Assessment Scale, DTI = Diffusion Tensor Imaging, EMG = Electromyography, FAT = Frenchay Arm Test, FC = Force Control, fMRI = Functional Magnetic Resonance Imaging, FMT = Fugl-Meyer Test, FTHUE = Functional Test for the Hemiplegic Upper Extremity, FTT = Finger Tapping Test, GOT = Grating Orientation Task, GRT = Grasp Release Test, HFS = Hand Function Survey, HFT = Hand Function Test, JTHT = Jebsen Taylor Hand Test, KIN = Kinematics, MAL = Motor Activity Log, MAM36 = Manual Ability Measurement 36, MAS = Motor Assessment Scale, MHS = Mini Hand Score, MI = Motricity Index, MMDT = Minnesota Manual Dexterity Test, NHPT = Nine Hole Peg Test, NSA = Nottingham Sensory Assessment, PT = Pegboard Test, RELHFT = Rehabilitation Engineering Laboratory Hand Function Test, RMA = Rivermead Motor Assessment, ROM = Range of Movement, SHFT = Shollerman Hand Function Test, SHPT = Sixteen Hole Peg Test, SIAS = Stroke Impairment Assessment Set, SMES = Sodring Motor Evaluation Scale, SSDI = Standardized Somatosensory Deficit Index, STEF = Simple Test for Hand Function, TDT = Tactile Discrimination Test, TMS = Transcranial Magnetic Stimulation, TS = Tardieu Scale, UEFT = Upper Extremity Function Test, ULIS = Upper Limb Impairment Scale, VAS = Visual Analogue Scale, VFHT = Von-Frey Hair Test, WMFT = Wolf Motor Function Test. http://dx.doi.org/10.1371/journal.pone.0154792.g002

 

, , , , , , , , , ,

Leave a comment

[ARTICLE] A Randomized Clinical Trial to Study the Effectiveness of Mirror Therapy in Improving Hand Function of Stroke Patients. – Full Text PDF

Abstract

Introduction: Mirror Therapy is patient directed treatment that improves the upper extremity function. It is a form of imagery in which mirror is used to convey visual stimuli to brain through observation of one’s unaffected body part as I carries out set of movements.

Method: 30 patients with sub acute and chronic stroke with impaired hand function were randomly allocated into 2 groups with 15 patients in each group. Group A received Mirror Therapy and Conventional Physiotherapy and Group B received only Conventional Physiotherapy. Both groups received treatment for 5 days a week for 4 weeks duration. Hand functions were measured using Wolf Motor Function Test (WMFT) and Jebsen Handfunction Test (JHFT).

Results: There was statistically significant improvement in hand function of stroke patients in Group A as compared to Group B.

Conclusion: It is concluded that the Mirror Therapy with Conventional Physiotherapy significantly found effective than Conventional Physiotherapy alone in improving hand function of stroke patients.

 Full Text PDF

via A Randomized Clinical Trial to Study the Effectiveness of Mirror Therapy in Improving Hand Function of Stroke Patients. – International Journal of Health Sciences and Research (IJHSR) – ScopeMed.org – Online Journal Management System.

, , , , , , , , ,

Leave a comment

[ARTICLE] A Randomized Clinical Trial to Study the Effectiveness of Mirror Therapy in Improving Hand Function of Stroke Patients.

Abstract

Introduction: Mirror Therapy is patient directed treatment that improves the upper extremity function. It is a form of imagery in which mirror is used to convey visual stimuli to brain through observation of one’s unaffected body part as I carries out set of movements.

Method: 30 patients with sub acute and chronic stroke with impaired hand function were randomly allocated into 2 groups with 15 patients in each group. Group A received Mirror Therapy and Conventional Physiotherapy and Group B received only Conventional Physiotherapy. Both groups received treatment for 5 days a week for 4 weeks duration. Hand functions were measured using Wolf Motor Function Test (WMFT) and Jebsen Handfunction Test (JHFT).

Results: There was statistically significant improvement in hand function of stroke patients in Group A as compared to Group B.

Conclusion: It is concluded that the Mirror Therapy with Conventional Physiotherapy significantly found effective than Conventional Physiotherapy alone in improving hand function of stroke patients.

via A Randomized Clinical Trial to Study the Effectiveness of Mirror Therapy in Improving Hand Function of Stroke Patients. – International Journal of Health Sciences and Research (IJHSR) – ScopeMed.org – Online Journal Management System.

, , , , , , , , ,

Leave a comment

%d bloggers like this: