Archive for category Fatigue

[WEB SITE] Managing fatigue after a brain injury – Synapse

Fatigue is a common and very disabling symptom experienced by people with a brain injury.

It may be a continual sense of mental fatigue or it can happen when a person is trying to do too much and the brain is overloaded, often resulting in mind-numbing fatigue that can last for several days.

Brain disorders such as traumatic brain injury can be likened to a highway when one of three lanes is closed down. If traffic is light, there will be no difference but once the traffic reaches a critical point, the cars barely move and it can take ages for the traffic jam to clear.

It is important to avoid fatigue as much as possible, as any other problems are worsened as well, such as:

  • Vision problems
  • Slurred speech
  • Difficulty finding words
  • Poor concentration
  • Cramps or weak muscles
  • Poor coordination or balance.

Fatigue can occur for no apparent reason or after physical activity, but is quite likely to occur from too much mental activity. Examples include planning the week’s errands, organizing a work schedule or simply reading.

Fatigue can be managed with good planning and rest periods, but carers and the family member must realize fatigue is a very real problem.

Symptoms of fatigue

The following symptoms may all suggest fatigue:

  • Withdrawal, short answers, dull tone of voice
  • Loss of appetite
  • Shortness of breath
  • Slower movement and speech
  • Irritability, anxiety, crying episodes
  • Increased forgetfulness
  • Lack of motivation and interest.

What are the triggers of fatigue?

Work out what triggers it and what factors make the symptoms worse, such as long conversations, noisy shopping centres, movies with complicated plots, or talking with two or more people at once.

In some cases, fatigue could be a side-effect of certain medications, in which case you should discuss options with your doctor.

Be aware of the first signs of fatigue and immediately stop and rest – overloading your brain can easily result in several days of extreme tiredness. Make a note of how long you can do certain activities before fatigue starts e.g. if fatigue starts after 30 minutes of reading, only read for 20 minutes in future.

Managing fatigue

Contingency plans: Fatigue may occur at the least convenient times – on public transport or during a meeting. You need to negotiate ways of coping when this happens. You can use specific strategies or call in extra support. Work out contingency plans with your family member. Your rehab team, occupational therapist or physiotherapist can help with suggestions.

Assess best hours: Some people function best in the mornings, so complete demanding tasks then. Others function better in the afternoon or the evening. Organize your routine accordingly. Don’t drive when you are tired.

Assess your environment: Provide an uncluttered environment that is easy to move around and work in. Think about how and where things are stored; bench heights, entrances, types of furnishing and lighting. For example, some people may find fluorescent lighting or dim lighting more tiring.

Schedule rest periods: Make a daily or weekly schedule, and include regular rest periods. “Rest” means do nothing at all. If you have a nap, don’t oversleep in case this affects your normal sleep cycle.

Use aids: Use mechanical aids to conserve energy for when it really counts. One man spared his legs extra effort by using his wheelchair to get from his house to the car, then from the car to the church, before walking his daughter, the bride, down the aisle.

Break it down: Break down activities into a series of smaller tasks. This provides opportunities to rest while allowing the person to complete the task. Encourage sensible shortcuts.

Set priorities: Focus on things that must be done and let the others go.

Medication highs and lows: Be aware of changes throughout the day that relate to medication. Is the person better or worse immediately after their tablets? Plan their activities around these times.

Weather: Hot weather can also increase fatigue. Plan around this.

Seek support: Ask for advice. In particular, an occupational therapist can visit your home and advise on an energy-conserving plan. For more information, talk to your doctor or condition-specific support organization.

Healthy lifestyle

AS with virtually every aspect of a traumatic brain injury and similar brain disorders, fatigue will be less of a problem if you focus on a healthy lifestyle:

  • Sleep well
  • Get regular exercise
  • Avoid alcohol or limit your intake
  • Eat a healthy diet and watch your weight
  • Learn stress management techniques
  • Maintain contact with friends and family.

Source: Managing fatigue after a brain injury – Synapse – reconnecting lives

, , ,

Leave a comment

[Abstract+References] Cognitive Behavior Therapy to Treat Sleep Disturbance and Fatigue After Traumatic Brain Injury: A Pilot Randomized Controlled Trial – Conference Paper

Abstract

Objective

To evaluate the efficacy of adapted cognitive behavioral therapy (CBT) for sleep disturbance and fatigue in individuals with traumatic brain injury (TBI).

Design

Parallel 2-group randomized controlled trial.

Setting

Outpatient therapy.

Participants

Adults (N=24) with history of TBI and clinically significant sleep and/or fatigue complaints were randomly allocated to an 8-session adapted CBT intervention or a treatment as usual (TAU) condition.

Interventions

Cognitive behavior therapy.

Main Outcome Measures

The primary outcome was the Pittsburgh Sleep Quality Index (PSQI) posttreatment and at 2-month follow-up. Secondary measures included the Insomnia Severity Index, Fatigue Severity Scale, Brief Fatigue Inventory (BFI), Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale.

Results

At follow-up, CBT recipients reported better sleep quality than those receiving TAU (PSQI mean difference, 4.85; 95% confidence interval [CI], 2.56–7.14). Daily fatigue levels were significantly reduced in the CBT group (BFI difference, 1.54; 95% CI, 0.66–2.42). Secondary improvements were significant for depression. Large within-group effect sizes were evident across measures (Hedges g=1.14–1.93), with maintenance of gains 2 months after therapy cessation.

Conclusions

Adapted CBT produced greater and sustained improvements in sleep, daily fatigue levels, and depression compared with TAU. These pilot findings suggest that CBT is a promising treatment for sleep disturbance and fatigue after TBI.

References

1Ponsford, J.L., Ziino, C., Parcell, D.L. et al, Fatigue and sleep disturbance following traumatic brain injury-their nature, causes, and potential treatments. J Head Trauma Rehabil. 2012;27:224–233.

Crossref

| PubMed

| Scopus (75)

2Mollayeva, T., Kendzerska, T., Mollayeva, S., Shapiro, C.M., Colantonio, A., Cassidy, J.D. A systematic review of fatigue in patients with traumatic brain injury: The course, predictors and consequences. Neurosci Biobehav Rev. 2014;47:684–716.

Crossref

| PubMed

| Scopus (11)

3Ouellet, M.C., Morin, C.M. Fatigue following traumatic brain injury: frequency, characteristics, and associated factors. Rehabil Psychol. 2006;51:140–149.

Crossref

| Scopus (49)

4Ouellet, M.C., Beaulieu-Bonneau, S., Morin, C.M. Sleep-wake disturbances after traumatic brain injury. Lancet Neurol. 2015;14:746–757.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (28)

5Mathias, J.L., Alvaro, P.K. Prevalence of sleep disturbances, disorders, and problems following traumatic brain injury: a meta-analysis. Sleep Med. 2012;13:898–905.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (93)

6Ponsford, J.L., Downing, M.G., Olver, J. et al, Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J Neurotrauma. 2014;31:64–77.

Crossref

| PubMed

| Scopus (63)

7Bloomfield, I.L., Espie, C.A., Evans, J.J. Do sleep difficulties exacerbate deficits in sustained attention following traumatic brain injury?. J Int Neuropsychol Soc. 2010;16:17–25.

Crossref

| PubMed

| Scopus (38)

8Wiseman-Hakes, C., Murray, B., Moineddin, R. et al, Evaluating the impact of treatment for sleep/wake disorders on recovery of cognition and communication in adults with chronic TBI. Brain Inj. 2013;27:1364–1376.

Crossref

| PubMed

| Scopus (19)

9Juengst, S., Skidmore, E., Arenth, P.M., Niyonkuru, C., Raina, K.D. Unique contribution of fatigue to disability in community-dwelling adults with traumatic brain injury. Arch Phys Med Rehabil. 2013;94:74–79.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (18)

10Cantor, J.B., Ashman, T., Gordon, W. et al, Fatigue after traumatic brain injury and its impact on participation and quality of life. J Head Trauma Rehabil. 2008;23:41–51.

Crossref

| PubMed

| Scopus (113)

11Ponsford, J.L., Parcell, D.L., Sinclair, K.L., Roper, M., Rajaratnam, S.M. Changes in sleep patterns following traumatic brain injury: a controlled study. Neurorehabil Neural Repair. 2013;27:613–621.

Crossref

| PubMed

| Scopus (29)

12Zgaljardic, D.J., Durham, W.J., Mossberg, K.A. et al, Neuropsychological and physiological correlates of fatigue following traumatic brain injury. Brain Inj. 2014;28:389–397.

Crossref

| PubMed

| Scopus (6)

13Beaulieu-Bonneau, S., Ouellet, M.C. Fatigue in the first year after traumatic brain injury: course, relationship with injury severity, and correlates. Neuropsychol Rehabil. 2016;:1–19.

Crossref

| PubMed

| Scopus (2)

14Bushnik, T., Englander, J., Wright, J. The experience of fatigue in the first 2 years after moderate-to-severe traumatic brain injury: a preliminary report. J Head Trauma Rehabil. 2008;23:17–24.

Crossref

| PubMed

| Scopus (37)

15Schnieders, J., Willemsen, D., De Boer, H. Factors contributing to chronic fatigue after traumatic brain injury. J Head Trauma Rehabil. 2012;27:404–412.

Crossref

| PubMed

| Scopus (20)

16Trauer, J.M., Qian, M.Y., Doyle, J.S., Rajaratnam, S.M., Cunnington, D. Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis. Ann Intern Med. 2015;163:191–204.

Crossref

| PubMed

| Scopus (68)

17Castell, B.D., Kazantzis, N., Moss-Morris, R.E. Cognitive behavioral therapy and graded exercise for chronic fatigue syndrome: a meta-analysis. Clinical Psychology: Science and Practice. 2011;18:311–324.

Crossref

| Scopus (77)

18Gielissen, M.F., Verhagen, S., Witjes, F., Bleijenberg, G. Effects of cognitive behavior therapy in severely fatigued disease-free cancer patients compared with patients waiting for cognitive behavior therapy: a randomized controlled trial. J Clin Oncol. 2006;24:4882–4887.

Crossref

| PubMed

| Scopus (158)

19Zedlitz, A.M., Rietveld, T.C., Geurts, A.C., Fasotti, L. Cognitive and graded activity training can alleviate persistent fatigue after stroke: a randomized, controlled trial. Stroke. 2012;43:1046–1051.

Crossref

| PubMed

| Scopus (45)

20van den Akker, L.E., Beckerman, H., Collette, E.H., Eijssen, I.C., Dekker, J., de Groot, V. Effectiveness of cognitive behavioral therapy for the treatment of fatigue in patients with multiple sclerosis: a systematic review and meta-analysis. J Psychosom Res. 2016;90:33–42.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (3)

21Ouellet, M.C., Morin, C.M. Cognitive behavioral therapy for insomnia associated with traumatic brain injury: a single-case study. Arch Phys Med Rehabil. 2004;85:1298–1302.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (35)

22Ouellet, M.C., Morin, C.M. Efficacy of cognitive-behavioral therapy for insomnia associated with traumatic brain injury: a single-case experimental design. Arch Phys Med Rehabil. 2007;88:1581–1592.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (69)

23Raina, K.D., Morse, J.Q., Chisholm, D., Leibold, M.L., Shen, J., Whyte, E. Feasibility of a cognitive behavioral intervention to manage fatigue in individuals with traumatic brain injury: a pilot study. J Head Trauma Rehabil. 2016;31:E41–E49.

Crossref

| PubMed

| Scopus (1)

24Fleming, L., Randell, K., Harvey, C.J., Espie, C.A. Does cognitive behaviour therapy for insomnia reduce clinical levels of fatigue, anxiety and depression in cancer patients?. Psychooncology. 2014;23:679–684.

Crossref

| PubMed

| Scopus (25)

25Heckler, C.E., Garland, S.N., Peoples, A.R. et al, Cognitive behavioral therapy for insomnia, but not armodafinil, improves fatigue in cancer survivors with insomnia: a randomized placebo-controlled trial. Support Care Cancer. 2016;24:2059–2066.

Crossref

| PubMed

| Scopus (7)

26Roscoe, J.A., Garland, S.N., Heckler, C.E. et al, Randomized placebo-controlled trial of cognitive behavioral therapy and armodafinil for insomnia after cancer treatment. J Clin Oncol. 2015;33:165–171.

Crossref

| PubMed

| Scopus (9)

27Beck, A.T., Rush, A.J., Shaw, B.F., Emery, G. Cognitive therapy of depression. The Guilford Press, New York; 1979.

28White, P.D., Goldsmith, K., Johnson, A.L. et al, Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet. 2011;377:823–836.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (361)

29Hsieh, M.Y., Ponsford, J.L., Wong, D., Schnberger, M., Taffe, J., McKay, A. Motivational interviewing and cognitive behaviour therapy for anxiety following traumatic brain injury: a pilot randomised controlled trial. Neuropsychol Rehabil. 2012;22:585–608.

Crossref

| PubMed

| Scopus (26)

30Ashworth, D.K., Sletten, T.L., Junge, M. et al, A randomized controlled trial of cognitive behavioral therapy for insomnia: an effective treatment for comorbid insomnia and depression. J Counsel Psychol. 2015;62:115–123.

Crossref

| PubMed

| Scopus (14)

31Nelson, H.E., Wilson, J. National Adult Reading Test (NART): test manual (2nd ed). NFER Nelson, Windsor, UK; 1991.

32Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. Manual for the Californian Verbal Learning Test – Second Edition (CVLT-II). The Psychological Corporation, San Antonio; 2000.

33First, M.B., Spitzer, R.L., Gibbons, M., Williams, J.B.W. Structured Clinical Interview for DSM-IV-TR Axis I disorders, Research Version, Patient Edition (SCID-I/P). Biometrics Research Department, New York State Psychiatric Institute, New York; 2002.

34Cleeland, C.S., Ryan, K.M. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore. 1994;23:129–138.

PubMed

35Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.

Abstract

| Full Text PDF

| PubMed

| Scopus (7583)

36Fichtenberg, N.L., Putnam, S.H., Mann, N.R., Zafonte, R.D., Millard, A.E. Insomnia screening in postacute traumatic brain injury: utility and validity of the Pittsburgh Sleep Quality Index. Am J Phys Med Rehabil. 2001;80:339–345.

Crossref

| PubMed

| Scopus (75)

37Morin, C.M., Belleville, G., Bélanger, L., Ivers, H. The insomnia severity index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep. 2011;34:601–608.

Crossref

| PubMed

38Mendoza, T.R., Wang, X.S., Cleeland, C.S. et al, The rapid assessment of fatigue severity in cancer patients: use of the brief fatigue inventory. Cancer. 1999;85:1186–1196.

Crossref

| PubMed

| Scopus (801)

39Yun, Y.H., Lee, K.S., Kim, Y.W. et al, Web-based tailored education program for disease-free cancer survivors with cancer-related fatigue: a randomized controlled trial. J Clin Oncol. 2012;30:1296–1303.

Crossref

| PubMed

| Scopus (47)

40Krupp, L.B., Larocca, N.G., Muir Nash, J., Steinberg, A.D. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46:1121–1123.

Crossref

| PubMed

| Scopus (2359)

41Ziino, C., Ponsford, J.L. Measurement and prediction of subjective fatigue following traumatic brain injury. J Int Neuropsychol Soc. 2005;11:416–425.

Crossref

| PubMed

| Scopus (67)

42Johns, M.W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–545.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (28)

43Zigmond, A.S., Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–370.

Crossref

| PubMed

| Scopus (18338)

44Schulz, K.F., Altman, D.G., Moher, D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:698–702.

Crossref

| Scopus (1590)

45Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.

Crossref

| PubMed

| Scopus (484)

46Jacobson, N.S., Truax, P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59:12–19.

Crossref

| PubMed

| Scopus (0)

47Taylor, D.J., Pruiksma, K.E. Cognitive and behavioural therapy for insomnia (CBT-I) in psychiatric populations: a systematic review. Int Rev Psychiatry. 2014;26:205–213.

Crossref

| PubMed

| Scopus (32)

48Geiger-Brown, J.M., Rogers, V.E., Liu, W., Ludeman, E.M., Downton, K.D., Diaz-Abad, M. Cognitive behavioral therapy in persons with comorbid insomnia: a meta-analysis. Sleep Med Rev. 2015;23:54–67.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (36)

49Van Kessel, K., Moss-Morris, R., Willoughby, E., Chalder, T., Johnson, M.H., Robinson, E. A randomized controlled trial of cognitive behavior therapy for multiple sclerosis fatigue. Psychosom Med. 2008;70:205–213.

Crossref

| PubMed

| Scopus (117)

50Shekleton, J.A., Flynn-Evans, E.E., Miller, B. et al, Neurobehavioral performance impairment in insomnia: relationships with self-reported sleep and daytime functioning. Sleep. 2014;37:107–116.

PubMed

51Shekleton, J.A., Rogers, N.L., Rajaratnam, S.M. Searching for the daytime impairments of primary insomnia. Sleep Med Rev. 2010;14:47–60.

Abstract

| Full Text

| Full Text PDF

| PubMed

| Scopus (97)

52Ponsford, J.L., Schönberger, M., Rajaratnam, S.M. A model of fatigue following traumatic brain injury. J Head Trauma Rehabil. 2015;30:277–282.

Crossref

| PubMed

| Scopus (8)

Source: Cognitive Behavior Therapy to Treat Sleep Disturbance and Fatigue After Traumatic Brain Injury: A Pilot Randomized Controlled Trial – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[WEB SITE] Mental Fatigue – University of Gothenburg, Sweden

Mental fatigue or brain fatigue

Mental fatigue can be a disabling consequence of traumatic brain injury, stroke, infection or inflammation in the Central Nervous System (CNS). The condition is characterized by pronounced mental fatigue after moderate mental activity. Pronounced fatigue can appear very rapidly and, when it does, it is not possible for the affected person to continue the activity. Typical for this kind of fatigue is a profound, long recovery time to get one’s mental energy back. Attention cannot be maintained for more than short periods. Other common associated symptoms are: irritability, tearfulness, sound and light sensitivity as well as headaches.

Read more under About Mental Fatigue.

Measure mental fatigue with an app.  Androids and Windows. Coming soon for iPhone.

Android

Windows 10

Contact information

Lars Rönnbäck, professor and senior physician in neurology

Birgitta Johansson, Ph.D., specialist in neuropsychology

Institute of neuroscience and physiology
Department of clinical neuroscience and rehabilitation
Sahlgrenska Academy
University of Gothenburg Sweden

mf@gu.se

Source: Mental Fatigue – Mental Fatigue, University of Gothenburg, Sweden

, , ,

Leave a comment

[Systematic Review] Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials – Full Text

Abstract

Background

Fatigue is not only a familiar symptom in our daily lives, but also a common ailment that affects all of our bodily systems. Several randomized controlled trials (RCTs) have proven Tai Chi to be beneficial for patients suffering from fatigue, however conclusive evidence is still lacking. A systematic review and meta-analysis was performed on all RCTs reporting the effects of Tai Chi for fatigue.

Methods

In the end of April 2016, seven electronic databases were searched for RCTs involving Tai Chi for fatigue. The search terms mainly included Tai Chi, Tai-ji, Taiji, fatigue, tiredness, weary, weak, and the search was conducted without language restrictions. Methodological quality was assessed using the Cochrane Risk of Bias tool. RevMan 5.3 software was used for meta-analysis. Publication bias was estimated with a funnel plot and Egger’s test. We also assessed the quality of evidence with the GRADE system.

Results

Ten trials (n = 689) were included, and there was a high risk of bias in the blinding. Two trials were determined to have had low methodological quality. Tai Chi was found to have improved fatigue more than conventional therapy (standardized mean difference (SMD): -0.45, 95% confidence interval (CI): -0.70, -0.20) overall, and have positive effects in cancer-related fatigue (SMD:-0.38, 95% CI: -0.65, -0.11). Tai Chi was also more effective on vitality (SMD: 0.63, 95% CI: 0.20, 1.07), sleep (SMD: -0.32, 95% CI: -0.61, -0.04) and depression (SMD: -0.58, 95% CI: -1.04, -0.11). However, no significant difference was found in multiple sclerosis-related fatigue (SMD: -0.77, 95% CI: -1.76, 0.22) and age-related fatigue (SMD: -0.77, 95% CI: -1.78, 0.24). No adverse events were reported among the included studies. The quality of evidence was moderate in the GRADE system.

Conclusions

The results suggest that Tai Chi could be an effective alternative and /or complementary approach to existing therapies for people with fatigue. However, the quality of the evidence was only moderate and may have the potential for bias. There is still absence of adverse events data to evaluate the safety of Tai Chi. Further multi-center RCTs with large sample sizes and high methodological quality, especially carefully blinded design, should be conducted in future research.

Background

Although no one can exactly quantify or document fatigue [1], fatigue is a common symptom not only deeply related to most acute and chronic diseases, but also to everyday life. It is not only common, but problematic, for people with conditions such as cancer, multiple sclerosis, and rheumatoid arthritis [2]. The National Comprehensive Cancer Network (NCCN) defined cancer related fatigue as ‘an persistent, unusual, subjective feeling of tiredness correlated with cancer or cancer treatment that obstruct to normal functioning’ [3]. Definition of fatigue was also described as “a subjective feeling of lacking mental and/or physical energy, which was perceived by the caregiver or individuals interfering with usual and desired activities” [4]. Because of its subjective nature, fatigue can only be gauged by self-reported or caregiver-reported questionnaires [5]. Fatigue generally lasts longer than somnolence [6]. Tiredness is a state of temporary decreasing in strength and energy, which may be experienced as a partial of fatigue [7]. Some authors simply divided fatigue into acute and chronic fatigue [2]. Acute fatigue occurs in healthy populations, with a rapid onset and short duration. After a period of rest and exercise, it is generally relieved. Chronic fatigue mainly affects clinically disordered individuals and is onset gradually, persists and develops over time. It usually can’t be alleviated by usual recovery techniques [6]. As a symptom, fatigue is a common complaint among most people, and many ailments are accompanied by fatigue. However, it is often ignored, under-diagnosed, and seen as a natural result of physical deterioration [8].

A previous study had shown that 10.6% of women and 10.2% of men complained of fatigue for ≥ 1 month in the South London general practice attenders [9]. The prevalence rate of chronic fatigue was 10.7% in general Chinese population [10]. Among older adults with myocardial infarction, fatigue is frequently reported to be one of the most serious barriers to physical activity [11]. Fatigue occurs in 50%-83% of patients with multiple sclerosis [12]. Among breast cancer patients 58%-94% undergoing treatment and 56%-95% who are post-chemotherapy experience fatigue [13]. Although the methods, standards, and results of these studies are not always consistent, it is undeniable that fatigue is a common symptom from which many patients suffer.

The mechanisms behind fatigue are unclear [5], however they may be related to a patient’s physical condition. There is no panacea for fatigue other than treating the symptoms [5]. Evidence has shown that exercise including walking, running, jogging, swimming, resistance (strengthening) training, stretching, aerobic exercise can counter fatigue among sufferers of chronic fatigue syndrome [14], multiple sclerosis [15], fibromyalgia [16] and among cancer survivors [17,18]. So we supposes that Tai Chi, a traditional Chinese martial art, may be an effective treatment for patients suffering from fatigue.

Tai Chi has popular in China for several centuries. Many different types of Tai Chi exist, but most consist of movement, meditation and breathing, while concentrating on the mind and maintaining low intensity [1920], and further modulate various aspects of the body including the physical, the psychological, mood and spirit [21]. In the theory of Chinese medicine (CM), Tai Chi can maintain the harmony between qi and the blood, keep yin and yang in balance and also enhance immunity [2223]. These properties are both important in relieving fatigue and maintaining energy. Qi, the energy which promotes the body’s movement, can circulate around the entire body freely if yin and yang are kept in balance [23].

Tai Chi may relieve fatigue via different mechanisms of action. Firstly, through slow movement and weight shifting, Tai Chi may relieve stress, make people more happy [24] and promote relaxation [25]. Secondly, the proven efficacy of Tai Chi to enhance aerobic capacity and immune function [26] and to improve pain [27], depression and psychological well-being [28] may be beneficial to relieve fatigue.

An advantage of Tai Chi is that it is easy to learn, teach, and popularize, and more reports on evidence of its effects should lead to it becoming even more popular. As a low impact exercise, Tai Chi may be ideal for people with fatigue, lack of exercise or who do not have active lifestyles [19]. Several studies have reported that Tai Chi plays a critical role in fighting fatigue [2932]. However, there not been explicit studies to reach a conclusion on Tai Chi’s effects on fatigue. Others have shown no difference between Tai Chi groups and control groups [33,34]. In addition, most of the studies focus on only one ailment [32,35,36]. As far as we know, the majority of the literature on Tai Chi intervention for fatigue is empirical, and uses small sample sizes. Few of the existing studies have explored fatigue as the primary outcome. To date, there have been no systematic reviews nor meta-analyses to evaluate the effects of Tai Chi for fatigue, but single RCTs based on a specific population in a certain place. This systematic review evaluates the effects and safety of Tai Chi for fatigue, and provides an overall understanding of the current situation, as well as problems in this field.

Continue —> Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials

,

Leave a comment

[Abstract] Fatigue and its’ relationship to physical activity in adolescents and young adults with traumatic brain injury: a cross-sectional study

Physical activity (PA) in patients with traumatic brain injury (TBI) may be impaired leading to secondary health issues and limitations in participation.This study aims to determine the level of PA and its determinants in adolescents and young adults with TBI.Cross-sectional survey study.Outpatient clinic of a rehabilitation centre.Discharged patients aged 12-39 years with a diagnosis of TBI >6 months treated in the rehabilitation centre between 2009-2012.The Activity Questionnaire for Adults and Adolescents (AQuAA) measuring PA, with results dichotomized for meeting or not meeting Dutch recommendations for health enhancing physical activity (D-HEPA) and the Checklist Individual Strength (CIS; range 20- 140, higher scores represent higher levels of fatigue), measuring fatigue, were administered.Fifty (47%) of the 107 invited patients completed the questionnaire. Mean age was 25.0 years (SD 7.2)) and 22 (44%) were male. Eighteen (36%) had a mild injury, 13 (26%) a moderate injury and 19 (38%) a severe injury. Median time spent on moderate-vigorous physical activity was 518 minutes/week (IQR 236-1725) (males performing significantly more minutes on moderate-vigorous activity than women) and on sedentary activity 2728 minutes/week (IQR 1637-3994). Thirty-two (64%) participants met the D-HEPA. According to the CIS, 19 participants (38%) were severely fatigued. Both the CIS total score and the subscales motivation and physical activitywere associated with meeting the D-HEPA.The proportion of individuals with TBI meeting D-HEPA was similar to the general population, with the PA level being associated with self-reported fatigue.Physical activity programmes are continuously being developed to increase the percentage of individuals meeting public health recommendations for PA; when developing programmes for individuals with TBI extra consideration should be taken for the presence of fatigue. As in the general population, females with TBI are less active, PA programmes should probably consider gender differences in their development.

Source: Fatigue and its’ relationship to physical activity in adolescents and young adults with… – Abstract – Europe PMC

, , , , , , , ,

Leave a comment

[ARTICLE] Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic review – Full Text

We systematically reviewed randomized controlled trials (RCTs) of complementary and alternative interventions for fatigue after traumatic brain injury (TBI).

We searched multiple online sources including ClinicalTrials.gov, the Cochrane Library database, MEDLINE, CINAHL, Embase, the Web of Science, AMED, PsychINFO, Toxline, ProQuest Digital Dissertations, PEDro, PsycBite, and the World Health Organization (WHO) trial registry, in addition to hand searching of grey literature. The methodological quality of each included study was assessed using the Jadad scale, and the quality of evidence was evaluated using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. A descriptive review was performed.

Ten RCTs of interventions for post-TBI fatigue (PTBIF) that included 10 types of complementary and alternative interventions were assessed in our study. There were four types of physical interventions including aquatic physical activity, fitness-center-based exercise, Tai Chi, and aerobic training. The three types of cognitive and behavioral interventions (CBIs) were cognitive behavioral therapy (CBT), mindfulness-based stress reduction (MBSR), and computerized working-memory training. The Flexyx Neurotherapy System (FNS) and cranial electrotherapy were the two types of biofeedback therapy, and finally, one type of light therapy was included. Although the four types of intervention included aquatic physical activity, MBSR, computerized working-memory training and blue-light therapy showed unequivocally effective results, the quality of evidence was low/very low according to the GRADE system.

The present systematic review of existing RCTs suggests that aquatic physical activity, MBSR, computerized working-memory training, and blue-light therapy may be beneficial treatments for PTBIF. Due to the many flaws and limitations in these studies, further controlled trials using these interventions for PTBIF are necessary.

Fatigue is a common phenomenon following traumatic brain injury (TBI), with a reported prevalence ranging from 21% to 80% [Ouellet and Morin, 2006Bushnik et al. 2007Dijkers and Bushnik, 2008Cantor et al. 2012Ponsford et al. 2012], regardless of TBI severity [Ouellet and Morin, 2006Ponsford et al. 2012]. Post-TBI fatigue (PTBIF) refers to fatigue that occurs secondary to TBI, which is generally viewed as a manifestation of ‘central fatigue’. Associated PTBIF symptoms include mental or physical exhaustion and inability to perform voluntary activities, and can be accompanied by cognitive dysfunction, sensory overstimulation, pain, and sleepiness [Cantor et al. 2013]. PTBIF appears to be persistent, affects most TBI patients daily, negatively impacts quality of life, and decreases life satisfaction [Olver et al. 1996Cantor et al.20082012Bay and De-Leon, 2010]. Given the ubiquitous presence of PTBIF, treatment or management of fatigue is important to improve the patient’s quality of life after TBI. However, the effectiveness of currently available treatments is limited.

Although pharmacological interventions such as piracetam, creatine, monoaminergic stabilizer OSU6162, and methylphenidate can alleviate fatigue, adverse effects limit their usage and further research is needed to clarify their effects [Hakkarainen and Hakamies, 1978Sakellaris et al.2008Johansson et al. 2012b2014]. Therefore, many researchers have attempted to identify complementary and alternative interventions to relieve PTBIF [Bateman et al. 2001Hodgson et al. 2005Gemmell and Leathem, 2006Hassett et al. 2009Johansson et al. 2012aBjörkdahl et al. 2013Sinclair et al. 2014]. In this study, we aimed to systematically review randomized controlled trials (RCTs) that evaluated treatment of PTBIF using complementary and alternative medicine (CAM) to provide practical recommendations for this syndrome.

figure

Figure 1. The study selection process for the systematic review.

Continue —> Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic reviewTherapeutic Advances in Neurological Disorders – Gang-Zhu Xu, Yan-Feng Li, Mao-De Wang, Dong-Yuan Cao, 2017

, , , , , ,

Leave a comment

[WEB SITE] 17 Things People With Chronic Illness Mean When They Say ‘I’m Tired’

Everyone has said “I’m tired” at one point or another. But those deceptively simple words can have so many meanings. Without knowing the extent of the exhaustion someone with chronic illness is feeling when they say they’re people may think your “tiredness” can be cured by a nap or early night, like theirs, not understanding the support you really need in that moment.

So we asked our Mighty community with chronic illness to reveal what they might actually mean when they say, “I’m tired.” It’s important for the people in your life to understand the challenges you’re dealing with and the empathy and kindness that can help you get through them.

 

Here’s what our community told us:

1. “Most people who are healthy don’t understand that ‘I’m tired’ is a very shortened phrase for us. When I actually admit to friends and family that I feel bad or am tired that means so much. That means I can no longer mask the symptoms I deal with on a daily basis and I need a little compassion to get through the next few hours or sometimes days.”

2. “When I say ‘I’m tired,’ I mean my body hurts to the point I can’t explain to a ‘normal’ person how bad it hurts. It means mentally, emotionally and physically I do not want to keep going. When I say ‘I’m tired’ I’m giving myself permission for a second to stop fighting my illness and to be vulnerable. When I say ‘I’m tired’ I’m trusting you enough to show you how I really feel before I get ready to get up and keep fighting again.”

3. “I don’t want to stop helping you, but I’m pretty sure I’m going to crumble if I do one more thing. So, just smile and nod as I go sit down and put my brace on.”

4. “Just sitting in a chair is exhausting. I just want to be able to melt into the floor because I don’t have the energy to hold myself up. I’m not sleepy, I’m exhausted!”

5. “When I say ‘I’m tired’ it means I don’t want to talk about it right now. It means I’m tired of the fight my body is constantly in against itself, I’m tired of being positive, I’m tired of pushing through the pain, I’m tired of never-ending procedures and continuous doctor appointments that tend to only discover new problems. I know everything will be OK and my faith will get me through this, but right now ‘I’m tired’ and don’t have the energy or the will to put that much effort in to finding the good in my situation.”

6. “‘I’m tired’ is code for: I’ve hit the exhaustion wall/power-off button; I don’t have the energy to explain the systemic overload my body and mind are experiencing; I need to be alone; I’m sorry I can’t do that for you right now, but I’m incapable of even doing that for myself.”

7. “Most of the time it actually means, ‘I know you mean well, but please give me some space. I’d like to be alone.’ Predominantly this is when I really am absolutely exhausted and have zero energy to consider those around me.”

8. “I’m mentally exhausted from having to keep it together on the surface at work, when what I really want to do is scream out loud with the pain. The majority of my day is spent ticking down the clock so I can go home and curl up and just be in pain out loud.”

9. “Half the time it means I don’t have any reason for feeling the way I do emotionally, mentally, or physically, but I feel I need to give one. The other half of the time it’s that I’m at my breaking point and there’s not enough rest or time away in the world to bring me out of it.”

10. “It’s usually my go-to response for pain, exhaustion, anxiety, everything. It’s easier than trying to explain something ‘normal’ people will never understand. Tiredness is something everyone can comprehend on some level.”

11. “I want, no need, to collapse right here. I’m in so much pain I want to cry, but it isn’t socially acceptable to do that. I can’t think straight enough to know my own name, let alone what I should be doing right now!”

12. “When I say I’m tired I mean I can’t keep smiling and acting as if nothing was happening. My whole day I try to show my best, I pretend to be the same person I was before the pain started. When I’m tired I cannot pretend anymore, I have to be who I am now.”

13. “I’m emotionally drained. But I don’t want to appear weak or go into details. Saying, ‘I’m just tired’ is simpler sometimes.”

14. “I say ‘I’m tired,’ but what I mean is I am fatigued beyond exhaustion, I can barely function, I feel like I haven’t slept in days, my body and mind ache for restful rest!”

15. “When I say I am tired, it means wherever I am could make a good place to lay down and hopefully sleep. The concrete floor over there? Yeah that looks like an amazing place.”

16. “I’m out of spoons. Of juice. Of battery. I physically cannot muster the energy needed to complete the task(s) being asked of me.”

17. “I’ll stare off into the brain fog and when someone notices, auto respond, ‘I’m just tired.’ It’s so much easier not to have to explain something you know they likely don’t understand. My being tired can’t be fixed. Take a nap, cured. If only it were that simple.”

Source: 17 Things People With Chronic Illness Mean When They Say ‘I’m Tired’ | The Mighty

, , , ,

Leave a comment

[WEB SITE] Helping Others Understand: Post-Stroke Fatigue

[Helping Others Understand is an open-ended, intermittent series designed to support stroke survivors and family caregivers with helping friends and family better understand the nuances, complications and realistic expectations for common post-stroke conditions. If there is a specific post-stroke condition you’d like to see us address in future issues, we invite you to let us know: strokeconnection@heart.org.]


Stroke is unpredictable both in its arrival and in the consequences it leaves, but one common stroke deficit is fatigue. Some studies indicate that as many as 70 percent of survivors experience fatigue at some time following their stroke. Unlike exertional fatigue that we feel after working in the yard, post-stroke fatigue occurs from doing typical everyday tasks or sometimes from not doing anything. “It is a fatigue associated with the nervous system, which is quite difficult to understand,” said Jade Bender-Burnett, P.T., D.P.T., N.C.S., a neurological physical therapist in Falls Church, Virginia. “It’s very frustrating to the person who’s living with it because, unlike exertional fatigue, post-stroke fatigue doesn’t always resolve after you take a break, or get some rest.”

That has been Roman Nemec’s experience since surviving an ischemic stroke 11 years ago. It doesn’t seem to matter how much sleep he gets, “I walk around tired all the time, even after 9-10 hours of sleep,” he said from his home in Georgia.

This can be difficult for friends and family members to get their heads around because they have not likely experienced this kind of brain fatigue. Bender-Burnett has asked her clients who were marathoners prior to their stroke to compare the fatigue one feels following a marathon to post-stroke fatigue: “They said the fatigue you feel after damage to the brain is unlike any fatigue they’ve ever felt,” she said.

While there is no standardized scale for post-stroke fatigue, Bender-Burnett says that therapists distinguish between two types of fatigue. “Objective fatigue occurs when we can see physical, mental or cognitive changes,” she said. “With subjective fatigue we don’t see any changes, but the survivor will tell you that they’re feeling extremely weary and have no energy.”

For some this goes on for a few months after their stroke, for others, like Roman, it is persistent. Fatigue may be a side effect of medication. “Post-stroke fatigue is very individualized,” Bender-Burnett said. “One of the most frustrating parts of post-stroke fatigue is that it’s so unpredictable. Today, getting up, brushing your teeth and putting on your clothes may be fine, but tomorrow you may not be able to complete the morning routine without a rest break. That unpredictability is very frustrating for people and makes reintegration into daily life difficult.”

Post-stroke fatigue often changes over time. People report more and greater fatigue in the first six months. It’s episodic at first and seems to come out of nowhere: “They may be functioning well, and then all of a sudden they hit a wall,” she said. “It seems that as they get farther along in recovery, those hit-the-wall episodes decrease, and the lingering effect is ‘I just don’t have the energy to do all the things on my plate.’”

Life consequences span the spectrum from nuisance to career-ending. It can impact a survivor’s ability to function in unpredictable ways: As they tire, they may become clumsy or their speech may be affected. Their ability to understand, comprehend or recall may be compromised. Some people get irritable, while others experience increased emotional lability (crying or laughing with no apparent trigger). Bender-Burnett has worked with people who have made remarkable recoveries but were not able to return to work because of post-stroke fatigue.

Just as the consequences are individualized, so are the responses. If your energy is better in the morning, then take advantage of that. For mental fatigue, the most effective response is to sit quietly with low sensory stimulation, not necessarily take a nap. Some survivors may require regular and scheduled rest breaks or even a nap; that does not work for Roman: “I just live through it,” he said. “There are worse things than being tired. I feel good; I can get around; I can talk. Life is good compared to what it could be. Being tired all the time is not a big problem.”

Rhonda Hand, whose significant other, Tarvin, is a survivor, said: “In our household the fatigue issue is factored in before any event or activity and recuperation time after an event or activity. We just block off rest time like another activity; if we don’t, everything shuts down, including speech. Over the years, we have become much more proactive in scheduling appointments with anybody. There is nothing before 8 a.m. That’s when deep sleep is happening.”

Knowing your limits — and quitting before you hit them — is key to living with post-stroke fatigue. Survivors with fatigue have limited energy reserves, and if they get depleted, they take longer to replenish. “You don’t want push to the point just before you’re exhausted, you want to end on a high note, leaving some reserves,” Bender-Burnett said.

“We’re still learning about post-stroke fatigue from the healthcare perspective, and so I think it’s important that we all be willing to recognize it and have open communication about it,” Bender-Burnett said. “I urge family members and friends to come from a position of compassion and understanding rather than expectation that everything should be better, because, much like depression, others can’t always see it but, if you’re feeling it, it can be quite limiting.”

 

The Stroke Connection team knows that it can sometimes be hard for family and friends to understand how profoundly post-stroke fatigue may be impacting a survivor. We encourage you to share this article with the people in your life — and, for those pressed for time, we’ve created a quick-reference sheet  that you can print or share via email or socia

Source: Helping Others Understand: Post-Stroke Fatigue – Stroke Connection Magazine – Spring 2017

, ,

1 Comment

[WEB SITE] All Fatigue is Not Created Equal: Why it Matters and What it Means for Pain Management

Have you ever felt so tired that you wished you could hibernate? Or so out of energy that you wanted to plug into a wall outlet and recharge?  Even if you haven’t, you’ve probably experienced the fatigue of a long day at work, a workout, or a poor night of sleep. This feeling is not only physical; emotional and mental fatigue can lead to irritability, difficulty concentrating, or in extreme cases, to locking ourselves in our room and watching reruns on television while our friends go out and enjoy themselves.

For people with chronic pain conditions, feelings of fatigue may be the norm rather than the exception. In fact, fatigue is one of the most common symptoms reported by patients with chronic pain, and increases as the intensity of the pain increases [1-2]. Chronic fatigue syndrome is highly comorbid with chronic pain conditions [3-4], and patients with fibromyalgia describe “fibro fog,” a set of symptoms characterized by difficulty with concentrating and performing other mental tasks [5].

Why does fatigue matter? It predicts low quality of life and poor functioning in a number of chronic pain populations [6-7], including cancer [8] and lower back pain [9]. In our work, we found that fatigue predicts low satisfaction with life in patients with chronic orofacial pain (pain in the head and face), and partially explains why pain is associated with psychological distress [2,10]. Yet, despite the negative impact of fatigue on functioning, it is still largely treated as a single symptom. Our team wanted to take a more nuanced approach and test whether different subtypes of fatigue (general fatigue, mental fatigue, emotional fatigue, physical fatigue, and vigor), as well as total fatigue (as a single symptom), predicted pain-related interference with social and recreational activities. To do this, we examined medical and psychological data from over 2,000 patients seeking treatment for chronic orofacial pains at a university orofacial pain center. A full version of the report can be found here [11], but below I summarize the main results.

First, total fatigue (as a single symptom) significantly predicted pain interference, above and beyond pain intensity, depression, psychological distress, and poor sleep! This suggests fatigue is more than feeling tired or lacking energy and is likely influenced by a number of factors. In fact, there’s moderately strong evidence for a central governing mechanism that monitors an array of cognitive, emotional, and physiological inputs and produces feelings of fatigue to prevent catastrophic overexertion [12-13]. A pretty clever protective mechanism! How this central governor influences and is modulated by pain remains an exciting area for future research, and one with much clinical relevance.

A second interesting finding was that the fatigue subtypes did not overlap as much as might be expected (13 – 40% of shared variance). Most of the variance in any one type of fatigue was not accounted for by the other types, suggesting we can feel emotionally tired but physically energized, just as we can feel mentally tired but generally energized, for example. Think of a long airplane ride. After a few hours, you might feel eager to move but unable to concentrate. This nuanced condition of low physical fatigue but high mental fatigue is lost when we treat fatigue as a single symptom. Examples of being fatigued in one domain but not another abound, but pain research takes a less nuanced approach and treats all of fatigue as one and the same.

The reason this matters – and this is the third interesting finding- is that each of these fatigue subtypes predicts outcomes differently. In our study, physical fatigue and lack of vigor were the only two significant predictors of pain interference: general, emotional, and mental fatigue were not significantly associated. The more physically fatigued people felt, or the less energy they had, the more pain disrupted their social and recreational activities. This was the first study to look at how specific subtypes of fatigue predicted pain outcomes.

Clinically, these findings suggest that perhaps we should be looking at people’s fatigue profiles to target individualized treatment. If someone reports high mental fatigue, then simplifying medication regiments (and implementing physical aids that promote medication adherence such as alarm clocks and reminders) may be particularly important. If, on the other hand, someone else has particularly high physical fatigue, then a cognitive behavioral intervention aimed at reducing physical fatigue and improving exercise might be most helpful. And if a third person is particularly high on emotional fatigue, they might benefit most from learning emotion regulation strategies and interpersonal communication skills. Although these ideas sound good in theory, more work is needed on targeted interventions to fatigue subtypes to test if they would indeed promote successful outcomes in pain patients.

About Ian Boggero

Ian Boggero is a clinical psychology graduate student at the University of Kentucky, but is originally from Los Angeles and did his undergraduate studies at UCLA. His research interests involve the psychological and social factors that promote adaptive responses to pain. Clinically, he has worked with orofacial pain, chronic lower back pain, phantom limb pain, and fibromyalgia populations, among others. Aside from pain, Ian enjoys hiking, cooking, playing soccer and chess, but most of all, spending time with his wonderful wife (who also shares his clinical and research interest in management). For more information, please see https://psychology.as.uky.edu/users/iabo222

References:

  1. [1] Hunt IM, Silman AJ, Benjamin S, McBeth J, Macfarlane GJ. The prevalence and associated features of chronic widespread pain in the community using the ‘Manchester’ definition of chronic widespread pain.Rheumatol 1999;38(3): 275-279. doi: 10.1093/rheumatology/38.3.275
  1. [2] Boggero IA, Rojas MV, Carlson CR, de Leeuw R. Satisfaction with life in orofacial pain disorders: Associations and theoretical implications. J Oral Facial Pain Headache 2016; 30(2): 99-106. doi: 10.11607/ofph.1526.
  1. [3] Clauw DJ, Chrousos GP. Chronic pain and fatigue syndromes: overlapping clinical and neuroendocrine features and potential pathogenic mechanisms. Neuroimmunomodulat 1997; 4: 134-153. doi: 10.1159/000097332
  1. [4] Aaron LA, Burke MM, Buchwald D. Overlapping conditions among patients with chronic fatigue syndrome, fibromyalgia, and temporomandibular disorder. Arch Intern Med 2000; 160: 221-227. doi: 10.1001/archinte.160.2.221
  1. [5] Williams DA, Clauw DJ, Glass JM. Perceived cognitive dysfunction in fibromyalgia syndrome.J Musculoskelet Pain 2011; 19(2): 66-75. doi: 10.3109/10582452.2011.558989
  1. [6] Sturgeon JA, Darnall BD, Kao MCJ, Mackey SC. Physical and psychological correlates of fatigue and physical function: a collaborative health outcomes information registry (CHOIR) study. J Pain 2015:16:291-298. doi: 10.1016/j.jpain.2014.12.004
  1. [7] de Leeuw R, Studts JL, Carlson CR. Fatigue and fatigue-related symptoms in an orofacial pain population. Oral Surg Oral Med O 2005; 99:168-174. doi: 10.1016/j.tripleo.2004.03.001
  1. [8] Servaes P, Verhagen C, Bleijenberg G. Fatigue in cancer patients during and after treatment: prevalence, correlates and interventions.Europe J Cancer 2002;38(1): 27-43. doi: 10.1016/S0959-8049(01)00332-X
  1. [9] Feuerstein M, Carter RL, Papciak AS. A prospective analysis of stress and fatigue in recurrent low back pain. Pain 1987; 3:333-344. doi: 10.1016/0304-3959(87)90162
  1. [10] Boggero IA, Kniffin TC, de Leeuw R, Carlson CR. Fatigue mediates the relationship between pain interference and distress in patients with persistent orofacial pain. J Oral Facial Pain Headache 2014; 28:38-45. doi: 10.11607/jop.1204
  1. [11] Boggero, I. A., Rojas Ramirez, M. V., & Carlson, C. R. (2017). All fatigue is not created equal: The association of fatigue and its subtypes on pain interference in orofacial pain. The Clinical Journal of Pain, 33(3), 231-237. doi: 10.1097/AJP.0000000000000391
  1. [12] Evans DR, Boggero IA, Segerstrom SC. Explaining self-regulatory fatigue and ‘ego depletion’: Lessons from physical fatigue. Personality Soc Psych Rev 2016; 20(4): 291-310. doi: 10.1177/1088868315597841
  1. [13] Noakes TD. The central governor model in 2012: Eight new papers deepen our understanding of the regulation of human exercise performance. British J Sports Med 2012; 46(1): 1-3. doi: 10.1136/bjsports-2011-090811

Source: All Fatigue is Not Created Equal: Why it Matters and What it Means for Pain Management

, , , , , ,

Leave a comment

[Abstract] Interventions for post-stroke fatigue.  

Abstract

BACKGROUND: Post-stroke fatigue (PSF) is a common and distressing problem after stroke. The best ways to prevent or treat PSF are uncertain. Several different interventions can be argued to have a rational basis. OBJECTIVES: To determine whether, among people with stroke, any intervention reduces the proportion of people with fatigue, fatigue severity, or both; and to determine the effect of intervention on health-related quality of life, disability, dependency and death, and whether such intervention is cost effective.

SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched May 2014), Cochrane Central Register of Controlled Trials (The Cochrane Library, 2014, Issue 4), MEDLINE (1950 to May 2014), EMBASE (1980 to May 2014), CINAHL (1982 to May 2014), AMED (1985 to May 2014), PsycINFO (1967 to May 2014), Digital Dissertations (1861 to May 2014), British Nursing Index (1985 to May 2014), PEDro (searched May 2014) and PsycBITE (searched May 2014). We also searched four ongoing trials registries, scanned reference lists, performed citation tracking of included trials and contacted experts.
SELECTION CRITERIA: Two review authors independently scrutinised all titles and abstracts and excluded obviously irrelevant studies. We obtained the full texts for potentially relevant studies and three review authors independently applied the inclusion criteria. We included randomised controlled trials (RCTs) that compared an intervention with a control, or compared different interventions for PSF.
DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed risk of bias for each included trial. The primary outcomes were severity of fatigue, or proportion of people with fatigue after treatment. We performed separate analyses for trials investigating efficacy in treating PSF, trials investigating efficacy in preventing PSF and trials not primarily investigating efficacy in PSF but which reported fatigue as an outcome. We pooled results from trials that had a control arm. For trials that compared different potentially active interventions without a control arm, we performed analyses for individual trials without pooling.We calculated standardised mean difference (SMD) as the effect size for continuous outcomes and risk ratio (RR) for dichotomous outcomes. We pooled the results using a random-effects model and assessed heterogeneity using the I(2) statistic. We performed separate subgroup analyses for pharmacological and non-pharmacological interventions. We also performed sensitivity analyses to assess the influence of methodological quality. MAIN RESULTS: We retrieved 12,490 citations, obtained full texts for 58 studies and included 12 trials (three from the 2008 search and nine from the 2014 search) with 703 participants. Eight trials primarily investigated the efficacy in treating PSF, of which six trials with seven comparisons provided data suitable for meta-analysis (five pharmacological interventions: fluoxetine, enerion, (-)-OSU6162, citicoline and a combination of Chinese herbs; and two non-pharmacological interventions: a fatigue education programme and a mindfulness-based stress reduction programme). The fatigue severity was lower in the intervention groups than in the control groups (244 participants, pooled SMD -1.07, 95% confidence interval (CI) -1.93 to -0.21), with significant heterogeneity between trials (I(2) = 87%, degrees of freedom (df) = 6, P value < 0.00001). The beneficial effect was not seen in trials that had used adequate allocation concealment (two trials, 89 participants, SMD -0.38, 95% CI -0.80 to 0.04) or trials that had used adequate blinding of outcome assessors (four trials, 198 participants, SMD -1.10, 95% CI -2.31 to 0.11).No trial primarily investigated the efficacy in preventing PSF.Four trials (248 participants) did not primarily investigate the efficacy on fatigue but other symptoms after stroke. None of these interventions showed any benefit on reducing PSF, which included tirilazad mesylate, continuous positive airway pressure for sleep apnoea, antidepressants and a self management programme for recovery from chronic diseases.
AUTHORS’ CONCLUSIONS: There was insufficient evidence on the efficacy of any intervention to treat or prevent fatigue after stroke. Trials to date have been small and heterogeneous, and some have had a high risk of bias. Some of the interventions described were feasible in people with stroke, but their efficacy should be investigated in RCTs with a more robust study design and adequate sample sizes.

Source: Interventions for post-stroke fatigue. | Nursing VHL Search Portal

, , ,

Leave a comment

%d bloggers like this: