Archive for category Cognitive Rehabilitation

[Abstract] Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology

Highlights

  • Virtual reality technology improves cognitive function post-traumatic brain injury.
  • Optimal treatment protocol is; 10–12 sessions, 20–40 min in duration with 2–4 sessions per week.
  • There was weak evidence for positive effect of virtual reality on attention.

Abstract

Background

Traumatic brain injury (TBI) can causes numerous cognitive impairments usually in the aspects of problem-solving, executive function, memory, and attention. Several studies has suggested that rehabilitation treatment interventions can be effective in treating cognitive symptoms of brain injury. Virtual reality (VR) technology potential as a useful tool for the assessment and rehabilitation of cognitive processes.

Objectives

The aims of present systematic review are to examine effects of VR training intervention on cognitive function, and to identify effective VR treatment protocol in patients with TBI.

Methods

PubMed, Scopus, PEDro, REHABDATA, EMBASE, web of science, and MEDLINE were searched for studies investigated effect of VR on cognitive functions post TBI. The methodological quality were evaluated using PEDro scale. The results of selected studies were summarized.

Results

Nine studies were included in present study. Four were randomized clinical trials, case studies (n = 3), prospective study (n = 1), and pilot study (n = 1). The scores on the PEDro ranged from 0 to 7 with a mean score of 3. The results showed improvement in various cognitive function aspects such as; memory, executive function, and attention in patients with TBI after VR training.

Conclusion

Using different VR tools with following treatment protocol; 10–12 sessions, 20–40 min in duration with 2–4 sessions per week may improves cognitive function in patients with TBI. There was weak evidence for effects of VR training on attention post TBI.

via Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology – Journal of Clinical Neuroscience

, , , , ,

Leave a comment

[ARTICLE] Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study – Full Text

 

Abstract

Background

Virtual reality technologies show potential as effective rehabilitation tools following neuro-trauma. In particular, the Elements system, involving customized surface computing and tangible interfaces, produces strong treatment effects for upper-limb and cognitive function following traumatic brain injury. The present study evaluated the efficacy of Elements as a virtual rehabilitation approach for stroke survivors.

Methods

Twenty-one adults (42–94 years old) with sub-acute stroke were randomized to four weeks of Elements virtual rehabilitation (three weekly 30–40 min sessions) combined with treatment as usual (conventional occupational and physiotherapy) or to treatment as usual alone. Upper-limb skill (Box and Blocks Test), cognition (Montreal Cognitive Assessment and selected CogState subtests), and everyday participation (Neurobehavioral Functioning Inventory) were examined before and after inpatient training, and one-month later.

Results

Effect sizes for the experimental group (d = 1.05–2.51) were larger compared with controls (d = 0.11–0.86), with Elements training showing statistically greater improvements in motor function of the most affected hand (p = 0.008), and general intellectual status and executive function (p ≤ 0.001). Proportional recovery was two- to three-fold greater than control participants, with superior transfer to everyday motor, cognitive, and communication behaviors. All gains were maintained at follow-up.

Conclusion

A course of Elements virtual rehabilitation using goal-directed and exploratory upper-limb movement tasks facilitates both motor and cognitive recovery after stroke. The magnitude of training effects, maintenance of gains at follow-up, and generalization to daily activities provide compelling preliminary evidence of the power of virtual rehabilitation when applied in a targeted and principled manner.

Trial registration

this pilot study was not registered.

Introduction

Stroke is one of the most common forms of acquired brain injury (ABI), with around 60,000 new and recurrent strokes occurring every year in Australia alone [1]. The clinical outcome of stroke is variable but often includes persistent upper-limb motor deficits, including weakness, discoordination, and reduced speed and mobility [2], and cognitive impairments in information processing and executive function [34]. Not surprisingly, stroke is a leading cause of disability worldwide, and the burden of stroke across all levels of the International Classification of Functioning (ICF) – body structures/function, activity, and participation – underlines the importance of interventions that can impact multiple domains of functioning [56].

Recovery of functional performance following stroke remains a significant challenge for rehabilitation specialists [78], but may be enhanced by innovation in the use of new technologies like virtual reality [9101112]. A critical goal is to find compelling ways of engaging individuals in their therapy by creating meaningful, stimulating and intensive forms of training [13]. The term, virtual rehabilitation (VR), is used to describe a form of training wherein patients interact with virtual or augmented environments, presented with the aid of technology [1415]. The technologies can be either commercial systems (e.g. Nintendo Wii, Xbox Kinect) or those customised specifically for rehabilitation. VR offers a number of advantages over traditional therapies, including the ability to engage individuals in the simulated practice of functional tasks at higher doses [1617], automated assessment of performance over time, flexibility in the scaling of task constraints, and a variety of reward structures to help maintain compliance [18].

While evaluation research is still in its infancy, recent systematic reviews and meta-analyses show that VR can enhance upper-limb motor outcomes in stroke [101119], yielding treatment effects of medium-to-large magnitude [1011], and complementing conventional approaches to rehabilitation. VR has been shown to engender high levels of engagement in stroke patients undergoing physical therapy [2021] and training of even moderate intensity can afford functional benefits at the activity/skill level [919]. In the specific case of upper-limb VR, however, there is little available evidence that these benefits transfer to participation [9]. Furthermore, most available data is on patients in chronic stages of recovery, with less on acute stroke [9]. Notwithstanding this, use of VR has begun to emerge in clinical practice, recommended in Australian and international stroke guidelines as a viable adjunct in therapy to improve motor and functional outcomes [222324].

Until recently, most VR systems have been designed to improve motor functions, with cognitive outcomes often a secondary consideration in evaluation studies [91011]. Notwithstanding this, treatments that target both motor and cognitive functions are indicated for stroke, given evidence that cognitive and motor systems overlap at a structural and functional level [2526], and work synergistically in a “perception-action cycle” [27] in stroke patients undergoing rehabilitation [28]. Recent studies provide preliminary evidence of improved attention and memory in stroke patients following motor-oriented VR [29303132], amounting to a small-to-medium effect on cognition [9]. When designed to address aspects of cognitive control and planning, VR has the potential to enhance dual-task control, resulting in better generalization of trained skills to daily functioning [33].

While evaluation research is still in its infancy, several recent customized systems (like Elements, the system evaluated here) have been deliberately designed to exploit factors known to enhance training intensity and motor learning. Informed by neuroscience and learning theory [for a recent review see 12], the Elements VR system was designed to enhance neuro-plastic recovery processes via: (1) an enriched therapeutic environment affording a natural form of user interaction via tangible computing and surface displays [34], which engage both the cognitive attention of participants and their motivation to explore training tasks; (2) concurrent augmented feedback (AF) on performance [35] offering participants additional information on the outcome of their actions to assist in re-building a sense of body position in space (aka body schema) and ability to predict/plan future actions; and (3) scaling of task challenges to the current level of motor and cognitive function [36], ensuring dynamic scaffolding of participants’ information processing and response capabilities. The Elements system, described in detail below and in earlier publications [3738], consists of a large (42 in.) tabletop surface display, tangible user interfaces, and software for presenting both goal-directed and exploratory virtual environments. Previous evaluations of the system in patients with traumatic brain injury showed improvements in both motor and cognitive performance, with transfer to activities of daily living [3739]. However, the impact of Elements in other forms of ABI, such as stroke, has not been evaluated.

The broad aim of current study was to evaluate the efficacy of the Elements VR interactive tabletop system for rehabilitation of motor and cognitive functions in sub-acute stroke, compared with treatment as usual (TAU). We were particularly interested in motor and cognitive outcomes, their relationship, and the transfer and maintenance of treatment effects. Training-related changes at the activity/skill level on standardized measures of motor and cognitive performance were investigated, together with functional changes. By offering an engaging, principled and customized form of interaction, we predicted that the Elements system would effect (i) greater changes on both motor and cognitive outcomes than with TAU alone; (ii) sustained benefits, as assessed over a short follow-up period, and (iii) transfer to everyday functional performance (i.e. participation).[…]

 

Continue —> Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1

 

Fig. 1

Examples of the Elements (a) goal-directed Bases task with visual augmented feedback, and (b) exploratory Squiggles task

 

 

, , , , , , , , ,

Leave a comment

[NEWS] ‘Mind-blowing’: Virtual reality PTSD treatment central to launch of consortium

Col. Rakesh Jetly, chief pyschiatrist, Canadian Armed Forces, demonstrates the 3MDR system with Capt. Anna Harpe at the Glenrose Rehabilitation Hospital in Edmonton on Wednesday, Feb. 13, 2019. HiMARC’s Motion-Assisted Multi-Modal Memory Desensitization and Reconsolidation (3MDR) uses virtual reality to treat post traumatic stress syndrome. LARRY WONG / POSTMEDIA

Virtual reality to help more military and other public safety workers cope with PTSD is central to the work of a new group launched in Edmonton.

Heroes in Mind, Advocacy & Research Consortium (HiMARC) is made up of those who want “to serve the men and women in uniform who have served us and continue to serve us daily,” Bob Haennel, dean of the University of Alberta’s Faculty of Rehabilitation Medicine, said in a Wednesday news release.

HiMARC’s Motion-Assisted, Multi-Modal Memory Desensitization and Reconsolidation (3MDR) research study — the largest of its kind in Canada with 40 Armed Forces participants — allows PTSD patients to use the Computer-Assisted Rehabilitation Environment (CAREN) system at the Glenrose Rehabilitation Hospital.

“It was incredible. I don’t know how else to describe it. My senses were heightened. I was even sensitive to the clanging sound of the carabiner on my harness,” said Capt. Anna Harpe, a social worker at CFB Edmonton, after experiencing the 3MDR system.

Patients who step into the CAREN unit walk on a treadmill toward a stimulus, sounds and images that may remind them of events that trigger traumatic memories. A therapist is with them through the process, guiding the patient confronting the memories.

While Harpe does not have PTSD, she said testing the 3MDR brought back vivid recollections of a mission in Afghanistan when she was in the infantry.

“I have worked with some clients who have been diagnosed with PTSD, and I have to say, the 3MDR is mind-blowing. My whole body was activated. You just cannot get the same thing through talk therapy in an office,” she said.

Study participants are receiving the therapy once a week for six weeks.

“By walking towards the fear, there is a shift in the brain,” said Suzette Brémault-Phillips, director of HiMARC in the Faculty of Rehabilitation Medicine and co-principal investigator for the study in Canada.

The 3MDR system — developed by Col. Eric Vermetten, head of research at the Military Mental Health unit of the Dutch ministry of defence in the Netherlands — has been effective in the Netherlands where it’s been used to treat the rise in PTSD cases there after its mission to Afghanistan.

Vermetten traveled to Edmonton to train Brémault-Phillips and her team to use the system.

HiMARC’s founding members also include the Royal Canadian Legion Alberta-NWT Command, NAIT, the Department of National Defence, Veteran Affairs Canada and Covenant Health.

“HiMARC is creating hope and I am so grateful for this group. I really believe this is just the beginning,” added Harpe.

Source:
https://edmontonjournal.com/news/local-news/mind-blowing-virtual-reality-ptsd-treatment-central-to-launch-of-consortium

, ,

Leave a comment

[Abstract] The Effect of Noninvasive Brain Stimulation on Poststroke Cognitive Function: A Systematic Review

Abstract

Introduction. Cognitive impairment after stroke has been associated with lower quality of life and independence in the long run, stressing the need for methods that target impairment for cognitive rehabilitation. The use of noninvasive brain stimulation (NIBS) on recovery of language functions is well documented, yet the effects of NIBS on other cognitive domains remain largely unknown. Therefore, we conducted a systematic review that evaluates the effects of different stimulation techniques on domain-specific (long-term) cognitive recovery after stroke. 

Methods. Three databases (PubMed, EMBASE, and PsycINFO) were searched for articles (in English) on the effects of NIBS on cognitive domains, published up to January 2018. 

Results. A total of 40 articles were included: randomized controlled trials (n = 21), studies with a crossover design (n = 9), case studies (n = 6), and studies with a mixed design (n = 4). Most studies tested effects on neglect (n = 25). The majority of the studies revealed treatment effects on at least 1 time point poststroke, in at least 1 cognitive domain. Studies varied highly on the factors time poststroke, number of treatment sessions, and stimulation protocols. Outcome measures were generally limited to a few cognitive tests. 

Conclusion. Our review suggests that NIBS is able to alleviate neglect after stroke. However, the results are still inconclusive and preliminary for the effect of NIBS on other cognitive domains. A standardized core set of outcome measures of cognition, also at the level of daily life activities and participation, and international agreement on treatment protocols, could lead to better evaluation of the efficacy of NIBS and comparisons between studies.

https://journals.sagepub.com/doi/abs/10.1177/1545968319834900

, , , , , ,

Leave a comment

[ARTICLE] Comparing memory group training and computerized cognitive training for improving memory function following stroke: A phase II randomized controlled trial – Full Text HTML

Abstract

Objectives: Memory deficits are common after stroke, yet remain a high unmet need within the community. The aim of this phase II randomized controlled trial was to determine whether group compensatory or computerized cognitive training approaches were effective in rehabilitating memory following stroke.

Methods: A parallel, 3-group, single-blind, randomized controlled trial was used to compare the effectiveness of a compensatory memory skills group with restorative computerized training on functional goal attainment. Secondary outcomes explored change in neuropsychological measures of memory, subjective ratings of prospective and everyday memory failures and ratings of internal and external strategy use.

Results: A total of 65 community dwelling survivors of stroke were randomized (24: memory group, 22: computerized cognitive training, and 19: wait-list control). Participants allocated to the memory group reported significantly greater attainment of memory goals and internal strategy use at 6-week follow-up relative to participants in computerized training and wait-list control conditions. However, groups did not differ significantly on any subjective or objective secondary outcomes.

Conclusion: Preliminary evidence shows that memory skills groups, but not computerized training, may facilitate achievement of functional memory goals for community dwelling survivors of stroke. These findings require further replication, given the modest sample size, subjective nature of the outcomes and the absence of objective eligibility for inclusion.

 

Lay Abstract

Memory problems are commonly reported following stroke but receiving help for these difficulties remains a high unmet need among survivors. Two different approaches to memory rehabilitation are available: memory skills group training and computerised cognitive training; however, it is unclear which approach is more effective. This study compared these two approaches in 65 stroke survivors who all reported memory difficulties. We found that participants who received memory group training were more likely to achieve their memory improvement goals than those who received computerised cognitive training. It was concluded that memory skills group training may be a more effective approach to improve memory function in daily life following stroke, but more research is required.

 

Introduction

Memory impairment is one of the most commonly reported cognitive consequences of stroke (1) and can compromise rehabilitation engagement (2). Despite this, support for memory problems remains a high unmet need within the community (3) and has been identified by patients, researchers and clinicians as a high-priority research area (4).

Memory skills group (MSG) training and computerized cognitive training (CCT) are commonly used approaches to rehabilitate memory. Although both share the fundamental goal of improving everyday memory outcomes (5), there are a number of key differences between these interventions. CCT adopts a restorative approach to rehabilitation, with the theoretical goal of restoring underlying impairment through cognitive exercises (6). Repetitive drill and practice style activities are purported to result in everyday functional gains, although there remains no robust evidence of this transfer (6). By contrast, MSG interventions take a compensatory approach to rehabilitation with a theoretical aim of lessening the disabling impact of impairment (7). In addition, the format of delivery differs. CCT training tasks are generally completed individually, with associated well-recognized advantages of low cost, wide availability and potential for at personalized use at home (8). MSG intervention is facilitated by a trained clinician and is delivered face-to-face in a group format, due, in part, to increased recognition of the multifaceted nature of memory dysfunction and limited economic resources (9).

While a number of comprehensive reviews have explored best-practice recommendations for cognitive impairment following acquired brain injury (10, 11), only a minority of studies included in these reviews were conducted in stroke-only samples. Consequently, the long-held view that MSG training is the treatment of choice in rehabilitating memory has been largely speculative post-stroke and appears to have been based on an absence of evidence, rather than evidence of absence for the effectiveness of CCT (5). The aim of this study was to compare the effectiveness of CCT and MSG training in community dwelling survivors of stroke in achieving individualized, functional memory goals. A further aim was to explore the effect of training on secondary measures of objective, neuropsychological memory tasks and subjective memory ratings. In addressing these aims, we intended to maintain ecological validity by evaluating the interventions as they are clinically implemented (rather than transforming them to be experimentally matched with each other on characteristics such as group vs individual format), with the goal of facilitating clinical translation. We hypothesized that intervention participants (i.e. CCT and MSG) would show greater improvement in performance on outcome measures than waitlist control participants (WC). Given the proposed mechanism of action of each approach, we also hypothesized participants in the CCT group would show greater improvement on neuropsychological tests of memory, while participants in the MSG would show greater improvement on functional measures of memory and strategy use.[…]

 

Continue —> Journal of Rehabilitation Medicine – Comparing memory group training and computerized cognitive training for improving memory function following stroke: A phase II randomized controlled trial – HTML

 

, , , , ,

Leave a comment

[ARTICLE] Social cognition and emotion regulation: a multifaceted treatment (T-ScEmo) for patients with traumatic brain injury – Full Text

Many patients with moderate to severe traumatic brain injury have deficits in social cognition. Social cognition refers to the ability to perceive, interpret, and act upon social information. Few studies have investigated the effectiveness of treatment for impairments of social cognition in patients with traumatic brain injury. Moreover, these studies have targeted only a single aspect of the problem. They all reported improvements, but evidence for transfer of learned skills to daily life was scarce. We evaluated a multifaceted treatment protocol for poor social cognition and emotion regulation impairments (called T-ScEmo) in patients with traumatic brain injury and found evidence for transfer to participation and quality of life.

In the current paper, we describe the theoretical underpinning, the design, and the content of our treatment of social cognition and emotion regulation (T-ScEmo).

The multifaceted treatment that we describe is aimed at improving social cognition, regulation of social behavior and participation in everyday life. Some of the methods taught were already evidence-based and derived from existing studies. They were combined, modified, or extended with newly developed material.

T-ScEmo consists of 20 one-hour individual sessions and incorporates three modules: (1) emotion perception, (2) perspective taking and theory of mind, and (3) regulation of social behavior. It includes goal-setting, psycho-education, function training, compensatory strategy training, self-monitoring, role-play with participation of a significant other, and homework assignments.

It is strongly recommended to offer all three modules, as they build upon each other. However, therapists can vary the time spent per module, in line with the patients’ individual needs and goals. In future, development of e-learning modules and virtual reality sessions might shorten the treatment.

Traumatic brain injury refers to a brain lesion caused by an external mechanical force, leading not only to physical impairments and cognitive deficits, but also to changes in behavior and personality.1,2 Especially after damage to orbitofrontal and ventromedial prefrontal brain areas, deficits in social cognition can occur.3,4

According to Adolphs,5 social cognition consists of three stages: (1) the ability to perceive social information (i.e. emotional facial expressions, bodily language), (2) the capacity to process and interpret social information (i.e. theory of mind, perspective taking), and (3) the ability to adapt behavior in accordance with the situation. Babbage et al.6 estimated that 13%–39% of individuals with moderate to severe traumatic brain injury experienced emotion perception deficits and up to 70% reported low empathy.79

Deficits in social cognition often appear in the shape of socially inadequate behavior, such as disinhibited or indifferent emotional behavior.1012 Such behaviors have detrimental consequences for the ability of patients to establish and maintain social relationships, to hold jobs, and to participate in society.1,13,14 It has been found that poor theory of mind and behavioral problems significantly predict poor participation and community integration.15,16For all these reasons, it is important to provide a tailored rehabilitation treatment, in order to prevent an unfavorable outcome.

In their review of cognitive rehabilitation, Cicerone et al.17 stressed the need to provide detailed information about the theoretical base, the protocol design, and the ingredients of a treatment, as a prerequisite to analyze its effectiveness. In the current paper, we give a comprehensive description of the treatment of social cognition and emotion regulation protocol (T-ScEmo). The effectiveness of T-ScEmo was evaluated in 59 patients with traumatic brain injury. It was compared with a computerized control treatment in a randomized controlled trial.18 Compared to the control treatment, T-ScEmo resulted in significant improvements in emotion recognition, theory of mind, emphatic behavior, quality of life partner relationship, quality of life and societal participation, up to five months posttreatment. Patients with traumatic brain injury as well as their life partners were satisfied with the treatment.18 A detailed description of the T-ScEmo protocol is relevant for researchers and clinical therapists; they can use, replicate, or expand this newly developed treatment.[…]

 

Continue —-> Social cognition and emotion regulation: a multifaceted treatment (T-ScEmo) for patients with traumatic brain injury – Herma J Westerhof-Evers, Annemarie C Visser-Keizer, Luciano Fasotti, Jacoba M Spikman, 2019

 

                        figure

Figure 1. Thoughts–feelings–behavior scheme (module 2).

, , , , ,

Leave a comment

[ARTICLE] Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review

Abstract

Background

Individuals with mild cognitive impairment (MCI) are at heightened risk of developing dementia. Rapid advances in computing technology have enabled researchers to conduct cognitive training and rehabilitation interventions with the assistance of technology. This systematic review aims to evaluate the effects of technology-based cognitive training or rehabilitation interventions to improve cognitive function among individuals with MCI.

Methods

We conducted a systematic review using the following criteria: individuals with MCI, empirical studies, and evaluated a technology-based cognitive training or rehabilitation intervention. Twenty-six articles met the criteria.

Results

Studies were characterized by considerable variation in study design, intervention content, and technologies applied. The major types of technologies applied included computerized software, tablets, gaming consoles, and virtual reality. Use of technology to adjust the difficulties of tasks based on participants’ performance was an important feature. Technology-based cognitive training and rehabilitation interventions had significant effect on global cognitive function in 8 out of 22 studies; 8 out of 18 studies found positive effects on attention, 9 out of 16 studies on executive function, and 16 out of 19 studies on memory. Some cognitive interventions improved non-cognitive symptoms such as anxiety, depression, and ADLs.

Conclusion

Technology-based cognitive training and rehabilitation interventions show promise, but the findings were inconsistent due to the variations in study design. Future studies should consider using more consistent methodologies. Appropriate control groups should be designed to understand the additional benefits of cognitive training and rehabilitation delivered with the assistance of technology.

Background

Due to the aging of the world’s population, the number of people who live with dementia is projected to triple to 131 million by the year 2050 []. Development of preventative strategies for individuals at higher risk of developing dementia is an international priority []. Mild cognitive impairment (MCI) is regarded as an intermediate stage between normal cognition and dementia []. Individuals with MCI usually suffer with significant cognitive complaints, yet do not exhibit the functional impairments required for a diagnosis of dementia. These people typically have a faster rate of progression to dementia than those without MCI [], but the cognitive decline among MCI subjects has the potential of being improved []. Previous systematic reviews of cognitive intervention studies, both cognitive training and cognitive rehabilitation, have demonstrated promising effects on improving cognitive function among subjects with MCI [].

Recently, rapid advances in computing technology have enabled researchers to conduct cognitive training and rehabilitation interventions with the assistance of technology. A variety of technologies, including virtual reality (VR), interactive video gaming, and mobile technology, have been used to implement cognitive training and rehabilitation programs. Potential advantages to using technology-based interventions include enhanced accessibility and cost-effectiveness, providing a user experience that is immersive and comprehensive, as well as providing adaptive responses based on individual performance. Many computerized cognitive intervention programs are easily accessed through a computer or tablet, and the technology can objectively collect data during the intervention to provide real-time feedback to participants or therapists. Importantly, interventions delivered using technology have shown better effects compared to traditional cognitive training and rehabilitation programs in improving cognitive function and quality of life []. The reasons for this superiority are not well-understood but could be related to the usability and motivational factors related to the real-time interaction and feedback received from the training system [].

Three recent reviews of cognitive training and rehabilitation for use with individuals with MCI and dementia suggest that technology holds promise to improve both cognitive and non-cognitive outcomes []. The reviews conducted by Coyle, et al. [] and Chandler, et al. [] were limited by accessing articles from only two databases, and did not comprehensively cover available technologies. Hill, et al. [] limited their review to papers published until July 2016 and included only older adults aged 60 and above. More technology-based intervention studies have been conducted since then, and only including studies with older adults 60 and above could limit the scope of the review given that adults can develop early-onset MCI in their 40s []. Therefore, the purpose of this review is to 1) capture more studies using technology-based cognitive interventions by conducting a more comprehensive search using additional databases 2) understand the effect of technology-based cognitive interventions on improving abilities among individuals with MCI; and 3) examine the effects of multimodal technology-based interventions and their potential superiority compared to single component interventions.[…]

 

Continue —-> Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review

, , , , , ,

Leave a comment

[Abstract] Efficacy and Harms of Pharmacological Interventions for Neurobehavioral Symptoms in Post-Traumatic Amnesia after Traumatic Brain Injury: A Systematic Review

Many individuals in post-traumatic amnesia (PTA) following traumatic brain injury (TBI) experience neurobehavioral symptoms (NBS) in addition to disorientation and amnesia. These symptoms are associated with low rehabilitation engagement, self-inflicted harm, and risk of violence. The aim of this systematic review was to evaluate the efficacy and harms of pharmacological interventions for NBS in PTA following TBI in adults. Studies in English published before December 2017 were reviewed. Six databases were searched, with additional hand searching of key journals, clinical trials registries, and international drug regulators. Evidence quality was assessed using Joanna Briggs Institute Critical Appraisal Instruments. Thirteen studies were identified: three randomized controlled trials (RCTs), three cohort studies, and seven case series. In the RCTs, neither amantadine nor sertraline reduced NBS. Less rigorous studies reported reduced NBS in patients administered haloperidol, ziprasidone, carbamazepine, amitriptyline, desipramine, and varied neuroleptics. There is a paucity of well-designed, adequately powered and controlled studies of pharmacological interventions for NBS in PTA. More research is needed to provide evidence-based treatment recommendations and improve care.

 

via Efficacy and Harms of Pharmacological Interventions for Neurobehavioral Symptoms in Post-Traumatic Amnesia after Traumatic Brain Injury: A Systematic Review | Journal of Neurotrauma

, , , , ,

Leave a comment

[Abstract] Efficacy of Virtual Reality Combined with Real Instrument Training for Patients with Stroke: A Randomized Controlled Trial

Abstract

Objective

To investigate the efficacy of real instrument training in VR environment for improving upper-extremity and cognitive function after stroke.

Design

Single-blind, randomized trial.

Setting

Medical center.

Participants

Enrolled subjects (N=31) were first-episode stroke, assessed for a period of 6 months after stroke onset; age between 20 and 85 years; patients with unilateral paralysis and a Fugl-Meyer assessment upper-extremity scale score >18.

Interventions

Both groups were trained 30 min per day, 3 days a week, for 6 weeks, with the experimental group performing the VR combined real instrument training and the control group performing conventional occupational therapy.

Main Outcome Measures

Manual muscle test, Modified Ashworth scale, Fugl-Meyer upper motor scale, Hand grip, Box and Block, 9-hole pegboard, Korean mini-mental status examination, and Korean-Montreal cognitive assessment.

Results

The experimental group showed greater therapeutic effects in a time-dependent manner than the control group, especially on the motor power of wrist extension, spasticity of elbow flexion and wrist extension, and box and block tests. Patients in the experimental group, but not the control, also showed significant improvements on the lateral, palmar, and tip pinch power; box and block, and 9-hole pegboard tests from before to immediately after training. Significantly greater improvements in the tip pinch power immediately after training and spasticity of elbow flexion 4 weeks after training completion were noted in the experimental group.

Conclusions

VR combined real instrument training was effective at promoting recovery of patients’ upper-extremity and cognitive function, and thus may be an innovative translational neurorehabilitation strategy after stroke.

via Efficacy of Virtual Reality Combined with Real Instrument Training for Patients with Stroke: A Randomized Controlled Trial – Archives of Physical Medicine and Rehabilitation

, , , , , , ,

Leave a comment

[Abstract] The Beneficial Effects of Mind-body Exercises for People with Mild Cognitive Impairment: A Systematic Review with Meta-Analysis

Highlights

  • A meta-analysis on 1298 adults with MCI was conducted.
  • The effects of mind-body exercises (MBE) on various cognitions was assessed.
  • Various MBEs, such as Tai Chi, were effective in enhancing numerous cognitive outcomes.

Abstract

Objective

To objectively evaluate the most common forms of mind body exercise (MBE) (Tai Chi, Yoga, and Qigong) on cognitive function among people with MCI.

Data sources

We searched six electronic databases (Scopus, PubMed, PsycINFO, WanFang, Web of Science, and CNKI) from inception until September, 2018.

Study Selection

Nine randomized controlled trials and three non-randomized controlled trials were included for meta-analysis.

Data Extraction

Two researchers independently performed the literature searches, study selection, data extraction, and methodological quality assessment using the revised Physiotherapy Evidence Database (PEDro) scale.

Data Synthesis

The pooled effect size (standardized mean difference, SMD) was calculated while random-effect model was selected. Overall results of the meta-analysis (N = 1298 people with MCI) indicated that MBE significantly improved attention (SMD = 0.39, 95% CI 0.07 to 0.71, p = 0.02, I2 = 31.6%, N = 245), short-term memory (SMD= 0.74, 95% CI 0.57 to 0.90, p < 0.001, I2 = 0%, N = 861), executive function (SMD = -0.42, 95% CI -0.63 to -0.21, p < 0.001, I2 = 38.54%, N = 701), visual-spatial/executive function (SMD = 0.35, 95% CI 0.07 to 0.64, p < 0.05, I2 = 0%, N = 285), and global cognitive function (SMD = 0.36, 95% CI 0.2 to 0.52, p < 0.001, I2 = 15.12%, N = 902). However, the significant positive effect on cognitive processing speed was not observed following MBE interventions (SMD = 0.31, 95% CI -0.01 to 0.63, p = 0.054, I2 = 28.66%, N = 233).

Conclusions

Study findings of this meta-analysis suggest that MBE have the potential to improve various cognitive functions in people with MCI.

via The Beneficial Effects of Mind-body Exercises for People with Mild Cognitive Impairment: A Systematic Review with Meta-Analysis – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

%d bloggers like this: