[Abstract + References] Combined robot-assisted therapy virtual reality for upper limb rehabilitation in stroke survivors: a systematic review of randomized controlled trials

Abstract

Background

Upper limb impairments are among the most common consequences following a stroke. Recently, robot-assisted therapy (RT) and virtual reality (VR) have been used to improve upper limb function in stroke survivors.

Objectives

This review aims to investigate the effects of combined RT and VR on upper limb function in stroke survivors and to provide recommendations for researchers and clinicians in the medical field.

Methods

We searched PubMed, SCOPUS, REHABDATA, PEDro, EMBASE, and Web of Science from inception to March 28, 2024. Randomized controlled trials (RCTs) involving stroke survivors that compared combined RT and VR interventions with either passive (i.e., sham, rest) or active (i.e., traditional therapy, VR, RT) interventions and assessed outcomes related to upper limb function (e.g., strength, muscle tone, or overall function) were included. The Cochrane Collaboration tool was used to evaluate the methodological quality of the included studies.

Results

Six studies were included in this review. In total, 201 patients with stroke (mean age 57.84 years) were involved in this review. Four studies were considered ‘high quality’, while two were considered as ‘moderate quality’ on the Cochrane Collaboration tool. The findings showed inconsistent results for the effects of combined RT and VR interventions on upper limb function poststroke.

Conclusion

In conclusion, there are potential effects of combined RT and VR interventions on improving upper limb function, but further research is needed to confirm these findings, understand the underlying mechanisms, and assess the consistency and generalizability of the results.


References

  1. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MSV, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer D, Lee J-M, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV (2013) An updated definition of stroke for the 21st century. Stroke 44(7):2064–2089. https://doi.org/10.1161/str.0b013e318296aecaArticle PubMed PubMed Central Google Scholar 
  2. Simpson L, Hayward KS, McPeake M, Field TS, Eng JJ (2021) Challenges of estimating accurate prevalence of arm weakness early after stroke. Neurorehabil Neural Repair 35(10):871–879. https://doi.org/10.1177/15459683211028240Article PubMed PubMed Central Google Scholar 
  3. Buma FE, Kwakkel G, Ramsey NF (2013) Understanding upper limb recovery after stroke. Restor Neurol Neurosci 31(6):707–722. https://doi.org/10.3233/rnn-130332Article PubMed Google Scholar 
  4. Miller E, Murray L, Richards L, Zorowitz RD, Bakas T, Clark PC, Billinger SA (2010) Comprehensive Overview of Nursing and interdisciplinary Rehabilitation care of the stroke patient. Stroke 41(10):2402–2448. https://doi.org/10.1161/str.0b013e3181e7512bArticle PubMed Google Scholar 
  5. Hatem S, Saussez G, Della Faille MM, Prist V, Zhang XX, Dispa D, Bleyenheuft Y (2016) Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Human Neurosci 10. https://doi.org/10.3389/fnhum.2016.00442
  6. Kwakkel G, Kollen BJ (2012) Predicting activities after stroke: What is clinically relevant? Int J Stroke (Print) 8(1):25–32. https://doi.org/10.1111/j.1747-4949.2012.00967.xArticle Google Scholar 
  7. Cassidy JM, Cramer SC (2016) Spontaneous and Therapeutic-Induced Mechanisms of functional recovery after Stroke. Transl Stroke Res (Print) 8(1):33–46. https://doi.org/10.1007/s12975-016-0467-5Article CAS Google Scholar 
  8. Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM & R 2(12S). https://doi.org/10.1016/j.pmrj.2010.10.016
  9. Kleim JA, Jones TA (2008) Principles of Experience-Dependent Neural Plasticity: Implications for rehabilitation after Brain damage. J Speech, Language, Hear Res (Print) 51(1). https://doi.org/10.1044/1092-4388(2008/018
  10. Bargeri S, Scalea S, Agosta F, Banfi G, Corbetta D, Filippi M, Sarasso E, Turolla A, Castellini G, Gianola S (2023) Effectiveness and safety of virtual reality rehabilitation after stroke: an overview of systematic reviews. EClinicalMedicine (Oxford) 64:102220. https://doi.org/10.1016/j.eclinm.2023.102220Article Google Scholar 
  11. Kwakkel G, Veerbeek JM, Van Wegen EEH, Wolf SL (2015) Constraint-induced movement therapy after stroke. Lancet Neurol 14(2):224–234. https://doi.org/10.1016/s1474-4422(14)70160-7Article PubMed PubMed Central Google Scholar 
  12. Alashram AR, Annino G, Mercuri NB (2019) Task-oriented motor learning in upper extremity rehabilitation post stroke. J Stroke Med (Print) 2(2):95–104. https://doi.org/10.1177/2516608519864760Article Google Scholar 
  13. Alashram AR, Annino G, Al-Qtaishat M, Padua E (2020) Mental practice combined with physical practice to enhance upper extremity functional ability poststroke: A Systematic review. J Stroke Med (Print) 3(2):51–61. https://doi.org/10.1177/2516608520943793Article Google Scholar 
  14. Gittler MS, Davis AM (2018) Guidelines for Adult Stroke Rehabilitation and Recovery. JAMA 319(8):820. https://doi.org/10.1001/jama.2017.22036Article PubMed Google Scholar 
  15. Alashram AR, Padua E, Aburub A, Raju M, Annino G (2022) Transcranial direct current stimulation for upper extremity spasticity rehabilitation in stroke survivors: A systematic review of randomized controlled trials. PM & R 15(2):222–234. https://doi.org/10.1002/pmrj.12804Article Google Scholar 
  16. Alashram AR, Padua E, Romagnoli C, Raju M, Annino G (2021) Effects of Repetitive transcranial magnetic stimulation on Upper extremity spasticity Post-Stroke: A Systematic review. Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 32(03):136–145. https://doi.org/10.1055/a-1691-9641Article Google Scholar 
  17. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehab 11(1). https://doi.org/10.1186/1743-0003-11-3
  18. Sherman WR, Craig AB (2003) Understanding Virtual Reality—Interface, application, and design. Presence (Cambridge, Mass) 12(4):441–442. https://doi.org/10.1162/105474603322391668Article Google Scholar 
  19. Pignolo L (2009) Robotics in neuro-rehabilitation. J Rehabil Med (Print) 41(12):955–960. https://doi.org/10.2340/16501977-0434Article Google Scholar 
  20. Dobkin BH (2004) Strategies for stroke rehabilitation. Lancet Neurol (Print) 3(9):528–536. https://doi.org/10.1016/s1474-4422(04)00851-8Article Google Scholar 
  21. Morone G, Cocchi I, Paolucci S, Iosa M (2020) Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication. Exp Rev Med Devices (Print) 17(3):223–233. https://doi.org/10.1080/17434440.2020.1733408Article CAS Google Scholar 
  22. Lee SH, Park G, Cho DY, Kim HY, Lee J, Kim S, Park S-B, Shin J-H (2020) Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scient Rep (Nature Publishing Group) 10(1). https://doi.org/10.1038/s41598-020-58630-2
  23. Turner DL, Ramos-Murguialday A, Birbaumer N, Hoffmann U, Luft AR (2013) Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front Neurol 4. https://doi.org/10.3389/fneur.2013.00184
  24. Sheng B, Zhang Y, Meng W, Deng C, Xie S (2016) Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Med Eng Phys 38(7):587–606. https://doi.org/10.1016/j.medengphy.2016.04.004Article PubMed Google Scholar 
  25. Veerbeek JM, Langbroek-Amersfoort AC, Van Wegen EEH, Meskers CGM, Kwakkel G (2016) Effects of Robot-Assisted therapy for the upper limb after Stroke. Neurorehabil Neural Repair 31(2):107–121. https://doi.org/10.1177/1545968316666957Article PubMed Google Scholar 
  26. Subramanian S, Lourenço CB, Chilingaryan G, Sveistrup H, Levin MF (2012) Arm motor recovery using a virtual reality intervention in chronic stroke. Neurorehabil Neural Repair 27(1):13–23. https://doi.org/10.1177/1545968312449695Article PubMed Google Scholar 
  27. Hao J, He Z, Yu X, Remis A (2023) Comparison of immersive and non-immersive virtual reality for upper extremity functional recovery in patients with stroke: a systematic review and network meta-analysis. Neurol Sci 44(8):2679–2697. https://doi.org/10.1007/s10072-023-06742-8Article PubMed Google Scholar 
  28. Jin M, Pei J, Bai Z, Zhang J, He T, Xu X, Zhu F, Yu D, Zhang Z (2021) Effects of virtual reality in improving upper extremity function after stroke: A systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 36(5):573–596. https://doi.org/10.1177/02692155211066534Article PubMed Google Scholar 
  29. Kiper P, Godart N, Cavalier M, Bérard C, Cieślik B, Federico S, Kiper A, Pellicciari L, Meroni R (2023) Effects of immersive virtual reality on upper-extremity stroke rehabilitation: a systematic review with meta-analysis. J Clin Med 13(1):146. https://doi.org/10.3390/jcm13010146Article PubMed PubMed Central Google Scholar 
  30. Saleh S, Bagce HF, Qiu Q, Fluet GG, Merians AS, Adamovich SV, Tunik E (2011) Mechanisms of neural reorganization in chronic stroke subjects after virtual reality training. Conf Proc IEEE Eng Med Biol Soc. https://doi.org/10.1109/iembs.2011.6092002Article PubMed Central Google Scholar 
  31. Comani S, Velluto L, Schinaia L, Cerroni G, Serio A, Buzzelli S, Sorbi S, Guarnieri B (2015) Monitoring neuro-motor recovery from stroke with high-resolution EEG, Robotics and Virtual Reality: a proof of concept. IEEE Trans Neural Syst Rehabil Eng 23(6):1106–1116. https://doi.org/10.1109/tnsre.2015.2425474Article PubMed Google Scholar 
  32. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann T, Mulrow CD, Shamseer L, Tetzlaff J, Akl EA, Brennan S, Chou R, Glanville J, Grimshaw J, Hróbjartsson A, Lalu MM, Li T, Loder E, Mayo‐Wilson E, McDonald S, McGuinness LA, Stewart L, Thomas J, Tricco AC, Welch V, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ :n71. https://doi.org/10.1136/bmj.n71
  33. Liberati A, Altman DG, Tetzlaff J, Mulrow CD, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100Article PubMed PubMed Central Google Scholar 
  34. El-Kafy EMA, Alshehri MA, Fiky AARE, Guermazi MA, Mahmoud H (2022) The effect of robot-mediated virtual reality gaming on upper limb spasticity poststroke: a randomized-controlled trial. Games Health J 11(2):93–103. https://doi.org/10.1089/g4h.2021.0197Article Google Scholar 
  35. Park JH, Park G, Kim HY, Lee J, Ham Y, Hwang D, Kwon S, Shin J-H (2020) A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. J Neuroeng Rehabil 17(1). https://doi.org/10.1186/s12984-020-00763-6
  36. Byl NN, Abrams G, Pitsch E, Fedulow I, Kim H, Simkins M, Nagarajan SS, Rosén J (2013) Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J Hand Ther 26(4):343–352. https://doi.org/10.1016/j.jht.2013.06.001Article PubMed Google Scholar 
  37. Masiero S, Celia A, Rosati G, Armani M (2007) Robotic-Assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 88(2):142–149. https://doi.org/10.1016/j.apmr.2006.10.032Article PubMed Google Scholar 
  38. Klamroth-Marganska V, Blanco JB, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer BAG, Guidali M, Kollmar A, Luft AR, Nef T, Schuster-Amft C, Stahel WA, Riener R (2014) Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurology (Print) 13(2):159–16. https://doi.org/10.1016/s1474-4422(13)70305-3Article Google Scholar 
  39. Thielbar KO, Lord TJ, Fischer H, Lazzaro E, Barth KC, Stoykov ME, Triandafilou KM, Kamper DG (2014) Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. J Neuroeng Rehabil 11(1). https://doi.org/10.1186/1743-0003-11-171
  40. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savović J, Schulz KF, Weeks L, Sterne JAC (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ Br Med J 343(oct18 2):d5928. https://doi.org/10.1136/bmj.d5928Article Google Scholar 
  41. Jørgensen L, Paludan-Müller AS, Laursen DRT, Savović J, Boutron I, Sterne J a C, Higgins JPT, Hróbjartsson A (2016) Evaluation of the Cochrane tool for assessing risk of bias in randomized clinical trials: overview of published comments and analysis of user practice in Cochrane and non-Cochrane reviews. Syst Rev 5(1). https://doi.org/10.1186/s13643-016-0259-8
  42. Zanatta F, Farhane‐Medina NZ, Adorni R, Steca P, Giardini A, D’Αddario M, Pierobon A (2023) Combining robot-assisted therapy with virtual reality or using it alone? A systematic review on health-related quality of life in neurological patients. Health Qual Life Outcomes 21(1). https://doi.org/10.1186/s12955-023-02097-y
  43. Clark WE, Sivan M, O’Connor RJ (2019) Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. J Rehabil Assist Technol Eng 6:205566831986355. https://doi.org/10.1177/2055668319863557Article Google Scholar 
  44. Oosterveer DM, Wermer MJH, Volker G, Vlieland TPMV (2022) Are there differences in Long-Term functioning and recovery between hemorrhagic and ischemic stroke patients receiving rehabilitation? J Stroke Cerebrovasc Dis (Print) 31(3):106294. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106294Article Google Scholar 
  45. Perna R, Temple J (2015) Rehabilitation outcomes: ischemic versus hemorrhagic strokes. Behav Neurol 2015:1–6. https://doi.org/10.1155/2015/891651Article Google Scholar 
  46. Alashram AR (2024) Combined noninvasive brain stimulation virtual reality for upper limb rehabilitation poststroke: A systematic review of randomized controlled trials. Neurol Sci (Print). https://doi.org/10.1007/s10072-024-07360-8Article Google Scholar 
  47. Alashram AR (2024) Non-invasive brain stimulation combined with neuromuscular electrical stimulation for upper limb rehabilitation in stroke survivors: a systematic review. Curr Phys Med Rehabil Rep. https://doi.org/10.1007/s40141-023-00428-0Article Google Scholar 
  48. Alashram AR, Padua E, Annino G (2022) Effects of brain-computer interface controlled functional electrical stimulation on motor recovery in stroke survivors: a systematic review. Curr Phys Med Rehabil Rep 10(4):299–310. https://doi.org/10.1007/s40141-022-00369-0Article Google Scholar 
  49. Dhamoon MS, Moon Y, Paik MC, Boden-Albala B, Rundek T, Sacco RL, Elkind MSV (2009) Long-Term functional recovery after first ischemic stroke. Stroke 40(8):2805–2811. https://doi.org/10.1161/strokeaha.109.549576Article PubMed PubMed Central Google Scholar 
  50. Kolmos M, Christoffersen LC, Kruuse C (2021) Recurrent ischemic stroke – a systematic review and meta-analysis. J Stroke Cerebrovasc Dis 30(8):105935. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105935Article PubMed Google Scholar 
  51. Alashram AR, Annino G, Padua E (2022) Rehabilitation interventions for cognitive deficits in stroke survivors: A systematic review of randomized controlled trials. Appl Neuropsychol Adult (Print) :1–27. https://doi.org/10.1080/23279095.2022.2130319
  52. De Luca R, Russo M, Naro A, Tomasello P, Leonardi S, Santamaría FJC, Latella D, Bramanti A, Silvestri G, Bramantı P, Calabrò RS (2018) Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: preliminary considerations. Int J Neurosci/Int J Neurosci 128(9):791–796. https://doi.org/10.1080/00207454.2017.1403915Article PubMed Google Scholar 
  53. Wu J, Zeng A, Chen Z, Wei Y, Huang K, Chen J, Ren Z (2021) Effects of virtual reality training on upper limb function and balance in stroke Patients: systematic review and meta-meta-analysis. JMIR J Med Int Res 23(10):e31051. https://doi.org/10.2196/31051Article Google Scholar 
  54. Zhang Q, Fu Y, Lu Y, Zhang Y, Huang Q, Yang Y, Zhang K, Li M (2021) Impact of virtual reality-based therapies on cognition and mental health of stroke patients: systematic review and meta-analysis. JMIR J Med Int Res/J Med Int Res 23:11 e31007. https://doi.org/10.2196/31007Article Google Scholar 
  55. Carrillo C, Tilley DG, Horn K, González MA, Coffman CJ, Hilton C, Mani K (2023) Effectiveness of robotics in stroke rehabilitation to accelerate upper extremity function: systematic review. Occup Ther Int 2023:1–16. https://doi.org/10.1155/2023/7991765Article Google Scholar 
  56. Jakob I, Kollreider A, Germanotta M, Benetti F, Cruciani A, Padua L, Aprile I (2018) Robotic and sensor technology for upper limb rehabilitation. PM & R 10(9S2). https://doi.org/10.1016/j.pmrj.2018.07.011
  57. Alashram AR, Padua E, Romagnoli C, Annino G (2019) Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: A systematic review. NeuroRehabilitation (Reading, Mass) 45(4):471–481. https://doi.org/10.3233/nre-192863Article Google Scholar 
  58. Annino G, Alashram AR, Alghwiri AA, Romagnoli C, Messina G, Tancredi V, Padua E, Mercuri NB (2019) Effect of segmental muscle vibration on upper extremity functional ability poststroke. Medicine (Baltimore, Md) 98(7):e14444. https://doi.org/10.1097/md.0000000000014444Article Google Scholar 
  59. Martin S, Cordeiro L, Richardson P, Davis S, Tartaglia N (2018) The association of motor skills and adaptive functioning in XXY/Klinefelter and XXYY syndromes. Phys Occup Ther Pediatr 39(4):446–459. https://doi.org/10.1080/01942638.2018.1541040Article PubMed PubMed Central Google Scholar 
  60. Johnson D, Harris JE, Stratford PW, Richardson J (2018) Interrater reliability of three versions of the Chedoke arm and hand activity inventory. Physiother Can 70(2):133–140. https://doi.org/10.3138/ptc.2016-70Article PubMed PubMed Central Google Scholar 
  61. Uswatte G, Taub E, Morris D, Vignolo MJ, McCulloch K (2005) Reliability and validity of the upper-extremity motor activity log-14 for measuring Real-world arm use. Stroke 36(11):2493–2496. https://doi.org/10.1161/01.str.0000185928.90848.2eArticle PubMed Google Scholar 
  62. Egger M, Smith GD (1998) meta-analysis bias in location and selection of studies. BMJ Br Med J 316(7124):61–66. https://doi.org/10.1136/bmj.316.7124.61Article CAS Google Scholar 
  63. Higgins JPT, Green S (2008) Cochrane Handbook for Systematic Reviews of Interventions. In: Wiley eBooks

Source

, , , , , , , ,

  1. Leave a comment

Leave a comment