Archive for category Fatigue

[ARTICLE] Fatigue and Cognitive Fatigability in Mild Traumatic Brain Injury are Correlated with Altered Neural Activity during Vigilance Test Performance – Full Text

Introduction: Fatigue is the most frequently reported persistent symptom following a mild traumatic brain injury (mTBI), but the explanations for the persisting fatigue symptoms in mTBI remain controversial. In this study, we investigated the change of cerebral blood flow during the performance of a psychomotor vigilance task (PVT) by using pseudo-continuous arterial spin labeling (PCASL) MRI technique to better understand the relationship between fatigability and brain activity in mTBI.

Material and methods: Ten patients (mean age: 37.5 ± 11.2 years) with persistent complaints of fatigue after mTBI and 10 healthy controls (mean age 36.9 ± 11.0 years) were studied. Both groups completed a 20-min long PVT inside a clinical MRI scanner during simultaneous measurements of reaction time and regional cerebral blood flow (rCBF) with PCASL technique. Cognitive fatigability and neural activity during PVT were analyzed by dividing the performance and rCBF data into quintiles in addition to the assessment of self-rated fatigue before and after the PVT.

Results: The patients showed significant fatigability during the PVT while the controls had a stable performance. The variability in performance was also significantly higher among the patients, indicating monitoring difficulty. A three-way ANOVA, modeling of the rCBF data demonstrated that there was a significant interaction effect between the subject group and performance time during PVT in a mainly frontal/thalamic network, indicating that the pattern of rCBF change for the mTBI patients differed significantly from that of healthy controls. In the mTBI patients, fatigability at the end of the PVT was related to increased rCBF in the right middle frontal gyrus, while self-rated fatigue was related to increased rCBF in left medial frontal and anterior cingulate gyri and decreases of rCBF in a frontal/thalamic network during this period.

Discussion: This study demonstrates that PCASL is a useful technique to investigate neural correlates of fatigability and fatigue in mTBI patients. Patients suffering from fatigue after mTBI used different brain networks compared to healthy controls during a vigilance task and in mTBI, there was a distinction between rCBF changes related to fatigability vs. perceived fatigue. Whether networks for fatigability and self-rated fatigue are different, needs to be investigated in future studies.

Introduction

Fatigue is a frequently reported symptom after mild traumatic brain injury (mTBI) (13) and a major reason why patients fail to return to work (4). The subjective experience of fatigue may be concomitant with physiological fatigue or with deteriorating performance, but may also be a sole complaint (56). Research on the relationship between underlying neural correlates to fatigue in mTBI, and possible performance decrements is complicated by the fact that fatigue is still not a well-defined concept. It is multidimensional in its nature, involving both physiological and psychological components (79) and, therefore, a single explanatory mechanism is unlikely (310).

Kluger and coworkers (11) suggested distinguishing the self-rated fatigue measures from objective measures of fatigue by labeling the later as fatigability. Such distinction might encourage among others more focused correlational studies; such as fatigue in relation to the neural activity. Measuring performance during sustained cognitive process provides a method to evaluate fatigue/fatigability objectively (1214). For example, sustained attention during vigilance performance is a demanding cognitive task and performance induced fatigability has been demonstrated as increased error rate and reaction time (15). Our group has also found fatigability in mTBI on a higher order attention demanding task (16).

More recently, we studied the behavioral correlates of changes in resting-state functional connectivity before and after performing a 20-min psychomotor vigilance task (PVT) for mTBI patients with persistent post-concussion fatigue (17). Taking advantage of a quantitative data-driven analysis approach developed by us, we were able to demonstrate that there was a significant linear correlation between the self-rated fatigue and functional connectivity in the thalamus and middle frontal cortex. Furthermore, we found that the 20 min PVT was sufficiently sensitive to invoke significant mental fatigue and specific functional connectivity changes in mTBI patients. These findings indicate that resting-state functional MRI (fMRI) measurements before and after a 20 min PVT may serve as a useful method for objective assessment of fatigue level in the neural attention system. However, these measurements neither provide any information about the dynamic change of the neural activities in the involved functional networks during the performance of PVT nor can they answer whether other neural systems mediate the observed functional connectivity change in the attention network.

Arterial spin labeling (ASL) MRI technique has recently been used to examine the cerebral blood flow (CBF) in patients with amnestic mild cognitive impairment and cognitively normal healthy controls both at rest and during the active performance of a memory task (18). As compared to rest, CBF measurement during the task performance showed increased group difference between patients and healthy controls indicating that CBF measures during a cognitive task may increase the discriminatory ability and the sensitivity to detect subtle functional changes in neurological diseases. In another ASL MRI study, Lim et al. (19) investigated the neural correlates of cognitive fatigue effects in a group of healthy volunteers during a 20-min PVT (19). They observed progressively slower reaction times and significantly increased mental fatigue ratings after the task and reported that such persistent cognitive fatigue effect was significantly correlated with regional cerebral blood flow (rCBF) decline in the right fronto-parietal attention network in addition to the basal ganglia and sensorimotor cortices. They also found that the rCBF at rest in the thalamus and right middle frontal gyrus before the PVT task was predictive of subjects’ subsequent performance decline. Based on these findings, they claimed that the rCBF at rest in the attention network might be a useful indicator of performance potential and a marker of the level of fatigue in neural attention system. However, it remains to be clarified how the relationship between the neural activity in mTBI patients and their fatigability is dynamically influenced by the performance of a difficult cognitive task.

Pseudo-Continuous Arterial Spin Labeling (PCASL) can provide quantitative rCBF measurements with whole-brain coverage and high signal-to-noise ratio. Furthermore, it is non-invasive and repetitive experiments can be carried out. It has been shown that fMRI experiments based on PCASL perfusion measurements may have higher sensitivity than experimental designs based on blood oxygenation level-dependent (BOLD) fMRI, particularly when studying slow neural activity changes within a subject (2022) and useful as a biomarker of brain function (18). To shed light on the questions discussed above, in this study we used PCASL MRI technique to measure the rCBF changes during a 20 min PVT in a group of mTBI patients with chronic fatigue and matched healthy control subjects. The aims of the present study are the following: (1) evaluate the PVT induced fatigability over time by dividing the performance data (error rate and reaction time) into quintiles to verify if the change of fatigability for mTBI patients follows the same pattern as that for healthy controls; (2) estimate the dynamic change of neural activity during PVT in terms of rCBF measurements in each quintile to reveal brain activities significantly associated with the change of fatigability. (3) Voxel-wise assessment of the rCBF values pre- and post-PVT to detect brain activity associated with changes in self-rated fatigue level. […]

Continue —> Frontiers | Fatigue and Cognitive Fatigability in Mild Traumatic Brain Injury are Correlated with Altered Neural Activity during Vigilance Test Performance | Neurology

Figure 4. Summary of the F-score results from the three-way ANOVA modeling of the regional cerebral blood flow data acquired during a 20-min psychomotor vigilance task (PVT) performance to illustrate the brain regions of statistically significant differences (family-wise error rate, p ≤ 0.05) in neural activity associated with the two fixed factors (the PVT performance time and subject group) and their interaction. (A) The effect of PVT performance time; (B) the interaction effect between the PVT performance time and subject groups. The color bar indicates the F-score of the three-way ANOVA results.

Advertisements

, , , , , , , ,

Leave a comment

[BLOG POST] Tired After a Stroke? Understanding Post-Stroke Fatigue | Saebo

Feeling tired is a normal part of life. Whether you didn’t get a good night of sleep or wore yourself out with a busy day or an exerting activity, your body can only handle so much before you start to feel the physical effects of being tired. In cases like these, all you need to do is rest in order to feel re-charged and rejuvenated. But for individuals who have suffered from a stroke, it’s not that easy.

Fatigue after a stroke is common, and it’s different from simply feeling tired. Post-stroke fatigue can make somebody feel like they completely lack energy or strength, with a persistent feeling of being tired or weary. Unlike typical tiredness, a nap or sleeping longer at night won’t solve things. If you are experiencing post-stroke fatigue, it is important to consult with your doctor so you can take the proper steps to start feeling better and more energized.

 

What is Post-Stroke Fatigue?

Post-stroke fatigue can occur after a mild or severe stroke, and roughly 40 to 70 percent of stroke patients experience this “invisible symptom.” It’s a particularly frustrating side effect of a stroke because it can make you feel completely exhausted and off your game, which in turn makes recovering from the stroke seem even more difficult.

Those who experience post-stroke fatigue can feel like they are not in control of their recovery, as it’s hard for them to muster the energy to participate in their rehab activities or normal day-to-day functions. Many individuals with post-stroke fatigue initially confuse it with “being tired,” but post-stroke fatigue is not the same thing as just being tired. It can come out of nowhere, without warning, and rest isn’t always the solution.

Post-stroke fatigue is draining both physically and emotionally/mentally, and the severity of the stroke does not seem to correlate to the severity of the fatigue. Even a mild stroke can result in extreme post-stroke fatigue, and even if you suffered a stroke some time ago and feel as if you’ve made a full recovery, post-stroke fatigue can still impact you.

 

What Causes Post-Stroke Fatigue?

 

Experts aren’t entirely sure what causes post-stroke fatigue because there has been limited research on the subject.Medical conditions like diabetes and heart disease can play a role, as can any pre-existing fatigue issues an individual had before suffering from a stroke. In addition to fatigue, sleep apnea is another issue reported by stroke survivors, so it’s possible there is some sort of link between the two, though nothing has been proven.

Survivors often feel stressed or depressed about the stroke afterwards, from worrying about the recovery process to being concerned with their symptoms. Stress and the mental demands that come with it can lead to fatigue. There are a lot of unknowns about the cause of post-stress fatigue, but one thing is certain: a stroke takes a big toll on a person’s body, and many stroke survivors feel severe fatigue as a result.

 

How Do You Tell if You Have Post-Stroke Fatigue?

Remember that there’s a difference between feeling tired and having post-stroke fatigue. The latter will give you afeeling of complete exhaustion; you will lack all energy and feel extremely weary. You will probably feel like you have to rest every day, or even multiple times a day. This can make it difficult to accomplish things, whether it’s something as simple as spending time with family, running errands, or even attending your post-stroke therapy sessions.

Until you feel the type of exhaustion that comes with post-stroke fatigue it’s difficult to explain, so don’t feel frustrated if your friends and family don’t understand why you’re struggling. If you think you have post-stroke fatigue, don’t hesitate to consult with your doctor.

 

Tips to Increase Your Energy

The first step in combating post-stroke fatigue is to discuss it with your doctor. Let them know what you’ve been feeling. Your doctor will probably start the process by making sure you’ve had an up-to-date physical. With that information, your doctor can rule out other potential causes for your fatigue or determine if your fatigue might stem from your medication.

It goes without saying, but try to take naps if time allows. Naps won’t cure you of your fatigue long term, but resting when you feel run down can help you feel more refreshed, even if only for a short while.

Do your best to relax. Don’t let your post-stroke fatigue, or any other side effects of your stroke, get you down. Stay positive! Being stressed or tense will only sap you of more energy. A positive attitude goes a long way in feeling upbeat and energetic. Try to get back into the swing of things by returning to your pre-stroke routines. Simple things like staying active and involved with friends and family can yield big benefits.

Yes, it will seem overwhelming at times. Suffering from a stroke, dealing with the aftermath, and having no energy on top of it can be tough, but celebrate your successes. Take baby steps, and be proud of the progress you’ve made. Focus on what you’ve accomplished during your recovery so far, rather than dread what’s left to be done.

 

Tired of Being Tired

Post-stroke fatigue is a daunting condition, and many people who are recovering from a stroke might not even realize they have it, instead thinking they are simply tired. If you’ve had a stroke and find yourself feeling sapped of your energy on a consistent basis, talk to your doctor. There’s a chance you have post-stroke fatigue. You’re not alone; 40 to 70 percent of stroke survivors experience this kind of exhaustion.

By speaking with the proper medical professionals, making it a point to rest as often as possible, and having a positive mindset, you can combat the constant drowsiness and work on returning to your pre-stroke energy levels.

Source: Tired After a Stroke? Understanding Post-Stroke Fatigue | Saebo

, ,

Leave a comment

[ARTICLE] Cognitive fatigue in individuals with traumatic brain injury is associated with caudate activation – Full Text

Abstract

We investigated differences in brain activation associated with cognitive fatigue between persons with traumatic brain injury (TBI) and healthy controls (HCs). Twenty-two participants with moderate-severe TBI and 20 HCs performed four blocks of a difficult working memory task and four blocks of a control task during fMRI imaging. Cognitive fatigue, assessed before and after each block, was used as a covariate to assess fatigue-related brain activation. The TBI group reported more fatigue than the HCs, though their performance was comparable. Regarding brain activation, the TBI group showed a Task X Fatigue interaction in the caudate tail resulting from a positive correlation between fatigue and brain activation for the difficult task and a negative relationship for the control task. The HC group showed the same Task X Fatigue interaction in the caudate head. Because we had prior hypotheses about the caudate, we performed a confirmatory analysis of a separate dataset in which the same subjects performed a processing speed task. A relationship between Fatigue and brain activation was evident in the caudate for this task as well. These results underscore the importance of the caudate nucleus in relation to cognitive fatigue.

Continue —> Cognitive fatigue in individuals with traumatic brain injury is associated with caudate activation | Scientific Reports

The interaction of Group, Task and Fatigue in Experiment 1 in the caudate head (indicated by blue arrow). The plots on the left are included only to show the slopes of the regression lines. For the HC group, there was a negative correlation between fatigue and activation for the 0-back task (top left), and a positive correlation for the 2-back task (top right). For the TBI group, the correlations between fatigue and activation in both tasks were very weak (lower plots). In all cases, the vertical axis is the percent signal change in the caudate head and the horizontal axis is the normalized fatigue score. On the right is a 3-dimensional rendering of the activation in the caudate head for Experiment 1.

, ,

Leave a comment

[WEB SITE] Cognitive fatigue after TBI linked with caudate activation

Individuals with neurological damage often report difficulties with cognitive fatigue, a subjective lack of mental energy that is perceived to interfere with daily activities. Because of poor correlation between self-reports of cognitive fatigue and tests of cognitive performance, scientists are looking at more objective measures, such as correlations with neuroimaging findings. In the Kessler study, brain activation patterns were compared in 22 individuals with moderate to severe TBI and 20 healthy controls. Both groups performed tasks of working memory during functional MRI imaging of the brain; the TBI group reported more fatigue, although performance was comparable between the groups. The results showed that the experience of self-reported fatigue is associated with activation changes in the caudate nucleus of the basal ganglia.

“These results are consistent with findings in our related research in the multiple sclerosis (MS) population,” said Dr. Wylie, the lead author, “which suggests that the TBI and MS populations share a mechanism for cognitive fatigue.” This has important implications for the development of effective treatments. “This study points to the caudate nucleus as a likely target for clinical interventions to alleviate fatigue,” explained Dr. Wylie, who is associate director of Neuroscience Research and the Rocco Ortenzio Neuroimaging Center at Kessler Foundation.

Story Source:

Materials provided by Kessler Foundation. Note: Content may be edited for style and length.


Journal Reference:

  1. G. R. Wylie, E. Dobryakova, J. DeLuca, N. Chiaravalloti, K. Essad, H. Genova. Cognitive fatigue in individuals with traumatic brain injury is associated with caudate activation. Scientific Reports, 2017; 7 (1) DOI: 10.1038/s41598-017-08846-6

Source: Cognitive fatigue after TBI linked with activation of caudate: Findings underscore the role of the caudate nucleus in the mechanism of cognitive fatigue in traumatic brain injury — ScienceDaily

, , ,

Leave a comment

[WEB SITE] Managing fatigue after a brain injury – Synapse

Fatigue is a common and very disabling symptom experienced by people with a brain injury.

It may be a continual sense of mental fatigue or it can happen when a person is trying to do too much and the brain is overloaded, often resulting in mind-numbing fatigue that can last for several days.

Brain disorders such as traumatic brain injury can be likened to a highway when one of three lanes is closed down. If traffic is light, there will be no difference but once the traffic reaches a critical point, the cars barely move and it can take ages for the traffic jam to clear.

It is important to avoid fatigue as much as possible, as any other problems are worsened as well, such as:

  • Vision problems
  • Slurred speech
  • Difficulty finding words
  • Poor concentration
  • Cramps or weak muscles
  • Poor coordination or balance.

Fatigue can occur for no apparent reason or after physical activity, but is quite likely to occur from too much mental activity. Examples include planning the week’s errands, organizing a work schedule or simply reading.

Fatigue can be managed with good planning and rest periods, but carers and the family member must realize fatigue is a very real problem.

Symptoms of fatigue

The following symptoms may all suggest fatigue:

  • Withdrawal, short answers, dull tone of voice
  • Loss of appetite
  • Shortness of breath
  • Slower movement and speech
  • Irritability, anxiety, crying episodes
  • Increased forgetfulness
  • Lack of motivation and interest.

What are the triggers of fatigue?

Work out what triggers it and what factors make the symptoms worse, such as long conversations, noisy shopping centres, movies with complicated plots, or talking with two or more people at once.

In some cases, fatigue could be a side-effect of certain medications, in which case you should discuss options with your doctor.

Be aware of the first signs of fatigue and immediately stop and rest – overloading your brain can easily result in several days of extreme tiredness. Make a note of how long you can do certain activities before fatigue starts e.g. if fatigue starts after 30 minutes of reading, only read for 20 minutes in future.

Managing fatigue

Contingency plans: Fatigue may occur at the least convenient times – on public transport or during a meeting. You need to negotiate ways of coping when this happens. You can use specific strategies or call in extra support. Work out contingency plans with your family member. Your rehab team, occupational therapist or physiotherapist can help with suggestions.

Assess best hours: Some people function best in the mornings, so complete demanding tasks then. Others function better in the afternoon or the evening. Organize your routine accordingly. Don’t drive when you are tired.

Assess your environment: Provide an uncluttered environment that is easy to move around and work in. Think about how and where things are stored; bench heights, entrances, types of furnishing and lighting. For example, some people may find fluorescent lighting or dim lighting more tiring.

Schedule rest periods: Make a daily or weekly schedule, and include regular rest periods. “Rest” means do nothing at all. If you have a nap, don’t oversleep in case this affects your normal sleep cycle.

Use aids: Use mechanical aids to conserve energy for when it really counts. One man spared his legs extra effort by using his wheelchair to get from his house to the car, then from the car to the church, before walking his daughter, the bride, down the aisle.

Break it down: Break down activities into a series of smaller tasks. This provides opportunities to rest while allowing the person to complete the task. Encourage sensible shortcuts.

Set priorities: Focus on things that must be done and let the others go.

Medication highs and lows: Be aware of changes throughout the day that relate to medication. Is the person better or worse immediately after their tablets? Plan their activities around these times.

Weather: Hot weather can also increase fatigue. Plan around this.

Seek support: Ask for advice. In particular, an occupational therapist can visit your home and advise on an energy-conserving plan. For more information, talk to your doctor or condition-specific support organization.

Healthy lifestyle

AS with virtually every aspect of a traumatic brain injury and similar brain disorders, fatigue will be less of a problem if you focus on a healthy lifestyle:

  • Sleep well
  • Get regular exercise
  • Avoid alcohol or limit your intake
  • Eat a healthy diet and watch your weight
  • Learn stress management techniques
  • Maintain contact with friends and family.

Source: Managing fatigue after a brain injury – Synapse – reconnecting lives

, , ,

Leave a comment

[Abstract+References] Cognitive Behavior Therapy to Treat Sleep Disturbance and Fatigue After Traumatic Brain Injury: A Pilot Randomized Controlled Trial – Conference Paper

Abstract

Objective

To evaluate the efficacy of adapted cognitive behavioral therapy (CBT) for sleep disturbance and fatigue in individuals with traumatic brain injury (TBI).

Design

Parallel 2-group randomized controlled trial.

Setting

Outpatient therapy.

Participants

Adults (N=24) with history of TBI and clinically significant sleep and/or fatigue complaints were randomly allocated to an 8-session adapted CBT intervention or a treatment as usual (TAU) condition.

Interventions

Cognitive behavior therapy.

Main Outcome Measures

The primary outcome was the Pittsburgh Sleep Quality Index (PSQI) posttreatment and at 2-month follow-up. Secondary measures included the Insomnia Severity Index, Fatigue Severity Scale, Brief Fatigue Inventory (BFI), Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale.

Results

At follow-up, CBT recipients reported better sleep quality than those receiving TAU (PSQI mean difference, 4.85; 95% confidence interval [CI], 2.56–7.14). Daily fatigue levels were significantly reduced in the CBT group (BFI difference, 1.54; 95% CI, 0.66–2.42). Secondary improvements were significant for depression. Large within-group effect sizes were evident across measures (Hedges g=1.14–1.93), with maintenance of gains 2 months after therapy cessation.

Conclusions

Adapted CBT produced greater and sustained improvements in sleep, daily fatigue levels, and depression compared with TAU. These pilot findings suggest that CBT is a promising treatment for sleep disturbance and fatigue after TBI.

References

1Ponsford, J.L., Ziino, C., Parcell, D.L. et al, Fatigue and sleep disturbance following traumatic brain injury-their nature, causes, and potential treatments. J Head Trauma Rehabil. 2012;27:224–233.

Crossref

| PubMed

| Scopus (75)

2Mollayeva, T., Kendzerska, T., Mollayeva, S., Shapiro, C.M., Colantonio, A., Cassidy, J.D. A systematic review of fatigue in patients with traumatic brain injury: The course, predictors and consequences. Neurosci Biobehav Rev. 2014;47:684–716.

Crossref

| PubMed

| Scopus (11)

3Ouellet, M.C., Morin, C.M. Fatigue following traumatic brain injury: frequency, characteristics, and associated factors. Rehabil Psychol. 2006;51:140–149.

Crossref

| Scopus (49)

4Ouellet, M.C., Beaulieu-Bonneau, S., Morin, C.M. Sleep-wake disturbances after traumatic brain injury. Lancet Neurol. 2015;14:746–757.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (28)

5Mathias, J.L., Alvaro, P.K. Prevalence of sleep disturbances, disorders, and problems following traumatic brain injury: a meta-analysis. Sleep Med. 2012;13:898–905.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (93)

6Ponsford, J.L., Downing, M.G., Olver, J. et al, Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neurotrauma. 2014;31:64–77.

Crossref

| PubMed

| Scopus (63)

7Bloomfield, I.L., Espie, C.A., Evans, J.J. Do sleep difficulties exacerbate deficits in sustained attention following traumatic brain injury?. J Int Neuropsychol Soc. 2010;16:17–25.

Crossref

| PubMed

| Scopus (38)

8Wiseman-Hakes, C., Murray, B., Moineddin, R. et al, Evaluating the impact of treatment for sleep/wake disorders on recovery of cognition and communication in adults with chronic TBI. Brain Inj. 2013;27:1364–1376.

Crossref

| PubMed

| Scopus (19)

9Juengst, S., Skidmore, E., Arenth, P.M., Niyonkuru, C., Raina, K.D. Unique contribution of fatigue to disability in community-dwelling adults with traumatic brain injury. Arch Phys Med Rehabil. 2013;94:74–79.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (18)

10Cantor, J.B., Ashman, T., Gordon, W. et al, Fatigue after traumatic brain injury and its impact on participation and quality of life. J Head Trauma Rehabil. 2008;23:41–51.

Crossref

| PubMed

| Scopus (113)

11Ponsford, J.L., Parcell, D.L., Sinclair, K.L., Roper, M., Rajaratnam, S.M. Changes in sleep patterns following traumatic brain injury: a controlled study. Neurorehabil Neural Repair. 2013;27:613–621.

Crossref

| PubMed

| Scopus (29)

12Zgaljardic, D.J., Durham, W.J., Mossberg, K.A. et al, Neuropsychological and physiological correlates of fatigue following traumatic brain injury. Brain Inj. 2014;28:389–397.

Crossref

| PubMed

| Scopus (6)

13Beaulieu-Bonneau, S., Ouellet, M.C. Fatigue in the first year after traumatic brain injury: course, relationship with injury severity, and correlates. Neuropsychol Rehabil. 2016;:1–19.

Crossref

| PubMed

| Scopus (2)

14Bushnik, T., Englander, J., Wright, J. The experience of fatigue in the first 2 years after moderate-to-severe traumatic brain injury: a preliminary report. J Head Trauma Rehabil. 2008;23:17–24.

Crossref

| PubMed

| Scopus (37)

15Schnieders, J., Willemsen, D., De Boer, H. Factors contributing to chronic fatigue after traumatic brain injury. J Head Trauma Rehabil. 2012;27:404–412.

Crossref

| PubMed

| Scopus (20)

16Trauer, J.M., Qian, M.Y., Doyle, J.S., Rajaratnam, S.M., Cunnington, D. Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis. Ann Intern Med. 2015;163:191–204.

Crossref

| PubMed

| Scopus (68)

17Castell, B.D., Kazantzis, N., Moss-Morris, R.E. Cognitive behavioral therapy and graded exercise for chronic fatigue syndrome: a meta-analysis. Clinical Psychology: Science and Practice. 2011;18:311–324.

Crossref

| Scopus (77)

18Gielissen, M.F., Verhagen, S., Witjes, F., Bleijenberg, G. Effects of cognitive behavior therapy in severely fatigued disease-free cancer patients compared with patients waiting for cognitive behavior therapy: a randomized controlled trial. J Clin Oncol. 2006;24:4882–4887.

Crossref

| PubMed

| Scopus (158)

19Zedlitz, A.M., Rietveld, T.C., Geurts, A.C., Fasotti, L. Cognitive and graded activity training can alleviate persistent fatigue after stroke: a randomized, controlled trial. Stroke. 2012;43:1046–1051.

Crossref

| PubMed

| Scopus (45)

20van den Akker, L.E., Beckerman, H., Collette, E.H., Eijssen, I.C., Dekker, J., de Groot, V. Effectiveness of cognitive behavioral therapy for the treatment of fatigue in patients with multiple sclerosis: a systematic review and meta-analysis. J Psychosom Res. 2016;90:33–42.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (3)

21Ouellet, M.C., Morin, C.M. Cognitive behavioral therapy for insomnia associated with traumatic brain injury: a single-case study. Arch Phys Med Rehabil. 2004;85:1298–1302.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (35)

22Ouellet, M.C., Morin, C.M. Efficacy of cognitive-behavioral therapy for insomnia associated with traumatic brain injury: a single-case experimental design. Arch Phys Med Rehabil. 2007;88:1581–1592.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (69)

23Raina, K.D., Morse, J.Q., Chisholm, D., Leibold, M.L., Shen, J., Whyte, E. Feasibility of a cognitive behavioral intervention to manage fatigue in individuals with traumatic brain injury: a pilot study. J Head Trauma Rehabil. 2016;31:E41–E49.

Crossref

| PubMed

| Scopus (1)

24Fleming, L., Randell, K., Harvey, C.J., Espie, C.A. Does cognitive behaviour therapy for insomnia reduce clinical levels of fatigue, anxiety and depression in cancer patients?. Psychooncology. 2014;23:679–684.

Crossref

| PubMed

| Scopus (25)

25Heckler, C.E., Garland, S.N., Peoples, A.R. et al, Cognitive behavioral therapy for insomnia, but not armodafinil, improves fatigue in cancer survivors with insomnia: a randomized placebo-controlled trial. Support Care Cancer. 2016;24:2059–2066.

Crossref

| PubMed

| Scopus (7)

26Roscoe, J.A., Garland, S.N., Heckler, C.E. et al, Randomized placebo-controlled trial of cognitive behavioral therapy and armodafinil for insomnia after cancer treatment. J Clin Oncol. 2015;33:165–171.

Crossref

| PubMed

| Scopus (9)

27Beck, A.T., Rush, A.J., Shaw, B.F., Emery, G. Cognitive therapy of depression. The Guilford Press, New York; 1979.

28White, P.D., Goldsmith, K., Johnson, A.L. et al, Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet. 2011;377:823–836.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (361)

29Hsieh, M.Y., Ponsford, J.L., Wong, D., Schnberger, M., Taffe, J., McKay, A. Motivational interviewing and cognitive behaviour therapy for anxiety following traumatic brain injury: a pilot randomised controlled trial. Neuropsychol Rehabil. 2012;22:585–608.

Crossref

| PubMed

| Scopus (26)

30Ashworth, D.K., Sletten, T.L., Junge, M. et al, A randomized controlled trial of cognitive behavioral therapy for insomnia: an effective treatment for comorbid insomnia and depression. J Counsel Psychol. 2015;62:115–123.

Crossref

| PubMed

| Scopus (14)

31Nelson, H.E., Wilson, J. National Adult Reading Test (NART): test manual (2nd ed). NFER Nelson, Windsor, UK; 1991.

32Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. Manual for the Californian Verbal Learning Test – Second Edition (CVLT-II). The Psychological Corporation, San Antonio; 2000.

33First, M.B., Spitzer, R.L., Gibbons, M., Williams, J.B.W. Structured Clinical Interview for DSM-IV-TR Axis I disorders, Research Version, Patient Edition (SCID-I/P). Biometrics Research Department, New York State Psychiatric Institute, New York; 2002.

34Cleeland, C.S., Ryan, K.M. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore. 1994;23:129–138.

PubMed

35Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.

Abstract

| Full Text PDF

| PubMed

| Scopus (7583)

36Fichtenberg, N.L., Putnam, S.H., Mann, N.R., Zafonte, R.D., Millard, A.E. Insomnia screening in postacute traumatic brain injury: utility and validity of the Pittsburgh Sleep Quality Index. Am J Phys Med Rehabil. 2001;80:339–345.

Crossref

| PubMed

| Scopus (75)

37Morin, C.M., Belleville, G., Bélanger, L., Ivers, H. The insomnia severity index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep. 2011;34:601–608.

Crossref

| PubMed

38Mendoza, T.R., Wang, X.S., Cleeland, C.S. et al, The rapid assessment of fatigue severity in cancer patients: use of the brief fatigue inventory. Cancer. 1999;85:1186–1196.

Crossref

| PubMed

| Scopus (801)

39Yun, Y.H., Lee, K.S., Kim, Y.W. et al, Web-based tailored education program for disease-free cancer survivors with cancer-related fatigue: a randomized controlled trial. J Clin Oncol. 2012;30:1296–1303.

Crossref

| PubMed

| Scopus (47)

40Krupp, L.B., Larocca, N.G., Muir Nash, J., Steinberg, A.D. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46:1121–1123.

Crossref

| PubMed

| Scopus (2359)

41Ziino, C., Ponsford, J.L. Measurement and prediction of subjective fatigue following traumatic brain injury. J Int Neuropsychol Soc. 2005;11:416–425.

Crossref

| PubMed

| Scopus (67)

42Johns, M.W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–545.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (28)

43Zigmond, A.S., Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–370.

Crossref

| PubMed

| Scopus (18338)

44Schulz, K.F., Altman, D.G., Moher, D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:698–702.

Crossref

| Scopus (1590)

45Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.

Crossref

| PubMed

| Scopus (484)

46Jacobson, N.S., Truax, P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59:12–19.

Crossref

| PubMed

| Scopus (0)

47Taylor, D.J., Pruiksma, K.E. Cognitive and behavioural therapy for insomnia (CBT-I) in psychiatric populations: a systematic review. Int Rev Psychiatry. 2014;26:205–213.

Crossref

| PubMed

| Scopus (32)

48Geiger-Brown, J.M., Rogers, V.E., Liu, W., Ludeman, E.M., Downton, K.D., Diaz-Abad, M. Cognitive behavioral therapy in persons with comorbid insomnia: a meta-analysis. Sleep Med Rev. 2015;23:54–67.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (36)

49Van Kessel, K., Moss-Morris, R., Willoughby, E., Chalder, T., Johnson, M.H., Robinson, E. A randomized controlled trial of cognitive behavior therapy for multiple sclerosis fatigue. Psychosom Med. 2008;70:205–213.

Crossref

| PubMed

| Scopus (117)

50Shekleton, J.A., Flynn-Evans, E.E., Miller, B. et al, Neurobehavioral performance impairment in insomnia: relationships with self-reported sleep and daytime functioning. Sleep. 2014;37:107–116.

PubMed

51Shekleton, J.A., Rogers, N.L., Rajaratnam, S.M. Searching for the daytime impairments of primary insomnia. Sleep Med Rev. 2010;14:47–60.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (97)

52Ponsford, J.L., Schönberger, M., Rajaratnam, S.M. A model of fatigue following traumatic brain injury. J Head Trauma Rehabil. 2015;30:277–282.

Crossref

| PubMed

| Scopus (8)

Source: Cognitive Behavior Therapy to Treat Sleep Disturbance and Fatigue After Traumatic Brain Injury: A Pilot Randomized Controlled Trial – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[WEB SITE] Mental Fatigue – University of Gothenburg, Sweden

Mental fatigue or brain fatigue

Mental fatigue can be a disabling consequence of traumatic brain injury, stroke, infection or inflammation in the Central Nervous System (CNS). The condition is characterized by pronounced mental fatigue after moderate mental activity. Pronounced fatigue can appear very rapidly and, when it does, it is not possible for the affected person to continue the activity. Typical for this kind of fatigue is a profound, long recovery time to get one’s mental energy back. Attention cannot be maintained for more than short periods. Other common associated symptoms are: irritability, tearfulness, sound and light sensitivity as well as headaches.

Read more under About Mental Fatigue.

Measure mental fatigue with an app.  Androids and Windows. Coming soon for iPhone.

Android

Windows 10

Contact information

Lars Rönnbäck, professor and senior physician in neurology

Birgitta Johansson, Ph.D., specialist in neuropsychology

Institute of neuroscience and physiology
Department of clinical neuroscience and rehabilitation
Sahlgrenska Academy
University of Gothenburg Sweden

mf@gu.se

Source: Mental Fatigue – Mental Fatigue, University of Gothenburg, Sweden

, , ,

Leave a comment

[Systematic Review] Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials – Full Text

Abstract

Background

Fatigue is not only a familiar symptom in our daily lives, but also a common ailment that affects all of our bodily systems. Several randomized controlled trials (RCTs) have proven Tai Chi to be beneficial for patients suffering from fatigue, however conclusive evidence is still lacking. A systematic review and meta-analysis was performed on all RCTs reporting the effects of Tai Chi for fatigue.

Methods

In the end of April 2016, seven electronic databases were searched for RCTs involving Tai Chi for fatigue. The search terms mainly included Tai Chi, Tai-ji, Taiji, fatigue, tiredness, weary, weak, and the search was conducted without language restrictions. Methodological quality was assessed using the Cochrane Risk of Bias tool. RevMan 5.3 software was used for meta-analysis. Publication bias was estimated with a funnel plot and Egger’s test. We also assessed the quality of evidence with the GRADE system.

Results

Ten trials (n = 689) were included, and there was a high risk of bias in the blinding. Two trials were determined to have had low methodological quality. Tai Chi was found to have improved fatigue more than conventional therapy (standardized mean difference (SMD): -0.45, 95% confidence interval (CI): -0.70, -0.20) overall, and have positive effects in cancer-related fatigue (SMD:-0.38, 95% CI: -0.65, -0.11). Tai Chi was also more effective on vitality (SMD: 0.63, 95% CI: 0.20, 1.07), sleep (SMD: -0.32, 95% CI: -0.61, -0.04) and depression (SMD: -0.58, 95% CI: -1.04, -0.11). However, no significant difference was found in multiple sclerosis-related fatigue (SMD: -0.77, 95% CI: -1.76, 0.22) and age-related fatigue (SMD: -0.77, 95% CI: -1.78, 0.24). No adverse events were reported among the included studies. The quality of evidence was moderate in the GRADE system.

Conclusions

The results suggest that Tai Chi could be an effective alternative and /or complementary approach to existing therapies for people with fatigue. However, the quality of the evidence was only moderate and may have the potential for bias. There is still absence of adverse events data to evaluate the safety of Tai Chi. Further multi-center RCTs with large sample sizes and high methodological quality, especially carefully blinded design, should be conducted in future research.

Background

Although no one can exactly quantify or document fatigue [1], fatigue is a common symptom not only deeply related to most acute and chronic diseases, but also to everyday life. It is not only common, but problematic, for people with conditions such as cancer, multiple sclerosis, and rheumatoid arthritis [2]. The National Comprehensive Cancer Network (NCCN) defined cancer related fatigue as ‘an persistent, unusual, subjective feeling of tiredness correlated with cancer or cancer treatment that obstruct to normal functioning’ [3]. Definition of fatigue was also described as “a subjective feeling of lacking mental and/or physical energy, which was perceived by the caregiver or individuals interfering with usual and desired activities” [4]. Because of its subjective nature, fatigue can only be gauged by self-reported or caregiver-reported questionnaires [5]. Fatigue generally lasts longer than somnolence [6]. Tiredness is a state of temporary decreasing in strength and energy, which may be experienced as a partial of fatigue [7]. Some authors simply divided fatigue into acute and chronic fatigue [2]. Acute fatigue occurs in healthy populations, with a rapid onset and short duration. After a period of rest and exercise, it is generally relieved. Chronic fatigue mainly affects clinically disordered individuals and is onset gradually, persists and develops over time. It usually can’t be alleviated by usual recovery techniques [6]. As a symptom, fatigue is a common complaint among most people, and many ailments are accompanied by fatigue. However, it is often ignored, under-diagnosed, and seen as a natural result of physical deterioration [8].

A previous study had shown that 10.6% of women and 10.2% of men complained of fatigue for ≥ 1 month in the South London general practice attenders [9]. The prevalence rate of chronic fatigue was 10.7% in general Chinese population [10]. Among older adults with myocardial infarction, fatigue is frequently reported to be one of the most serious barriers to physical activity [11]. Fatigue occurs in 50%-83% of patients with multiple sclerosis [12]. Among breast cancer patients 58%-94% undergoing treatment and 56%-95% who are post-chemotherapy experience fatigue [13]. Although the methods, standards, and results of these studies are not always consistent, it is undeniable that fatigue is a common symptom from which many patients suffer.

The mechanisms behind fatigue are unclear [5], however they may be related to a patient’s physical condition. There is no panacea for fatigue other than treating the symptoms [5]. Evidence has shown that exercise including walking, running, jogging, swimming, resistance (strengthening) training, stretching, aerobic exercise can counter fatigue among sufferers of chronic fatigue syndrome [14], multiple sclerosis [15], fibromyalgia [16] and among cancer survivors [17,18]. So we supposes that Tai Chi, a traditional Chinese martial art, may be an effective treatment for patients suffering from fatigue.

Tai Chi has popular in China for several centuries. Many different types of Tai Chi exist, but most consist of movement, meditation and breathing, while concentrating on the mind and maintaining low intensity [1920], and further modulate various aspects of the body including the physical, the psychological, mood and spirit [21]. In the theory of Chinese medicine (CM), Tai Chi can maintain the harmony between qi and the blood, keep yin and yang in balance and also enhance immunity [2223]. These properties are both important in relieving fatigue and maintaining energy. Qi, the energy which promotes the body’s movement, can circulate around the entire body freely if yin and yang are kept in balance [23].

Tai Chi may relieve fatigue via different mechanisms of action. Firstly, through slow movement and weight shifting, Tai Chi may relieve stress, make people more happy [24] and promote relaxation [25]. Secondly, the proven efficacy of Tai Chi to enhance aerobic capacity and immune function [26] and to improve pain [27], depression and psychological well-being [28] may be beneficial to relieve fatigue.

An advantage of Tai Chi is that it is easy to learn, teach, and popularize, and more reports on evidence of its effects should lead to it becoming even more popular. As a low impact exercise, Tai Chi may be ideal for people with fatigue, lack of exercise or who do not have active lifestyles [19]. Several studies have reported that Tai Chi plays a critical role in fighting fatigue [2932]. However, there not been explicit studies to reach a conclusion on Tai Chi’s effects on fatigue. Others have shown no difference between Tai Chi groups and control groups [33,34]. In addition, most of the studies focus on only one ailment [32,35,36]. As far as we know, the majority of the literature on Tai Chi intervention for fatigue is empirical, and uses small sample sizes. Few of the existing studies have explored fatigue as the primary outcome. To date, there have been no systematic reviews nor meta-analyses to evaluate the effects of Tai Chi for fatigue, but single RCTs based on a specific population in a certain place. This systematic review evaluates the effects and safety of Tai Chi for fatigue, and provides an overall understanding of the current situation, as well as problems in this field.

Continue —> Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials

,

Leave a comment

[Abstract] Fatigue and its’ relationship to physical activity in adolescents and young adults with traumatic brain injury: a cross-sectional study

Physical activity (PA) in patients with traumatic brain injury (TBI) may be impaired leading to secondary health issues and limitations in participation.This study aims to determine the level of PA and its determinants in adolescents and young adults with TBI.Cross-sectional survey study.Outpatient clinic of a rehabilitation centre.Discharged patients aged 12-39 years with a diagnosis of TBI >6 months treated in the rehabilitation centre between 2009-2012.The Activity Questionnaire for Adults and Adolescents (AQuAA) measuring PA, with results dichotomized for meeting or not meeting Dutch recommendations for health enhancing physical activity (D-HEPA) and the Checklist Individual Strength (CIS; range 20- 140, higher scores represent higher levels of fatigue), measuring fatigue, were administered.Fifty (47%) of the 107 invited patients completed the questionnaire. Mean age was 25.0 years (SD 7.2)) and 22 (44%) were male. Eighteen (36%) had a mild injury, 13 (26%) a moderate injury and 19 (38%) a severe injury. Median time spent on moderate-vigorous physical activity was 518 minutes/week (IQR 236-1725) (males performing significantly more minutes on moderate-vigorous activity than women) and on sedentary activity 2728 minutes/week (IQR 1637-3994). Thirty-two (64%) participants met the D-HEPA. According to the CIS, 19 participants (38%) were severely fatigued. Both the CIS total score and the subscales motivation and physical activitywere associated with meeting the D-HEPA.The proportion of individuals with TBI meeting D-HEPA was similar to the general population, with the PA level being associated with self-reported fatigue.Physical activity programmes are continuously being developed to increase the percentage of individuals meeting public health recommendations for PA; when developing programmes for individuals with TBI extra consideration should be taken for the presence of fatigue. As in the general population, females with TBI are less active, PA programmes should probably consider gender differences in their development.

Source: Fatigue and its’ relationship to physical activity in adolescents and young adults with… – Abstract – Europe PMC

, , , , , , , ,

Leave a comment

[ARTICLE] Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic review – Full Text

We systematically reviewed randomized controlled trials (RCTs) of complementary and alternative interventions for fatigue after traumatic brain injury (TBI).

We searched multiple online sources including ClinicalTrials.gov, the Cochrane Library database, MEDLINE, CINAHL, Embase, the Web of Science, AMED, PsychINFO, Toxline, ProQuest Digital Dissertations, PEDro, PsycBite, and the World Health Organization (WHO) trial registry, in addition to hand searching of grey literature. The methodological quality of each included study was assessed using the Jadad scale, and the quality of evidence was evaluated using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. A descriptive review was performed.

Ten RCTs of interventions for post-TBI fatigue (PTBIF) that included 10 types of complementary and alternative interventions were assessed in our study. There were four types of physical interventions including aquatic physical activity, fitness-center-based exercise, Tai Chi, and aerobic training. The three types of cognitive and behavioral interventions (CBIs) were cognitive behavioral therapy (CBT), mindfulness-based stress reduction (MBSR), and computerized working-memory training. The Flexyx Neurotherapy System (FNS) and cranial electrotherapy were the two types of biofeedback therapy, and finally, one type of light therapy was included. Although the four types of intervention included aquatic physical activity, MBSR, computerized working-memory training and blue-light therapy showed unequivocally effective results, the quality of evidence was low/very low according to the GRADE system.

The present systematic review of existing RCTs suggests that aquatic physical activity, MBSR, computerized working-memory training, and blue-light therapy may be beneficial treatments for PTBIF. Due to the many flaws and limitations in these studies, further controlled trials using these interventions for PTBIF are necessary.

Fatigue is a common phenomenon following traumatic brain injury (TBI), with a reported prevalence ranging from 21% to 80% [Ouellet and Morin, 2006Bushnik et al. 2007Dijkers and Bushnik, 2008Cantor et al. 2012Ponsford et al. 2012], regardless of TBI severity [Ouellet and Morin, 2006Ponsford et al. 2012]. Post-TBI fatigue (PTBIF) refers to fatigue that occurs secondary to TBI, which is generally viewed as a manifestation of ‘central fatigue’. Associated PTBIF symptoms include mental or physical exhaustion and inability to perform voluntary activities, and can be accompanied by cognitive dysfunction, sensory overstimulation, pain, and sleepiness [Cantor et al. 2013]. PTBIF appears to be persistent, affects most TBI patients daily, negatively impacts quality of life, and decreases life satisfaction [Olver et al. 1996Cantor et al.20082012Bay and De-Leon, 2010]. Given the ubiquitous presence of PTBIF, treatment or management of fatigue is important to improve the patient’s quality of life after TBI. However, the effectiveness of currently available treatments is limited.

Although pharmacological interventions such as piracetam, creatine, monoaminergic stabilizer OSU6162, and methylphenidate can alleviate fatigue, adverse effects limit their usage and further research is needed to clarify their effects [Hakkarainen and Hakamies, 1978Sakellaris et al.2008Johansson et al. 2012b2014]. Therefore, many researchers have attempted to identify complementary and alternative interventions to relieve PTBIF [Bateman et al. 2001Hodgson et al. 2005Gemmell and Leathem, 2006Hassett et al. 2009Johansson et al. 2012aBjörkdahl et al. 2013Sinclair et al. 2014]. In this study, we aimed to systematically review randomized controlled trials (RCTs) that evaluated treatment of PTBIF using complementary and alternative medicine (CAM) to provide practical recommendations for this syndrome.

figure

Figure 1. The study selection process for the systematic review.

Continue —> Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic reviewTherapeutic Advances in Neurological Disorders – Gang-Zhu Xu, Yan-Feng Li, Mao-De Wang, Dong-Yuan Cao, 2017

, , , , , ,

Leave a comment

%d bloggers like this: