Archive for category Video Games/Exergames

[Abstract + References] A Virtual Reality Serious Game for Hand Rehabilitation Therapy – IEEE Conference Publication

Abstract

The human hand is the body part most frequently injured in occupational accidents, accounting for one out of five emergency cases and often requiring surgery with subsequently long periods of rehabilitation. This paper proposes a Virtual Reality game to improve conventional physiotherapy in hand rehabilitation, focusing on resolving recurring limitations reported in most technological solutions to the problem, namely the limited diversity support of movements and exercises, complicated calibrations and exclusion of patients with open wounds or other disfigurements of the hand. The system was assessed by seven able-bodied participants using a semistructured interview targeting three evaluation categories: hardware usability, software usability and suggestions for improvement. A System Usability Score (SUS) of 84.3 and participants’ disposition to play the game confirm the potential of both the conceptual and technological approaches taken for the improvement of hand rehabilitation therapy.

References

1. A. Elnaggar and D. Reichardt, “Digitizing the Hand Rehabilitation Using Serious Games Methodology with User-Centered Design Approach”, 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 13-22, 2016. Show Context View Article Full Text: PDF (1150KB) Google Scholar 

2. L. S. Robinson, M. Sarkies, T. Brown and L. O’Brien, “Direct indirect and intangible costs of acute hand and wrist injuries: A systematic review”, Injury, vol. 47, no. 12, pp. 2614-2626, Dec. 2016. Show Context CrossRef  Google Scholar 

3. D. Johnson, S. Deterding, K.-A. Kuhn, A. Staneva, S. Stoyanov and L. Hides, “Gamification for health and wellbeing: A systematic review of the literature”, Internet Interv., vol. 6, pp. 89-106, Nov. 2016. Show Context CrossRef  Google Scholar 

4. C. Prahm, “PlayBionic Interactive rehabilitation after amputation or nerve injury of the upper extremity”, Christian Doppler Laboratory for Restoration of Extremity Function and Rehabilitation, 2019. Show Context Google Scholar 

5. M. K. Holden, “Virtual Environments for Motor Rehabilitation: Review”, CyberPsychology Behav., vol. 8, no. 3, pp. 187-211, Jun. 2005. Show Context CrossRef  Google Scholar 

6. D. Ganjiwale, R. Pathak, A. Dwivedi, J. Ganjiwale and S. Parekh, “Occupational therapy rehabilitation of industrial setup hand injury cases for functional independence using modified joystick in interactive computer gaming in Anand Gujarat”, Natl. J. Physiol. Pharm. Pharmacol., vol. 9, pp. 1, 2018. Show Context CrossRef  Google Scholar 

7. H. A. Hernández, A. Khan, L. Fay, Je.-S. Roy and E. Biddiss, “Force Resistance Training in Hand Grasp and Arm Therapy: Feasibility of a Low-Cost Videogame Controller”, Games Health J., vol. 7, no. 4, pp. 277-287, Aug. 2018. Show Context CrossRef  Google Scholar 

8. J. Broeren, L. Claesson, D. Goude, M. Rydmark and K. S. Sunnerhagen, “Virtual Rehabilitation in an Activity Centre for Community-Dwelling Persons with Stroke”, Cerebrovasc. Dis., vol. 26, no. 3, pp. 289-296, 2008. Show Context CrossRef  Google Scholar 

9. J. Broeren, M. Rydmark and K. S. Sunnerhagen, “Virtual reality and haptics as a training device for movement rehabilitation after stroke: A single-case study”, Arch. Phys. Med. Rehabil., vol. 85, no. 8, pp. 1247-1250, Aug. 2004. Show Context CrossRef  Google Scholar 

10. C. N. Walifio-Paniagua et al., “Effects of a Game-Based Virtual Reality Video Capture Training Program Plus Occupational Therapy on Manual Dexterity in Patients with Multiple Sclerosis: A Randomized Controlled Trial”, J. Healthc. Eng., vol. 2019, pp. 1-7, Apr. 2019. Show Context CrossRef  Google Scholar 

11. M. E. Gabyzon, B. Engel-Yeger, S. Tresser and S. Springer, “Using a virtual reality game to assess goal-directed hand movements in children: A pilot feasibility study”, Technol. Heal. Care, vol. 24, no. 1, pp. 11-19, Jan. 2016. Show Context CrossRef  Google Scholar 

12. M. King, L. Hale, A. Pekkari, M. Persson, M. Gregorsson and M. Nilsson, “An affordable computerised table-based exercise system for stroke survivors”, Disabil. Rehabil. Assist. Technol., vol. 5, no. 4, pp. 288-293, Jul. 2010. Show Context CrossRef  Google Scholar 

13. J. Shin et al., “Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded randomized controlled trial”, J. Neuroeng. Rehabil., vol. 13, no. 1, pp. 17, Dec. 2016. Show Context CrossRef  Google Scholar 

14. R. Lipovsky and H. A. Ferreira, “Hand therapist: A rehabilitation approach based on wearable technology and video gaming”, 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), pp. 1-2, February 2015. Show Context View Article Full Text: PDF (1901KB) Google Scholar 

15. C. Schuster-Amft et al., “Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial”, Trials, vol. 15, no. 1, pp. 350, Dec. 2014. Show Context CrossRef  Google Scholar 

16. Y. A. Rahman, M. M. Hoque, K. I. Zinnah and I. M. Bokhary, “Helping-Hand: A data glove technology for rehabilitation of monoplegia patients”, 2014 9th International Forum on Strategic Technology (IFOST), pp. 199-204, 2014. Show Context View Article Full Text: PDF (625KB) Google Scholar 

17. M. da Silva Cameirão, S. Bermúdez, I Badia, E. Duarte and P. F. M. J. Verschure, “Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the Rehabilitation Gaming System”, Restor. Neurol. Neurosci., vol. 29, no. 5, pp. 287-298, 2011. Show Context CrossRef  Google Scholar 

18. M. R. Golomb et al., “In-Home Virtual Reality Videogame Telerehabilitation in Adolescents With Hemiplegic Cerebral Palsy”, Arch. Phys. Med. Rehabil., vol. 91, no. 1, pp. 1-8, Jan. 2010. Show Context CrossRef  Google Scholar 

19. R. Proffitt, M. Sevick, C.-Y. Chang and B. Lange, “User-Centered Design of a Controller-Free Game for Hand Rehabilitation”, Games Health J., vol. 4, no. 4, pp. 259-264, Aug. 2015. Show Context CrossRef  Google Scholar 

20. N. Arman, E. Tarakci, D. Tarakci and O. Kasapcopur, “Effects of Video Games-Based Task-Oriented Activity Training (Xbox 360 Kinect) on Activity Performance and Participation in Patients with Juvenile Idiopathic Arthritis: A Randomized Clinical Trial”, Am. J. Phys. Med. Rehabil., vol. 98, no. 3, pp. 174-181, 2019. Show Context CrossRef  Google Scholar 

21. S. Cho, W.-S. Kim, N.-J. Paik and H. Bang, “Upper-Limb Function Assessment Using VBBTs for Stroke Patients”, IEEE Comput. Graph. Appl., vol. 36, no. 1, pp. 70-78, Jan. 2016. Show Context View Article Full Text: PDF (4692KB) Google Scholar 

22. E. Tarakci, N. Arman, D. Tarakci and O. Kasapcopur, “Leap Motion Controller-based training for upper extremity rehabilitation in children and adolescents with physical disabilities: A randomized controlled trial”, J. Hand Ther., pp. 1-9, Apr. 2019. Show Context CrossRef  Google Scholar 

23. Y.-T. Wu, K.-H. Chen, S.-L. Ban, K.-Y. Tung and L.-R. Chen, “Evaluation of leap motion control for hand rehabilitation in burn patients: An experience in the dust explosion disaster in Formosa Fun Coast”, Burns, vol. 45, no. 1, pp. 157-164, Feb. 2019. Show Context CrossRef  Google Scholar 

24. T. Vanbellingen, S. J. Filius, T. Nyffeler and E. E. H. van Wegen, “Usability of Videogame- Based Dexterity Training in the Early Rehabilitation Phase of Stroke Patients: A Pilot Study”, Front. Neurol., vol. 8, no. DEC, pp. 1-9, Dec. 2017. Show Context CrossRef  Google Scholar 

25. M. Iosa et al., “Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study”, Top. Stroke Rehabil., vol. 22, no. 4, pp. 306-316, Aug. 2015. Show Context CrossRef  Google Scholar 

26. A. M. D. C. Souza and S. R. Dos Santos, “Handcopter Game: A Video-Tracking Based Serious Game for the Treatment of Patients Suffering from Body Paralysis Caused by a Stroke”, 2012 14th Symposium on Virtual and Augmented Reality, pp. 201-209, 2012. Show Context View Article Full Text: PDF (795KB) Google Scholar 

27. A. L. Borstad et al., “In-Home Delivery of Constraint-Induced Movement Therapy via Virtual Reality Gaming”, J. Patient-Centered Res. Rev., vol. 5, no. 1, pp. 6-17, Jan. 2018. Show Context CrossRef  Google Scholar 

28. N. J. Seo, J. Arun Kumar, P. Hur, V. Crocher, B. Motawar and K. Lakshminarayanan, “Usability evaluation of low-cost virtual reality hand and arm rehabilitation games”, J. Rehabil. Res. Dev., vol. 53, no. 3, pp. 321-334, Jul. 2016. Show Context CrossRef  Google Scholar 

29. G. C. Burdea, A. Jain, B. Rabin, R. Pellosie and M. Golomb, “Long-term hand tele-rehabilitation on the playstation 3: Benefits and challenges”, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1835-1838, 2011. Show Context View Article Full Text: PDF (479KB) Google Scholar 

30. M. R. Golomb, M. Barkat-Masih, B. Rabin, M. Abdelbaky, M. Huber and G. Burdea, “Eleven Months of home virtual reality telerehabilitation – Lessons learned”, 2009 Virtual Rehabilitation International Conference, pp. 23-28, 2009. Show Context View Article Full Text: PDF (1370KB) Google Scholar 

31. X. Huang, F. Naghdy, G. Naghdy and H. Du, “Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients”, 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 511-515, 2017. Show Context View Article Full Text: PDF (1865KB) Google Scholar 

32. G. Tieri, G. Morone, S. Paolucci and M. Iosa, “Virtual reality in cognitive and motor rehabilitation: facts fiction and fallacies”, Expert Rev. Med. Devices, vol. 15, no. 2, pp. 107-117, Feb. 2018. Show Context CrossRef  Google Scholar 

33. B. Garrett, T. Taverner, D. Gromala, G. Tao, E. Cordingley and C. Sun, “Virtual Reality Clinical Research: Promises and Challenges”, JMIR Serious Games, vol. 6, no. 4, pp. e10839, Oct. 2018. Show Context CrossRef  Google Scholar 

34. P. Lankoski, Game Research Methods: An Overview, 2015. Show Context Google Scholar 

Source: https://ieeexplore.ieee.org/abstract/document/9201789

, , , , , , , , , , , , , , ,

Leave a comment

[Abstract + References] Move-IT: A Virtual Reality Game for Upper Limb Stroke Rehabilitation Patients – Conference paper

Abstract

Stroke rehabilitation plays an important role in recovering the lifestyle of stroke survivors. Although existing research proved the effectiveness and engagement of Non-immersive Virtual Reality (VR) based rehabilitation systems, however, limited research is available on the applicability of fully immersive VR-based rehabilitation systems. In this paper, we present the development and evaluation of “Move-IT” game designed for domestic upper limb stroke patients. The game incorporates the use of Oculus Rift Head Mounted Display (HMD) and the Leap Motion hand tracker. A user study of five upper limb stroke patients was performed to evaluate the application. The results showed that the participants were pleased with the system, enjoyed the game and found it was exciting and easy to play. Moreover, all the participants agreed that the game was very motivating to perform rehabilitation exercises.

References

  1. 1.“What is stroke?” Stroke.org, 16 July 2014. http://www.stroke.org/understand-stroke/what-stroke. Accessed 20 May 2020
  2. 2.Burke, J.: Games For Upper-limb Stroke Rehabilitation (Seminar). University of Ulster, Northern Ireland, 29 March 2010Google Scholar
  3. 3.A stroke occurs when the brain is damaged due to lack of blood supply. http://www.brainandnerves.com/uk/blood-vessels-of-the-brain/stroke/. Accessed 20 May 2020
  4. 4.Khujah, A.: Stroke Rehabilitation, 17 February 2012. http://archive.aawsat.com/details.asp?section=15&article=664001&issueno=12134#.WHQSn1N97X5. Accessed 20 May 2020
  5. 5.WHO|The world health report 2002 – Reducing Risks, Promoting Healthy Life, WHO. http://www.who.int/whr/2002/en/. Accessed 20 May 2020
  6. 6.Alhazani, 100 stroke cases accure in SA daily, 13 September 2013. http://www.alarabiya.net/ar/saudi-today/2013/09/17/السعودية-تسجل-100-اصابة-بالسكتة-الدماغية-يوميا.html. Accessed 20 May 2020
  7. 7.Alsinani, F.: 6000 of stroke cases accure in Kingdom of Saudi Arabia yearly, Riyad newspaper, 14 Apr 2005. http://www.alriyadh.com/56594. Accessed 23 May 2020
  8. 8.Gunasekera, W., Bendall, J.: Rehabilitation of neurologically injured patients. In: Moore, A.J., Newell, D.W. (eds.) Neurosurgery. Springer Specialist Surgery Series, pp. 407–421. Springer, London (2005).  https://doi.org/10.1007/1-84628-051-6_23
  9. 9.Burke, J.W., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Serious games for upper limb rehabilitation following stroke. In: Proceedings of the 2009 Conference in Games and Virtual Worlds for Serious Applications, Washington, DC, USA, 2009, pp. 103–110 (2009)Google Scholar
  10. 10.Rego, P.A., Moreira, P., Reis, L.: Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2010)Google Scholar
  11. 11.Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. no. 9, p. CD008349, September 2011Google Scholar
  12. 12.AlMousa, M., Al-Khalifa, H.S., AlSobayel, H.: Requirements elicitation and prototyping of a fully immersive virtual reality gaming system for upper limb stroke rehabilitation in Saudi Arabia. Mobile Information Systems (2017). https://www.hindawi.com/journals/misy/2017/7507940/. Accessed 23 May 2020
  13. 13.Grimm, F., Gharabaghi, A.: Closed-loop neuroprosthesis for reach-to-grasp assistance: combining adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Front. Neurosci. 10, 284 (2016)Google Scholar
  14. 14.Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J. (eds.): Serious Games, Foundations, Concepts and Practice. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40612-1CrossRefGoogle Scholar
  15. 15.Yagv, B.: Overview of virtual reality technologies. In: Presented at the Interactive Multimedia Conference, University of Southampton, United Kingdom (2013)Google Scholar

Source: https://link.springer.com/chapter/10.1007/978-3-030-58796-3_23

, , , , , , ,

Leave a comment

[Abstract] Motiv’Handed, a New Gamified Approach for Home-Based Hand Rehabilitation for Post-stroke Hemiparetic Patients – Conference paper

Abstract

This document summarizes a master thesis project trying to bring a new solution to hemiplegia rehabilitation, one of the numerous consequences of strokes. A hemiplegic patients observe paralysis on one side of their body, and as so, loses autonomy and their quality of life decreases. In this study, we decided to only focus on the hand rehabilitation aspect. However, there is a clear tendency in stroke patients to stop training regularly when returning home from the hospital and the first part of their rehabilitation is over. They often experience demotivation, having the feeling that they will never get back to a fully autonomous person ever again and tend to put their training aside, especially when they do not see clear and visible results anymore. This is also due to the supervised training becoming sparser. All of this results in patients stagnating or even worse, regressing. Thus, we decided to offer a motivating solution for hand rehabilitation at home through gamification.

References

  1. 1.Stroke Paralysis. Portea. https://www.portea.com/physiotherapy/stroke-paralysis#section_1. Accessed 15 June 2020
  2. 2.Recovering from Hand Weakness after Stroke. Saebo. https://www.saebo.com/stroke-hand-weakness-recovery/. Accessed 15 June 2020
  3. 3.UHMA, a new solution for post-stroke home-based hand rehabilitation for patient with hemiparese, Duval–Dachary Sarah, Master thesis (2019)Google Scholar
  4. 4.Motiv’Handed, a new home-based hand rehabilitation device for post-stroke hemiparetic patients, Chevalier–Lancioni Jean-Philippe, Master Thesis (2020)Google Scholar
  5. 5.WIM, Jenny Holmsten website. https://www.jennyholmsten.com/wim. Accessed 15 June 2020
  6. 6.Carneiro, F., Tavares, R., Rodrigues, J., Abreu, P., Restivo, M.: A gamified approach for hand rehabilitation device. Int. J. OnlineGoogle Scholar
  7. 7.Engineering (iJOE), January 2018. Virtual reality for therapeutic purposes in stroke: A systematic review. S. Viñas-Diza, M. Sobrido-Prieto. s.l. : Elsevier España, S.L.U (2015)Google Scholar

Source: https://link.springer.com/chapter/10.1007/978-3-030-58796-3_22

, , , , , , , , , ,

Leave a comment

[Abstract] Design and development of a sensored glove for home-based rehabilitation

Highlights

• In this article, we presented a newly develop sensor glove as an engaging rehabilitation method for individuals with hand dysfunctions.

• The developed system will enable the therapists to monitor the patient’s progress through the player’s score in the game that is recorded in a progressive log.

• The preliminary results supported that the exercise training using the sensor glove is repetitious, functional, and easy to follow and comply with.

Abstract

Study Design

Descriptive.

Introduction

Rehabilitation programs that focus on motor recovery of the upper limb require long-term commitment from the clinicians/therapists, require one-to-one caring, and are usually labor-intensive.

Purpose of the Study

To contribute to this area, we have developed a sensored hand glove integrated with a computer game (Flappy Bird) to engage patients playing a game where the subject’s single/multiple fingers are involved, representing fine motor skill occupational therapeutic exercises.

Methods

We described the sensored rehab glove, its hardware design, electrical and electronic design and instrumentation, software design, and pilot testing results.

Results

Experimental results supported that the developed rehab glove system can be effectively used to engage a patient playing a computer game (or a mobile phone game) that can record the data (ie, game score, finger flexion/extension angle, time spent in a therapeutic session, etc.) and put it in a format that could be easily read by a therapist or displayed to the therapists/patients in different graph formats.

Conclusions

We introduced a sensored rehab glove for home-based therapy. The exercise training using the glove is repetitious, functional, and easy to follow and comply with.

Source: https://www.sciencedirect.com/science/article/abs/pii/S0894113020300715?dgcid=rss_sd_all

, , , , , ,

Leave a comment

[Abstract] Impact of virtual reality game therapy and task-specific neurodevelopmental treatment on motor recovery in survivors of stroke

Abstract

Background/Aims

This study aimed to compare the impact of virtual reality game therapy and task-specific neurodevelopmental training on the motor recovery of upper limb and trunk control, as well as physical function, in people who have had a stroke.

Methods

This randomised, assessor-blinded clinical trial was conducted with 34 patients with post-stroke duration of 135 ± 23 days. Patients with first-onset cortical stroke aged 40–60 years, Mini-Mental State Examination score >20, ability to complete a nine-hole peg test within 120 seconds, ability to lift the affected arm at shoulder level and independent standing were included. Patients were excluded if they had unilateral neglect and musculoskeletal injuries of the affected limb in the past 2 months. Outcome measures used were the Fugl-Meyer Upper Extremity Scale, Action Research Arm Test, Trunk Impairment Scale and Stroke Impact Scale-16. The virtual reality game therapy group performed interactive table tennis, boxing and discus throwing games. The neurodevelopmental treatment group underwent task-specific movements of the upper limb in sitting and standing. All patients performed 45 minutes of treatment, 5 days a week for 4 weeks.

Results

Both groups showed improvements in all measures after training (P<0.05). There was a between-group difference of 3.47 points in Fugl-Meyer Upper Extremity Scale in favour of the virtual reality game therapy.

Conclusions

Both treatment regimens resulted in equal improvements in hand dexterity and trunk control after stroke. Virtual reality game therapy improved the upper limb motor recovery of stroke survivors to a greater extent than neurodevelopmental treatment.

Source: https://www.magonlinelibrary.com/doi/abs/10.12968/ijtr.2019.0070

, , , , , , , ,

Leave a comment

[ARTICLE] Acceptability of a Mobile Phone–Based Augmented Reality Game for Rehabilitation of Patients With Upper Limb Deficits from Stroke: Case Study – Full Text

ABSTRACT

Background: Upper limb functional deficits are common after stroke and result from motor weakness, ataxia, spasticity, spatial neglect, and poor stamina. Past studies employing a range of commercial gaming systems to deliver rehabilitation to stroke patients provided short-term efficacy but have not yet demonstrated whether or not those games are acceptable, that is, motivational, comfortable, and engaging, which are all necessary for potential adoption and use by patients.

Objective: The goal of the study was to assess the acceptability of a smartphone-based augmented reality game as a means of delivering stroke rehabilitation for patients with upper limb motor function loss.

Methods: Patients aged 50 to 70 years, all of whom experienced motor deficits after acute ischemic stroke, participated in 3 optional therapy sessions using augmented reality therapeutic gaming over the course of 1 week, targeting deficits in upper extremity strength and range of motion. After completion of the game, we administered a 16-item questionnaire to the patients to assess the game’s acceptability; 8 questions were answered by rating on a scale from 1 (very negative experience) to 5 (very positive experience); 8 questions were qualitative.

Results: Patients (n=5) completed a total of 23 out of 45 scheduled augmented reality game sessions, with patient fatigue as the primary factor for uncompleted sessions. Each patient consented to 9 potential game sessions and completed a mean of 4.6 (SE 1.3) games. Of the 5 patients, 4 (80%) completed the questionnaire at the end of their final gaming session. Of note, patients were motivated to continue to the end of a given gaming session (mean 4.25, 95% CI 3.31-5.19), to try other game-based therapies (mean 3.75, 95% CI 2.81-4.69), to do another session (mean 3.50, 95% CI 2.93-4.07), and to perform other daily rehabilitation exercises (mean 3.25, 95% CI 2.76-3.74). In addition, participants gave mean scores of 4.00 (95% CI 2.87-5.13) for overall experience; 4.25 (95% CI 3.31-5.19) for comfort; 3.25 (95% CI 2.31-4.19) for finding the study fun, enjoyable, and engaging; and 3.50 (95% CI 2.52-4.48) for believing the technology could help them reach their rehabilitation goals. For each of the 4 patients, their reported scores were statistically significantly higher than those generated by a random sampling of values (patient 1: P=.04; patient 2: P=.04; patient 4: P=.004; patient 5: P=.04).

Conclusions: Based on the questionnaire scores, the patients with upper limb motor deficits following stroke who participated in our case study found our augmented reality game motivating, comfortable, engaging, and tolerable. Improvements in augmented reality technology motivated by this case study may one day allow patients to work with improved versions of this therapy independently in their own home. We therefore anticipate that smartphone-based augmented reality gaming systems may eventually provide useful postdischarge self-treatment as a supplement to professional therapy for patients with upper limb deficiencies from stroke.

Introduction

Background

Stroke induces a variety of functional impairments, as well as pain and other ailments, depending on its type and location [1]. Common deficits associated with ischemic stroke include motor function, spatial neglect, and psychological changes [1]. Motor function deficits after stroke often include partial or total loss of function of the upper or lower limbs on a given side, with associated muscle weakness, poor stamina, lack of muscle control, and even paralysis [2]. These deficits impact the patient’s independent lifestyle and decrease their performance of activities of daily living [1]. According to the National Institute of Neurological Disorders and Stroke, the most important part of rehabilitation programs is “carefully directed, well-focused, repetitive practice [3].”

Prior Work

Patients who engage in rigorous, time-intensive, and challenging therapeutic exercises after ischemic stroke tend to experience greater functional recovery, while if ignored or insufficiently treated, impairments may remain [4,5]. The dosage of motor skill practice correlates to the extent of motor recovery following a stroke [4]. In addition, the type of therapy delivered relative to patient’s impairment determines outcomes after therapy. For example, for those who have upper limb motor impairment, best therapeutic practice modifies the prescribed exercises as the patient’s symptoms evolve [5,6]. Regrettably, patients report their experiences of conventional repetitive stroke rehabilitation therapies as tedious and difficult to hold their interest, which conflicts with the fact that patient motivation is often required to obtain good clinical outcomes [710].

Rehabilitation doctors and medical staff, therefore, face a significant problem: how can they provide high intensity therapy in large quantities for upper limb impairments with this seemingly intrinsic motivational deficit? Especially problematic are patient’s therapeutic needs after their discharge from the hospital—their therapeutic needs still exist, but medical staff have substantially reduced access to the patient to provide targeted care. Given the difficulty of this problem, an insufficient percentage of patients regain the full functional potential of their upper limb after ischemic stroke [11]. This regrettable outcome motivates an ongoing search for new therapeutic approaches that provide acceptable (motivational, comfortable, and engaging) experiences, hence, effective therapy, especially at the patient’s home. 

Use of commercial augmented reality devices has found recent application in stroke rehabilitation using existing expensive commercial headsets [4,617]. However, there are few studies that assay the acceptability of augmented reality gaming system–based patient rehabilitation after stroke [10,12,1719], and then, only in a cursory fashion. For example, 30 patients recovering from stroke were surveyed for their opinions on game-based rehabilitation, and the researchers concluded that though games for patients recovering from stroke existed, they were primarily designed for efficacy, not entertainment [10]; they suggest investing in a single, affordable gaming platform for patient rehabilitation after stroke that also focuses on entertainment and provides diverse gaming content [10]. Augmented reality technology and an upper-limb assistive device were tested on 3 individuals recovering from stroke for 6 weeks, and the study reported that both the user and therapist believed that their augmented reality environment was user friendly due to the lightness of the assistive devices and the simplicity of set-up [18]. Finally, a study of 4 patients recovering from stroke who were exposed to several gaming platforms reported that manually adjusting the difficulty of games to provide a challenge and creating games with deeper story lines helped the patients stay motivated to perform their gaming exercises [17]. To the best of our knowledge, our case study is the first of its kind that analyzes the opinions of patients recovering from stroke regarding the problems of current augmented reality–specific game-based rehabilitation systems to provides insight into future designs of augmented reality game-based stroke rehabilitation systems. Augmented reality, provided by one of a variety of device designs, represents one such approach. Augmented reality projects a live camera view of a user’s environment and computer-generated objects with a variety of properties—movement and sound, typically. As an example, Pokémon Go, a smartphone-based augmented reality game, has had documented success sustaining the interest of users for extended periods of time while consistently increasing their physical activity [13], making augmented reality a prime candidate for facilitating otherwise tedious therapy.

Hypothesis

Since patient motivation often drives a larger dosage of rehabilitation therapy, hence, improved clinical outcomes [20,21], we hypothesized that augmented reality deployed on a relatively inexpensive and readily available platform—a smartphone—could provide a motivational, comfortable, and engaging rehabilitation experience. To test this hypothesis, we first developed a candidate rehabilitation game on a smartphone that could encourage a patient’s hand motions through use of simple visual cues with a custom-made app. We then asked patients with acute upper-motor stroke to use this system and report their experiences via a questionnaire that assayed the acceptability of the game in terms of motivation to continue to play, comfort, and engagement.

Methods

Overview

This acceptability study was conducted at Harborview Medical Center in Seattle, Washington from November 2018 to March 2019. Inpatients who were recovering from an acute ischemic stroke participated and provided consent. These patients had impaired strength as determined by physical and occupational therapists. To be included in the study, they had to have at least antigravity strength in deltoid or biceps muscles as well as the ability to perform internal and external shoulder rotations. All patients in this study had a Medical Research Council manual muscle score of 3 or 4 in the affected limb.

Intervention

We designed and built an augmented reality game using Unity (Unity Technologies) that is deployable on any modern smartphone with a camera (Table 1 and Figure 1). The game presents users with a view of an augmented reality dolphin swimming under the ocean with the task of capturing fish and feeding turtles, worn on the hand associated with the upper-limb deficit (Multimedia Appendix 1). To experience the game, patients wore an augmented reality headset, which did not obscure the camera mounted on the phone, and a custom device on their hand. We used two headsets—the Google Daydream headset, which required us to remove the front panel that held the phone in place, and the Merge augmented reality/virtual reality headset, which did not require any modification (Figure 1). The game also required users to place the hand associated with their motor deficits within a padded box that replaced their hand as seen in augmented reality with a dolphin (Figure 1). Finally, we required the user to look at a complex landscape through their headset while wearing the padded box and while playing the game. Instead of holding the phone, the headset supported the phone for the user. We built customized controllers with different interior sizes that changed the effective grip strength of the controller; this was important because our patients’ ability to hold the controllers varied. Viewing the complex landscape through the augmented reality system caused our software to create a seascape that contained a turtle, fish, and other underwater flora and fauna (Multimedia Appendix 1). Successful placement of the dolphin over a fish allowed the dolphin to capture the fish. Placement of the dolphin plus fish over the turtle allowed the user to feed the turtle, thereby winning points.

Notably, we used the TeamViewer (TeamViewer AG) app to project the screen view of the patient from the phone to a laptop, so we could see the patient’s view with, however, the complex landscape was also projected in the background, so we could check the viewer’s alignment with the landscape while they played (Figure 1).

Set-up of the game, to ensure that system function was verified, occurred prior to patients using the system. Patients followed verbal directions and instructions from study staff on how to use the system, facilitated by demonstration of the game using the TeamViewer app. Examples of directions included how to start the game, the actions required to pick up the fish, and how to colocate the dolphin plus fish with the turtle for point accumulation. Some patients required physical assistance to adjust the view of the environment. Examples of physical assistance included moving the patient’s chair or wheelchair closer or farther away from the images recognized by the camera (Figure 1).

Table 1. Vuforia compatible mobile devices.
Figure 1. (A) phone: Asus Zenfone 2, phone operating system: Android 7 Nougat, Unity version: 2018.2.10, developer operating system: Windows 10; (B) headsets: Google Daydream (left) Merge augmented reality/virtual reality goggles (right); (C) controllers with various grip sizes consisting of soft foam inserts; (D) virtual dolphin avatar; (E) image target; (F) study staff during game play with (1) smartphone (2) headset (3) controller (4) image target; (G) user experience.

[…]

Source: https://rehab.jmir.org/2020/2/e17822/

, , , , , , , , , , ,

Leave a comment

[Abstract] RehabFork: An Interactive Game-assisted Upper Limb Stroke Rehabilitation System – IEEE Conference Publication

Abstract

In this paper, we present the design and development of a game-assisted stroke rehabilitation system RehabFork that allows a user to train their upper-limb to perform certain functions related to the task of eating.

The task of eating is divided into several components: (i) grasping the eating utensils such as a fork and knife; (ii) lifting the eating utensils; (iii) using the eating utensils to cut a piece of food; (iv) transferring the food to the mouth; and (v) chewing the food. The RehabFork supports the user through sub-tasks (i)–(iii).

The hardware components of RehabFork consist of an instrumented fork and knife, and a 3D printed pressure pad, that measure and communicate information on user performance to a gaming environment to render an integrated rehabilitation system.

The gaming environment consists of an interactive game that utilizes sensory data as well as user information about the severity of their disability and current level of progress to adjust the difficulty levels of the game to maintain user motivation. Information pertaining to the user, including performance data, is stored and can be shared with care providers for ongoing oversight.

Source: https://ieeexplore.ieee.org/abstract/document/9176168

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Serious Gaming Approach to Rehabilitation Using a 1 DOF Upper Limb Exerciser – Conference paper – Full Text

Abstract

This paper presents a system developed by the authors that makes use of a new trend in rehabilitation, serious gaming. Short introduction and state of the art is presented in the first part of the paper, after which the main design steps are given and explained. Finally, the testing of the prototype as well as the lesson learnt from building it are discussed in the last part of the paper. The aim of the research was to create an equipment that might be further developed into a fully-fledged rehabilitation device that uses the serious gaming paradigm.

Download conference paper PDF

1 Introduction

It is well known that the human mind is geared toward games, engaging in such activities activates the reward pathways and pleasure centers of the brain; computer games, due to their capacity of generating captivating scenarios, are especially prone to stimulate said centers of the brain, a fact proven by the $119.6 billion in revenue generated by the video game industry in the year 2018 alone [1].

There are many working definitions for serious games, but every actor involved agrees to the core concept that a serious game must serve a purpose of more than mere entertainment [2]. This concept is used in many fields, but important to the present paper is the fact that gaming provides a motivational tool for better patient engagement in the rehabilitation session, as these are usually long and the progress is more often than not tedious and hard to ascertain by the untrained eye of the subject, which leads to a sharp decline in interest after a few number of sessions. It is presumed that the nature of a gaming environment has the potential of making the rehabilitation exercises more appealing and the concept of in-game scoring might provide to the patient a quick self-assessment tool for his/her progress.

Current paper focuses on the design and prototyping of a 1 degree-of-freedom (DOF) upper-limb active and passive rehabilitation device that is connected to a computer on which runs a custom-made serious game build in Unity3D; the upper-limb rehabilitation device is used as an input computer peripheral when in active mode, respectively as an output peripheral when in passive mode. Before further description of the system, a summary for the current state of the art is made in the following chapter.[…]

Continue

Fig. 3.
Fig. 3.Serious game: (above) user view, (below) game design parameters

, , , , ,

Leave a comment

[Abstract] Feasibility of integrative games and novel therapeutic game controller for telerehabilitation of individuals chronic post-stroke living in the community

ABSTRACT

Background

Intensive, adaptable and engaging telerehabilitation is needed to enhance recovery and maximize outcomes. Such services may be provided under early supported discharge, or later for chronic populations. A novel virtual reality game-based telerehabilitation system was designed for individuals post-stroke to enhance their bimanual upper extremity motor function, cognition, and wellbeing.

Objectives

To evaluate the feasibility of novel therapeutic game controller and telerehabilitation system for home use.

Methods

Individuals chronic post-stroke and their caregivers were recruited (n = 8 + 8) for this feasibility study. One was a screen failure and seven completed 4 weeks (20 sessions) of home-based therapy with or without remote monitoring. Standardized clinical outcome measures were taken pre- and post-therapy. Game performance outcomes were sampled at every session, while participant and caregiver subjective evaluations were done weekly.

Results

There was a 96% rate of compliance to protocol, resulting in an average of 13,000 total arm repetitions/week/participant. Group analysis showed significant (p <.05) improvements in grasp strength (effect size [ES] = 0.15), depression (Beck Depression Inventory II, ES = 0.75), and cognition (Neuropsychological Assessment Battery for Executive Function, ES = 0.46). Among the 49 outcome variables, 36 variables (73.5%) improved significantly (p = .001, binomial sign test). Technology acceptance was very good with system rating by participants at 3.7/5 and by caregivers at 3.5/5.

Conclusions

These findings indicate the feasibility and efficacy of the system in providing home-based telerehabilitation. The BrightBrainer system needs to be further evaluated in randomized control trials and with individuals early post-stroke.

Source: https://www.tandfonline.com/doi/full/10.1080/10749357.2019.1701178?scroll=top&needAccess=true

, , , , , ,

Leave a comment

[Abstract] Exergames in people with major neurocognitive disorder: a systematic review

Purpose

To systematically evaluate the efficacy of exergames in individuals with major neurocognitive disorder.

Materials and methods

PubMed, EMBASE and PEDro were systematically searched from inception until October 2019 for randomised and clinical controlled trials. Methodological quality of the trials was assessed with the PEDro rating scale or Risk of Bias in Nonrandomised Studies of Interventions-I (ROBINS-I), when appropriate. Grading of Recommendations Assessments, Development and Evaluation (GRADE) was used to assess the overall quality of the evidence.

Results

Eight trials, all of moderate to high methodological quality (i.e., PEDro score of 6 or higher or a Robins-I moderate quality score) were included. The overall quality of evidence was moderate to high according to the GRADE criteria. Improvements in gait, mobility and balance and beneficial effects on activities of daily living performance, cognitive function, fear of falls, quality of life and mood following exergaming were reported. Heterogeneity in outcome measures, intervention characteristics and included participants precluded a meta-analysis.

Conclusions

The current literature is of moderate to high quality and demonstrates that exergames have a wide range of physical and mental benefits in people with major neurocognitive disorder. More controlled trials are however needed to confirm the existing evidence before exergames can be recommended in treatment guidelines for people with major neurocognitive disorder.

Implications for rehabilitation

  • Exergames have many physical and mental benefits in people with major neurocognitive disorder

  • Exergaming can enhance gait, mobility and balance in people with major neurocognitive disorder

  • Evidence for beneficial cognitive effects of exergaming is emerging

via Exergames in people with major neurocognitive disorder: a systematic review: Disability and Rehabilitation: Assistive Technology: Vol 0, No 0

, , , , , , , ,

Leave a comment

%d bloggers like this: