Archive for category Video Games/Exergames

[WEB SITE] Gaming helps personalized therapy level up – Penn State University

UNIVERSITY PARK, Pa. — Using game features in non-game contexts, computers can learn to build personalized mental- and physical-therapy programs that enhance individual motivation, according to Penn State engineers.

“We want to understand the human and team behaviors that motivate learning to ultimately develop personalized methods of learning instead of the one-size-fits-all approach that is often taken,” said Conrad Tucker, assistant professor of engineering design and industrial engineering.

They seek to use machine learning to train computers to develop personalized mental or physical therapy regimens — for example, to overcome anxiety or recover from a shoulder injury — so many individuals can each use a tailor-made program.

“Using people to individually evaluate others is not efficient or sustainable in time or human resources and does not scale up well to large numbers of people,” said Tucker. “We need to train computers to read individual people. Gamification explores the idea that different people are motivated by different things.”

To begin creating computer models for therapy programs, the researchers tested how to most effectively make the completion of a physical task into a gamified application by incorporating game features like scoring, avatars, challenges and competition.

“We’re exploring here how gamification could be applied to health and wellness by focusing on physically interactive gamified applications,” said Christian Lopez, graduate student in industrial engineering, who helped conduct the tests using a virtual-reality game environment.

Screen from game designed to test features for gamification use in physical and mental therapy. Image: Kimberly Cartier / Penn State

In the virtual-reality tests, researchers asked participants to physically avoid obstacles as they moved through a virtual environment. The game system recorded their actual body positions using motion sensors and then mirrored their movements with an avatar in virtual reality.

Participants had to bend, crouch, raise their arms, and jump to avoid obstacles. The participant successfully avoided a virtual obstacle if no part of their avatar touched the obstacle. If they made contact, the researchers rated the severity of the mistake by how much of the avatar touched the obstacle.

In one of the application designs, participants could earn more points by moving to collect virtual coins, which sometimes made them hit an obstacle.

“As task complexity increases, participants need more motivation to achieve the same level of results,” said Lopez. “No matter how engaging a particular feature is, it needs to move the participant towards completing the objective rather than backtracking or wasting time on a tangential task. Adding more features doesn’t necessarily enhance performance.”

Tucker and Lopez created a predictive algorithm — a mathematical formula to forecast the outcome of an event — that rates the potential usefulness of a game feature. They then tested how well each game feature motivated participants when completing the virtual-reality tasks. They compared their test results to the algorithm’s predictions as a proof of concept and found that the formula correctly anticipated which game features best motivated people in the physically interactive tasks.

The researchers found that gamified applications with a scoring system, the ability to select an avatar, and in-game rewards led to significantly fewer mistakes and higher performance than those with a win-or-lose system, randomized gaming backgrounds and performance-based awards.

Sixty-eight participants tested two designs that differed only by the features used to complete the same set of tasks. Tucker and Lopez published their results in Computers in Human Behavior.

The researchers chose the tested game features from the top-ranked games in the Google Play app store, taking advantage of the features that make the games binge-worthy and re-playable, and then narrowed the selection based on available technology.

Their algorithm next ranked game features by how easily designers could implement them, the physical complexity of using the feature, and the impact of the feature on participant motivation and ability to complete the task. If a game feature is too technologically difficult to incorporate into the game, too physically complex, does not offer enough incentive for added effort or works against the end goal of the game, then the feature has low potential usefulness.

The researchers would also like to use these results to boost workplace performance and personalize virtual-reality classrooms for online education.

“Game culture has already explored and mastered the psychological aspects of games that make them engaging and motivating,” said Tucker. “We want to leverage that knowledge towards the goal of individualized optimization of workplace performance.”

To do this, Tucker and Lopez next want to connect performance with mental state during these gamified physical tasks. Heart rate, electroencephalogram signals and facial expressions will be used as proxies for mood and mental state while completing tasks to connect mood with game features that affect motivation.

The National Science Foundation funded this research.

Source: Gaming helps personalized therapy level up | Penn State University

, , ,

Leave a comment

[Conference paper] Usage of VR Headsets for Rehabilitation Exergames – Abstract+References

Abstract

The work presented here is part of a large project aimed at finding new ways to tackle exergames used for physical rehabilitation. The preferred user group consists of physically impaired who normally cannot use commercially available games; our approach wants to fill a niche and allow them to get the same playing experience like healthy. Four exercises were implemented with the Blender Game engine and connected to a motion capture device (Kinect) via a modular middleware. The games incorporate special features that enhance weak user movements, such that the avatar reacts in the same way as for persons without physical restrictions. Additionally, virtual reality glasses have been integrated to achieve a more immersive feeling during play. In this work, we compare the results of preliminary user tests, performed with and without VR glasses. Test outcomes are good for motion amplification in some of the games but do not present generally better results when using the VR glasses.

Source: Usage of VR Headsets for Rehabilitation Exergames | SpringerLink

, , , , , ,

Leave a comment

[WEB SITE] The Rehabilitation Gaming System

slideshow 1RGS is a highly innovative Virtual Reality (VR) tool for the rehabilitation of deficits that occur after brain lesions and has been successfully used for the rehabilitation of the upper extremities after stroke.
The RGS is based on the neurobiological considerations that plasticity of the brain remains  throughout life and therefore can be utilized to achieve functional reorganization of the brain areas affected by stroke. This can be realized by means of activation of secondary motor areas such as the so called mirror neurons system.

RGS deploys a deficit oriented training approach. Specifically, while training with RGS the patient is playing individualized games where movement execution is combined with the observation of correlated actions performed by a virtual body. The system optimizes the user’s training by analyzing the qualitative and quantitative aspects of the user’s performance. This warranties a detailed assessment of the deficits of the patient and their recovery dynamics.

Key articles and Recent publications

also see specs.upf.edu

Source: The Rehabilitation Gaming System | Rehabilitation Gaming System

, , , , , , , ,

Leave a comment

[ARTICLE] Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity – Full Text

Abstract

Background

People with chronic arm impairment should exercise intensely to regain their abilities, but frequently lack motivation, leading to poor rehabilitation outcome. One promising way to increase motivation is through interpersonal rehabilitation games, which allow patients to compete or cooperate together with other people. However, such games have mainly been evaluated with unimpaired subjects, and little is known about how they affect motivation and exercise intensity in people with chronic arm impairment.

Methods

We designed four different arm rehabilitation games that are played by a person with arm impairment and their unimpaired friend, relative or occupational therapist. One is a competitive game (both people compete against each other), two are cooperative games (both people work together against the computer) and one is a single-player game (played only by the impaired person against the computer). The games were played by 29 participants with chronic arm impairment, of which 19 were accompanied by their friend or relative and 10 were accompanied by their occupational therapist. Each participant played all four games within a single session. Participants’ subjective experience was quantified using the Intrinsic Motivation Inventory questionnaire after each game, as well as a final questionnaire about game preferences. Their exercise intensity was quantified using wearable inertial sensors that measured hand velocity in each game.

Results

Of the 29 impaired participants, 12 chose the competitive game as their favorite, 12 chose a cooperative game, and 5 preferred to exercise alone. Participants who chose the competitive game as their favorite showed increased motivation and exercise intensity in that game compared to other games. Participants who chose a cooperative game as their favorite also showed increased motivation in cooperative games, but not increased exercise intensity.

Conclusions

Since both motivation and intensity are positively correlated with rehabilitation outcome, competitive games have high potential to lead to functional improvement and increased quality of life for patients compared to conventional rehabilitation exercises. Cooperative games do not increase exercise intensity, but could still increase motivation of patients who do not enjoy competition. However, such games need to be tested in longer, multisession studies to determine whether the observed increases in motivation and exercise intensity persist over a longer period of time and whether they positively affect rehabilitation outcome.

Trial registration

The study is not a clinical trial. While human subjects are involved, they participate in a single-session evaluation of a rehabilitation game rather than a full rehabilitation intervention, and no health outcomes are examined.

Keywords

Rehabilitation ,Virtual reality ,Multiplayer games, Interpersonal rehabilitation games ,Social interaction ,Motivation ,Exercise intensity

Background

Home rehabilitation technology

Diseases such as stroke have a massively debilitating effect on people’s lives. It is estimated that one in six people will experience a stroke in their lifetime [1], and 88% of survivors report some impairment of their limb function [2]. In the United States, approximately 795,000 individuals suffer a new or recurrent stroke every year, leading to an estimated combined direct and indirect cost of $68.9 billion [3]. Intensive training delivered by a therapist soon after the injury can effectively restore motor functions needed for independent life. However, even top hospitals only devote a limited amount of time to rehabilitation of motor functions [4]. The situation is even worse in most other hospitals and health centers, where patients are idle for most of the day due to a shortage of qualified medical staff [4]. After leaving the hospital, patients thus need to exercise at home without therapist supervision in order to fully regain their abilities.

Several technologies, ranging from consumer devices such as the Microsoft Kinect [5] to complex exoskeletons [6], have been deployed for motor rehabilitation at home. These technologies usually combine limb tracking with virtual environments presented on a personal computer, which allow patients to perform a variety of simulated activities of daily living [7]. Furthermore, they incorporate game-like elements such as automated difficulty adaptation, score displays and cognitive challenges [8, 9, 10, 11]. However, despite promising technical achievements, the effectiveness of home rehabilitation technology remains limited. A recent study showed that, even if a therapist prescribes a technology-supported exercise, only about 30% of unsupervised patients will comply with the rehabilitation regimen [12].

This lack of compliance is due to lack of motivation for rehabilitation, which is known to be a key determinant of rehabilitation outcome: patients who are unmotivated will not exercise frequently or intensely enough [13, 14]. Studies outside rehabilitation have already shown that motivational interventions improve compliance with the therapy regimen [15], and recent home rehabilitation studies have emphasized the importance of motivational elements that would increase the duration and intensity of exercise [16, 17]…

Continue —> Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1 The BiMeo used unimanually without support (top left), unimanually on a table (top right), bimanually without support (bottom left), and bimanually on a table (bottom right)

, , , , , , ,

Leave a comment

[VIDEO] SaeboVR – World’s First Virtual ADL Rehabilitation System

Δημοσιεύτηκε στις 21 Φεβ 2017

Saebo, Inc., is a leading global provider of innovative rehabilitation products for stroke survivors and other neurologically impaired individuals. Headquartered in Charlotte, NC, the company was founded in 2001 by two occupational therapists specializing in stroke rehabilitation. As the leading cause of long-term disability in the U.S., stroke affects over 700,000 Americans every year, leaving many with crippling side affects including the loss of hand function. Saebos pioneering treatment protocols are based on new research documenting the brains remarkable ability to re-program itself following injury.

The companys neurological orthotic devices, including the ground-breaking SaeboFlex and SaeboReach, allow patients with very little residual arm and hand function to immediately begin performing task-oriented, grasp and release activities, thereby forging new pathways in the brain. Named Most Valuable Product in 2008 by Therapy Times, the Saebo Program is now offered as a treatment option at over 2,000clinics and hospitals nationwide, including 22 of the Top 25 Rehabilitation Hospitals as ranked by U.S. News & World Report. The Saebo orthoses are also eligible for reimbursement by Medicare and most commercial insurers. With a network of over 6,000 trained clinicians spanning four continents, Saebo is committed to helping stroke survivors around the globe achieve a new level of independence.

, , ,

Leave a comment

[WEB SITE] TherapWii – game suggestions

Why TherapWii

Gaming activates and is fun to do! In a playful and often unnoticed way skills are trained. Adolescents grow up in a digital world; they enjoy gaming and do it frequently. For adults and elderly gaming has been shown to be a useful type of therapy.

In a virtual environment moving, executing, learning and enjoying are appealing; if circumstances or limitations keep you from going to the bowling alley or playing an instrument, gaming can broaden your boundaries.

Gaming with the Wii can complement therapy, can make therapy more attractive, intenser and more provocative.

TherapWii has been developed to support therapists in an effective and specific way while using the Nintendo Wii and offer options to game in the home environment.

TherapWii is the product of an exploratory research project done by the Special Lectorship Rehabilitation at the Hague University. The results of this project can be found by clicking on the header ‘research’ at the end of the page.

How does TherapWii work?

Per therapy goal there are three colored tabs to help find the most suitable games. Each game lists specific information in text and symbols. There is also a level of difficulty; by moving the cursor over this button you see more information.

User information is saved in ‘explanation and tips’. To enhance this section you can email recommendations and suggestions to the email address listed below.

TherapWii has been developed, also for home use, so that experience lead to personal growth.

Advice for game adjustments

It is important that the therapist stays close to the patient’s goals and abilities and adjusts the game program appropriately. If you, as therapist, want to make the game easier, more difficult or more daring, you can change the instruction, implementation or setting.

A few examples:

Physical: strength (add weights to the arms or legs or change the starting position); balance/stability (play while standing on an instable foundation (ball, mat). Or play the games while sitting on a stationary bicycle!

Cognition: create double tasks (ask mathematics, questions or riddles); spatial orientation or visual adjustments (play with one eye covered or in front of a mirror).

Social-emotional: stimulate cooperation or competition (create bets or role-playing).

Let us know if you have other ideas to make the games more provoking.

How are the games rated?

The games were tested by several professionals (physical therapists, occupational therapists and sport therapists). Differences in opinion or scores were discussed and voted on.

Give us feedback, corrections and advice, we will adjust the TherapWii program monthly and will use your suggestions.

Which ability do you choose?

Social-Emotional

Physical

Cognitive

Visit WEB SITE

, , , , , , ,

Leave a comment

[Abstract+References] A Serious Games Platform for Cognitive Rehabilitation with Preliminary Evaluation

Abstract

In recent years Serious Games have evolved substantially, solving problems in diverse areas. In particular, in Cognitive Rehabilitation, Serious Games assume a relevant role. Traditional cognitive therapies are often considered repetitive and discouraging for patients and Serious Games can be used to create more dynamic rehabilitation processes, holding patients’ attention throughout the process and motivating them during their road to recovery. This paper reviews Serious Games and user interfaces in rehabilitation area and details a Serious Games platform for Cognitive Rehabilitation that includes a set of features such as: natural and multimodal user interfaces and social features (competition, collaboration, and handicapping) which can contribute to augment the motivation of patients during the rehabilitation process. The web platform was tested with healthy subjects. Results of this preliminary evaluation show the motivation and the interest of the participants by playing the games.

Source: A Serious Games Platform for Cognitive Rehabilitation with Preliminary Evaluation | SpringerLink

, , , , ,

Leave a comment

[Abstract] Architecture guideline for game-based stroke rehabilitation

Abstract:

Strokes are the most common cause of long-term disability of adults in developed countries. Continuous participation in rehabilitation can alleviate some of the consequences, and support recovery of stroke patients. However, physical rehabilitation requires commitment to tedious exercise routines over lengthy periods of time, which often cause patients to drop out of this form of therapy. In this context, game-based stroke rehabilitation has the potential to address two important barriers: accessibility of rehabilitation, and patient motivation.

This paper provides a review of design efforts in human-computer interaction (HCI) and gaming research to support stroke rehabilitation.

Source: Architecture guideline for game-based stroke rehabilitation: World Journal of Science, Technology and Sustainable Development: Vol 14, No 2/3

, , , ,

Leave a comment

[Abstract] Gamification in Physical Therapy: More Than Using Games

Abstract

The implementation of computer games in physical therapy is motivated by characteristics such as attractiveness, motivation, and engagement, but these do not guarantee the intended therapeutic effect of the interventions. Yet, these characteristics are important variables in physical therapy interventions because they involve reward-related dopaminergic systems in the brain that are known to facilitate learning through long-term potentiation of neural connections. In this perspective we propose a way to apply game design approaches to therapy development by “designing” therapy sessions in such a way as to trigger physical and cognitive behavioral patterns required for treatment and neurological recovery. We also advocate that improving game knowledge among therapists and improving communication between therapists and game designers may lead to a novel avenue in designing applied games with specific therapeutic input, thereby making gamification in therapy a realistic and promising future that may optimize clinical practice.

Source: Gamification in Physical Therapy: More Than Using Games : Pediatric Physical Therapy

, , , , , ,

Leave a comment

[Abstract] Gaming-based virtual reality therapy for the rehabilitation of upper extremity function after stroke.

Abstract

Objective To investigate the effects of playing virtual reality games on the recovery of hemiplegic upper extremities after stroke.

Methods Thirty stroke patients with hemiplegic upper extremities were randomly assigned to a treatment group (n=15) or a control group (n=15).Both groups received routine medication and conventional physical therapy,while the treatment group was additionally given (Nintendo) gaming-based virtual reality therapy.Before and after 2 weeks of treatment,the patients in both groups were evaluated using the Fugl-Meyer Assessment for the Upper Extremities (FMA-UE),Brunnstrom staging and co-contraction ratios (CRs).Surface electromyogram signals from the biceps brachii and triceps brachii were also recorded during maximum isometric voluntary flexion and extension of the affected elbow.

Results No significant differences in any of the measurements were observed between the 2 groups before or after the intervention.Both groups demonstrated significant increases in their average FMA-UE score,Brunnstrom staging and CRs.

Conclusions Virtual reality gaming using a Wii controller is as effective as conventional therapy in enhancing upper extremity motor function and elbow flexion and extension after stroke.

Source: Gaming-based virtual reality therapy for the rehabilitation of upper extremity function after stroke | BVS Violência e Saúde

, , , , , , , , ,

Leave a comment

%d bloggers like this: