Archive for May, 2018

[WEB SITE] The effects of vitamin D on epilepsy

Student NT editor Rebecca Hammond says we should be mindful of the importance of vitamin D.
rebecca hammond close up 1
“Where has the sun gone?” and “Will we have a good summer?” are questions I and others living in Scotland have often asked ourselves.


Growing up, I always remembered vitamin D as being the ’sunshine vitamin’. However, since starting my nursing training, I have been interested in researching the importance and health benefits of vitamin D.

In the UK, we are encouraged to eat a healthy, balanced diet. This provides all needed nutrients excluding vitamin D. Oily fish has been identified as a significant source, whereas meat, egg yolks and other fortified foods, including margarine and some breakfast cereals, provide smaller amounts.

The prevalence of vitamin D deficiency in the UK is significant: during the winter, 30-40% of people in the general population and belonging to all age groups are vitamin D deficient. Near the end of the summer months, 13% of adolescents and 8% of adults are vitamin D deficient.

The intake of vitamin D and its status are imperative for overall health and wellbeing, as well as for bone and calcium-phosphate metabolism.

Without adequate vitamin D, bones may become brittle, thin or misshapenLiterature suggests that sufficient vitamin D status is protective against autoimmune diseases, cardiovascular disease, musculoskeletal disorders, neurocognitive dysfunction and respiratory infections.

Compared to the general population, individuals with learning disabilities have an increased risk of developing low bone mineral density, osteopenia, osteoporosis and fractures. This is mainly attributed to the higher prevalence of obesity or undernutrition, inactive lifestyles and polypharmacy.

Epilepsy is the most common neurological condition within the learning disability population. One in four people with a learning disability experience epilepsy, compared to one in five in the general population.

”The identified prevalence of vitamin D deficiencies among epilepsy patients is high”

Approximately, 30% of individuals with learning disabilities are prescribed anti-epileptic drugs (AEDs), an identified risk factor for fractures and low bone-mass density. Reasons for this have not been definitively known, but it could potentially be due to AEDs breaking down the body’s vitamin D stores at a higher degree than normal.

Consequently, this could result in AEDs causing a vitamin D deficiency, which could potentially lead to osteoporosis and osteomalaica and an increased risk of fractures.

The identified prevalence of vitamin D deficiencies among epilepsy patients is high, however, the number of research studies assessing the effect of vitamin D on seizure control is limited.

One of these research studies, conducted in 2012, measured vitamin D levels and through the administration of vitamin D3, normalised levels in 13 patients with pharmacoresistant epilepsy.

To identify whether vitamin D3 was impactful on seizure frequency, the study compared numbers of seizures during a 90-day period, prior and following treatment commencement. The study found the median seizure reduction to be 40% and concluded that normalisation of vitamin D levels can have an anticonvulsant effect.

Due to very little evidence on the effect of vitamin D on epilepsy, it is acknowledged that this area needs researched further. However, as nurses this is something we could be mindful of.


via The effects of vitamin D on epilepsy | Opinion | Nursing Times

, , ,

Leave a comment

[VIDEO] Homonymous Hemianopsia – YouTube

Describes what it’s like to have homonymous hemianopsia, and what issues a patient may have.


Leave a comment


An image depicting a person in a wheelchair, a person with crutches, and a person sitting on a sofa inside a house, basically highlighting people with disabilities staying at an airbnb location.

More often than not, people with disabilities have to call up hotels or other places where they are staying beforehand, asking whether the room they will be staying in has suitable accommodations for them. In many cases, travelers face difficulties because of lack of accessibility features, which leaves them with a not so satisfactory experience. In order to provide reasonable accommodations to travelers with disabilities, AirBnb has introduced a set of 24 filters that will help them find homes that will make their stay worthwhile, provide them a lot more independence, and allow them to enjoy their vacation a lot more with the least amount of frustration.

If you go to now, and search for “Homes” (accessible filters don’t show up for anything besides homes, like experience, restaurant, etc.), you will be provided with a new section called “accessibility” that lists the following filters:

Entering the home

• Step-free access
• Wide doorway
• Well lit path to entrance
• Flat path to front door
Getting around
• Wide hallways clearance Hallways at least 36″ (90cm) wide.
• Elevators If needed, contact hosts about the width.


• Step-free access
• Wide doorway
• Accessible-height bed
• Wide clearance to bed
• Electric profiling bed


• Step-free access
• Wide doorway
• Roll-in shower
• Bathtub with shower chair
• Accessible-height toilet
• Wide clearance to shower, toilet
• Fixed grab bars for shower
• Handheld shower head
• Shower chair

Common areas

• Step-free access
• Wide entryway


• Disabled parking spot There is a city-approved parking spot or a parking space at least 8ft (2.4m) wide.

However, getting to these filters may be just a bit tricky. Here’s how you get to them.

In the search box, type a location you plan to visit. Make sure to search for “Homes”.

type a location in the search box and make sure to choose homes Once the search results appear, click “more filters”.

click more filters to get to all the accessibility section


Under more filters, look for the Accessibility section and then click “choose home features”.

under Accessibility, click choose home features.

This is where you will see a list of 24 accessibility related filters. Choose the ones you need for your stay, and click Save. Your search results will be updated now.

choose all filters you require under "accessibility needs".


To see what accommodations a specific listing provides, click on it and scroll to the Accessibility section.


And there you have it. AirBnb’s filters are very specific, and can help you find a home that will meet your exact needs in terms of accessibility. Next time you travel, give these filters a try, and let us know how they worked out for you!

Source: Fast Company

via AirBnb Now Provides 24 Accessibility Related Filters For Travelers With Disabilities – Assistive Technology Blog

, , , ,

Leave a comment

[Abstract + References] A New Approach to Design Glove-Like Wearable Hand Exoskeletons for Rehabilitation – Conference paper


The synthesis of hand exoskeletons for rehabilitation is a challenging theoretical and technical task. A huge number of solutions have been proposed in the literature. Most of them are based on the concept to consider the phalanges of the finger as fixed to some links of the exoskeleton mechanism. This approach makes the exoskeleton synthesis a difficult problem that compels the designer to devise approximate technical solutions which, frequently, reduce the efficiency of the rehabilitation system and are rather bulky.

This paper proposes a different approach. Namely, the phalanges are not fixed to some links of the exoskeleton, but they can have a relative motion, with one or two degrees of freedom when planar systems are considered. An example is presented to show the potentiality of this approach, which makes it possible: (i) to design glove-like exoskeletons that only approximate the human finger motion; (ii) to leave the fingers have their natural motion; (iii) to adapt a wider range of patient hand sizes to a given hand exoskeleton.


  1. 1.
    Agarwal, P., Hechanova, A., Deshpande, A.D.: Kinematics and Dynamics of a biologically inspired index finger exoskeleton. In: Proceedings of the ASME 2013 Dynamic Systems and Control Conference DSCC 2013, Palo Alto, CA, USA, pp. 1–10 (2013)Google Scholar
  2. 2.
    Heo, P., Min, GuG, Lee, S.J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 3(5), 807–824 (2012)CrossRefGoogle Scholar
  3. 3.
    Balasubramanian, S., Klein, J., Burdet, E.: Robot-assisted rehabilitation and hand function. Curr. Opin. Neurol. 23, 661–670 (2010)CrossRefGoogle Scholar
  4. 4.
    Troncossi, M., Mozaffari-Foumashi, M., Parenti-Castelli, V.: An original classification of rehabilitation hand exoskeletons. J. Robot. Mech. Eng. Res. 1(4), 17–29 (2016)CrossRefGoogle Scholar
  5. 5.
    Abdallah, I.B., Bouteraa, Y., Rekik, C.: Design and development of 3D printed myoelectric robotic exoskeleton for hand rehabilitation. Int. J. Smart Sens. Intell. Syst. 10(2), 341–366 (2017)Google Scholar
  6. 6.
    Foumashi, M., Troncossi, M., Parenti-Castelli, V.: Design of a new hand exo-skeleton for rehabilitation of post-stroke patients. In: Romansy 19-Robot Design, Dynamics and Control, pp. 159–169 (2013)CrossRefGoogle Scholar
  7. 7.
    Yap, H.K., Hoon, J., Nashrallah, F., Goh, J.C.H., Yeow, R.C.H.: A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness. In: 2015 IEEE International Conference on Robotics and Automation, ICRA, Seattle, Washington, USA, pp. 4967–4972 (2015)Google Scholar
  8. 8.
    Arata, J., Ohmoto, K., Gassert, R., Lambercy, O., Fujimoto, H., Wada, I.: A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism. In: 2013 IEEE International Conference on Robotics and Automation, ICRA, Karlsruhe, Germany, pp. 3902–3907 (2013)Google Scholar
  9. 9.
    Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, M., Parenti, C.V., Procopio, C., Lamola, G., Chisari, C., Bergamasco, M., Frisoli, A.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. J. Haptics 8(2), 140–151 (2015)CrossRefGoogle Scholar
  10. 10.
    Gulke, J., Watcher, N.J., Geyer, T., Scholl, H., Apic, G., Mentzler, M., et al.: Motion coordination pattern during cylinder grip analyzed with a sensor glove. J. Hand Surg. 35(5), 797 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, J., Wang, S., Zheng, R., Zhang, Y., Chen, Z.: Development of a hand exoskeleton system for index finger rehabilitation. Chin. J. Mech. Eng. 25(2), 223–233 (2012)CrossRefGoogle Scholar

via A New Approach to Design Glove-Like Wearable Hand Exoskeletons for Rehabilitation | SpringerLink

, , , , , , , , ,

Leave a comment

[Slideshow] Epilepsy & CBD

H Andre, O Danna, W Emma
… Scharfman and MacLusky, 2006 Page 34. Inhibition – Ledgerwood et al., 2010 ● CBD
is shown to inhibit synaptic transmission in hippocampal slices ○ In many forms of epilepsyseizures originate in the medial temporal lobe, an area that includes the hippocampus …


The Epilepsy & CBD Slideshow PDF file

, , ,

Leave a comment

[Abstract] Neuroimaging in epilepsy

Purpose of review Epilepsy neuroimaging is important for detecting the seizure onset zone, predicting and preventing deficits from surgery and illuminating mechanisms of epileptogenesis. An aspiration is to integrate imaging and genetic biomarkers to enable personalized epilepsy treatments.

Recent findings The ability to detect lesions, particularly focal cortical dysplasia and hippocampal sclerosis, is increased using ultra high-field imaging and postprocessing techniques such as automated volumetry, T2 relaxometry, voxel-based morphometry and surface-based techniques. Statistical analysis of PET and single photon emission computer tomography (STATISCOM) are superior to qualitative analysis alone in identifying focal abnormalities in MRI-negative patients. These methods have also been used to study mechanisms of epileptogenesis and pharmacoresistance.

Recent language fMRI studies aim to localize, and also lateralize language functions. Memory fMRI has been recommended to lateralize mnemonic function and predict outcome after surgery in temporal lobe epilepsy.

Summary Combinations of structural, functional and post-processing methods have been used in multimodal and machine learning models to improve the identification of the seizure onset zone and increase understanding of mechanisms underlying structural and functional aberrations in epilepsy.

via Neuroimaging in epilepsy : Current Opinion in Neurology

, , , , ,

Leave a comment

[Abstract] Analyzing finger interdependencies during the Purdue Pegboard Test and comparative activities of daily living


Study Design

Bench and cross-sectional study.


Information obtained from dexterity tests is an important component of a comprehensive examination of the hand.

Purpose of the Study

To analyze and compare finger interdependencies during the performance of the Purdue Pegboard Test (PBT) and comparative daily tasks.


A method based on the optoelectronic kinematic analysis of the precision grip style and on the calculation of cross-correlation coefficients between relevant joint angles, which provided measures of the degree of finger coordination, was conducted on 10 healthy participants performing the PBT and 2 comparative daily living tasks.


Daily tasks showed identifiable interdependencies patterns between the metacarpophalangeal joints of the fingers involved in the grip. Tasks related to activities of daily living resulted in significantly higher cross-correlation coefficients across subjects and movements during the formation and manipulation phases of the tasks (0.7-0.9), whereas the release stage produced significantly lower movement correlation values (0.3-0.7). Contrarily, the formation and manipulation stages of the PBT showed low finger correlation across most subjects (0.2-0.6), whereas the release stage resulted in the highest values for all relevant movements (0.65-0.9).


Interdependencies patterns were consistent for the activities of daily living but differ from the patterns observed from the PBT.


The PBT does not compare well with the whole range of finger movements that account for hand performance during daily tasks.

via Analyzing finger interdependencies during the Purdue Pegboard Test and comparative activities of daily living – Journal of Hand Therapy

, , , , , , , , , ,

Leave a comment

[WEB SITE] Healthcare Virtual Reality Enhances Clinician, Patient Satisfaction

Healthcare virtual reality is a versatile technology that can significantly impact education and patient engagement.

healthcare virtual reality

Source: Thinkstock

 By Elizabeth O’Dowd

 – Healthcare organizations are considering new technology as innovative IT infrastructure tools make themselves available. Healthcare virtual reality (VR) is no exception and as its medical uses grow, more providers are considering it as part of their digital transformation.

The healthcare virtual reality is expected to grow at a CAGR of 54.5 percent through 2023, according to a recent Research and Markets report.

While the initial uses of VR in healthcare may not be immediately apparent, its applications can be spread through many facets in healthcare including surgery, education, pain management, rehabilitation, and therapy.

VR and closely related augmented reality (AR) technology are quickly progressing through the healthcare industry. A Kalorama Information report released late last year indicated that while healthcare organizations have not had the need or budget for VR, that view is beginning to change.

The Kalorama report discovered that the most effective use of VR and AR is in surgical settings to assist surgeons. The technology can give surgeons better precision and also help enhance robot-assisted surgery. Using technology this way can reduce the risk of patient harm through medical error which is currently one of the leading causes of death in the US.

“Augmented reality or ‘mixed reality,’ integrates, injects or superimposes virtual elements and visualizations over the real world,” Kalorama report authors explained. “Via virtual reality in healthcare applications, VR technology is able to produce VEs such as an operating room, surgical site, patient anatomy, or therapeutic simulation.”

The report qualified VR and AR applications based on their ability to manipulate medical imaging data or other inputs to generate virtual environments or overlay virtual elements over the user’s sight.

VR and AR  in surgery are closely tied with surgical navigation and robot-assisted surgery. Organizations hope to eventually embrace virtual and augmented reality to help surgeons work more quickly and accurately, and eliminate potential human error during surgery.

The technology is not meant to replace surgeons;, it’s meant to provide them with more accurate information and visuals to help doctors make faster and more accurate decisions.

Medical education is another practical application of VR and AR in healthcare. Realistic surgical simulators can better prepare student surgeons for operating on actual patients by providing realistic views of surgical situations.

The report, Augmented Reality in Healthcare Education, said that there are many challenges in healthcare education and augmented reality can provide learning opportunities where “virtual learning experiences can be embedded in a real physical context.”

The Augmented Reality in Healthcare Education study found that 96 percent of the material studied claimed that AR is useful for improving healthcare education. The material outlined benefits of educational AR to include decreased amount of practice, reduced failure rate, improved performance accuracy, accelerated learning, and better understanding of special relationships.

VR and AR also have many patient facing uses as well for pain management, therapy, and can even be used to reduce fear in patients.

VR can be used for patient care and help patients gain a better understanding of their health. By showing the patient a virtual tour of their medical condition, such as a gastrointestinal test, she can better understand her medical condition.

Another example is controlling the environment to manipulate how a patient views something. For example the hematology clinic at Nationwide Children’s Hospital uses VR to put patients in a calming or entertaining environment while they undergo painful needle pricks and other treatment.

VR can also be used to put patients into a fearful environment to overcome it for therapeutic purposes.

VR and AR are complex technologies but are proving their worth in a healthcare setting. Visually enhancing clinician and patient experiences can significantly improve outcomes and both patient and clinician satisfaction.

via Healthcare Virtual Reality Enhances Clinician, Patient Satisfaction

, , , , , , , ,

Leave a comment

[Abstract+References] Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots


Rehabilitation aims to ameliorate deficits in motor control via intensive practice with the affected limb. Current strategies, such as one-on-one therapy done in rehabilitation centers, have limitations such as treatment frequency and intensity, cost and requirement of mobility. Thus, a promising strategy is home-based therapy that includes task specific exercises. However, traditional rehabilitation tasks may frustrate the patient due to their repetitive nature and may result in lack of motivation and poor rehabilitation. In this article, we propose the design and verification of an effective upper extremity rehabilitation game with a tangible robotic platform named Cellulo as a novel solution to these issues. We first describe the process of determining the design rationales to tune speed, accuracy and challenge. Then we detail our iterative participatory design process and test sessions conducted with the help of stroke, brachial plexus and cerebral palsy patients (18 in total) and 7 therapists in 4 different therapy centers. We present the initial quantitative results, which support several aspects of our design rationales and conclude with our future study plans.


Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to expose the complete List rather than only correct and linked references.

R. Aarhus, E. Grönvall, S.B. Larsen, and S. Wollsen. Turning training into play: Embodied gaming, seniors, physical training and motivation. Gerontechnology, 10(2):110–120, 2011.
G. Alankus, A. Lazar, M. May, and C. Kelleher. Towards customizable games for stroke rehabilitation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2113–2122. ACM, 2010.
T. Apted, J. Kay, and A. Quigley. Tabletop sharing of digital photographs for the elderly. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 781–790. ACM, 2006.
L. Axelrod, G. Fitzpatrick, J. Burridge, S. Mawson, P. Smith, T. Rodden, and I. Ricketts. The reality of homes fit for heroes: design challenges for rehabilitation technology at home. Journal of Assistive Technologies, 3(2):35–43, 2009.
B. Bonnechère, B. Jansen, L. Omelina, J. Van Sint, et al. The use of commercial video games in rehabilitation: a systematic review. International journal of rehabilitation research, 39(4):277–290, 2016.
B. Bonnechère, B. Jansen, L. Omelina, and S. Van Sint Jan. Do patients perform their exercises at home and why (not)? a survey on patients’ habits during rehabilitation exercises. Ulutas Med J, 2:41–6, 2016.
J.W. Burke, M. McNeill, D. Charles, P.J. Morrow, J. Crosbie, and S. McDonough. Augmented reality games for upper-limb stroke rehabilitation. In Games and Virtual Worlds for Serious Applications (VS-GAMES), 2010 Second International Conference on, pages 75–78. IEEE, 2010.
J.W. Burke, M. McNeill, D.K. Charles, P.J. Morrow, J.H. Crosbie, and S.M. McDonough. Optimising engagement for stroke rehabilitation using serious games. The Visual Computer, 25(12):1085, 2009.
M.S. Cameirao, I.B.S. Bermúdez, E. Duarte Oller, and P.F. Verschure. The rehabilitation gaming system: a review. Stud Health Technol Inform, 145(6), 2009.
M.S. Cameirão, S.B. i Badia, E.D. Oller, and P.F. Verschure. Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation. Journal of neuroengineering and rehabilitation, 7(1):48, 2010.
M.S. Cameirão, S.B. i Badia, L. Zimmerli, E.D. Oller, and P.F. Verschure. The rehabilitation gaming system: a virtual reality based system for the evaluation and rehabilitation of motor deficits. In Virtual Rehabilitation, 2007, pages 29–33. IEEE, 2007.
J.H. Cauraugh and J.J. Summers. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in neurobiology, 75(5):309–320, 2005.
J. Crosbie, S. Lennon, M. McGoldrick, M. McNeill, and S. McDonough. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clinical Rehabilitation, 26(9):798–806, 2012.
J.J. Daly, N. Hogan, E.M. Perepezko, H.I. Krebs, et al. Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of rehabilitation research and development, 42(6):723, 2005.
M.P. Dijkers, R. Erlandson, K. Kristy, D. Geer, A. Nichols, et al. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. Journal of rehabilitation research and development, 28(2):33, 1991.
L.R.A. Dos Santos, A.A. Carregosa, M.R. Masruha, P.A. Dos Santos, M.L.D.S. Coêlho, D.D. Ferraz, and N.M.D.S. Ribeiro. The use of nintendo wii in the rehabilitation of poststroke patients: a systematic review. Journal of Stroke and Cerebrovascular Diseases, 24(10):2298–2305, 2015.
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, and N. Hogan. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Archives of physical medicine and rehabilitation, 84(4):477–482, 2003.
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, R. Hughes, and N. Hogan. Robotic therapy for chronic motor impairments after stroke: Follow-up results. Archives of physical medicine and rehabilitation, 85(7):1106–1111, 2004.
G. Fitzpatrick, M. Balaam, and S.R. Egglestone. Involving stroke survivors in designing for rehabilitation at home. Therapeutic Strategies A Challenge for User Involvement in Design, page 13, 2010.
F. Garcia-Sanjuan, J. Jaen, and V. Nacher. Tangibot: a tangible-mediated robot to support cognitive games for ageing people usability study. Pervasive and Mobile Computing, 34:91–105, 2017.
K.M. Gerling, F.P. Schulte, and M. Masuch. Designing and evaluating digital games for frail elderly persons. In Proceedings of the 8th international conference on advances in computer entertainment technology, page 62. ACM, 2011.
C. Grefkes and N.S. Ward. Cortical reorganization after stroke: how much and how functional? The Neuroscientist, 20(1):56–70, 2014.
M.K. Holden. Virtual environments for motor rehabilitation. Cyberpsychology & behavior, 8(3):187–211, 2005.
J.A. Hosp and A.R. Luft. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural plasticity, 2011, 2011.
J.K. Hsu, R. Thibodeau, S.J. Wong, D. Zukiwsky, S. Cecile, and D.M. Walton. A “wii” bit of fun: The effects of adding nintendo wii® bowling to a standard exercise regimen for residents of long-term care with upper extremity dysfunction. Physiotherapy Theory and Practice, 27(3):185–193, 2011.
M. Hudson. Applying exergaming input to standard commercial digital games. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pages 1886–1895. ACM, 2016.
Y.-X. Hung, P.-C. Huang, K.-T. Chen, and W.-C. Chu. What do stroke patients look for in game-based rehabilitation: a survey study. Medicine, 95(11), 2016.
M.J. Johnson. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of NeuroEngineering and Rehabilitation, 3(1):29, 2006.
L.Y. Joo, T.S. Yin, D. Xu, E. Thia, P.F. Chia, C.W.K. Kuah, and K.K. He. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. Journal of rehabilitation medicine, 42(5):437–441, 2010.
H. Kim, L.M. Miller, I. Fedulow, M. Simkins, G.M. Abrams, N. Byl, and J. Rosen. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2):153–164, 2013.
H.I. Krebs, S. Mernoff, S.E. Fasoli, R. Hughes, J. Stein, and N. Hogan. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation, 23(1):81–87, 2008.
H.I. Krebs, B.T. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, and N. Hogan. Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Topics in stroke rehabilitation, 8(4):54–70, 2002.
J.A. Kumar, M. Binal Motawar PT, and K. Lakshminarayanan. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. Journal of rehabilitation research and development, 53(3):321, 2016.
K.E. Laver, S. George, S. Thomas, J.E. Deutsch, and M. Crotty. Virtual reality for stroke rehabilitation. The Cochrane Library, 2015.
A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, T.H. Wagner, H.I. Krebs, B.T. Volpe, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010.
M. Ma and K. Bechkoum. Serious games for movement therapy after stroke. In Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on, pages 1872–1877. IEEE, 2008.
P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt. A survey on robotic devices for upper limb rehabilitation. Journal of neuroengineering and rehabilitation, 11(1):3, 2014.
T. Nef, G. Quinter, R. Müller, and R. Riener. Effects of arm training with the robotic device armin i in chronic stroke: three single cases. Neurodegenerative diseases, 6(5–6):240–251, 2009.
Nintendo. Wii health and safety precautions.
D. Novak, A. Nagle, U. Keller, and R. Riener. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of neuroengineering and rehabilitation, 11(1):64, 2014.
O. ONeil, C. Gatzidis, and I. Swain. A state of the art survey in the use of video games for upper limb stroke rehabilitation. In Virtual, Augmented Reality and Serious Games for Healthcare 1, pages 345–370. Springer, 2014.
A. Özgür, W. Johal, F. Mondada, and P. Dillenbourg. Haptic-enabled handheld mobile robots: Design and analysis. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 2449–2461. ACM, 2017.
T. Park, C. Yoo, S.P. Choe, B. Park, and J. Song. Transforming solitary exercises into social exergames. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pages 863–866. ACM, 2012.
D. Rand, R. Kizony, and P.T.L. Weiss. The sony playstation ii eyetoy: low-cost virtual reality for use in rehabilitation. Journal of neurologic physical therapy, 32(4):155–163, 2008.
R. Sanchez, D. Reinkensmeyer, P. Shah, J. Liu, S. Rao, R. Smith, S. Cramer, T. Rahman, and J. Bobrow. Monitoring functional arm movement for home-based therapy after stroke. In Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, volume 2, pages 4787–4790. IEEE, 2004.
G. Saposnik, M. Levin, S.O.R.C.S.W. Group, et al. Virtual reality in stroke rehabilitation. Stroke, 42(5):1380–1386, 2011.
G. Saposnik, R. Teasell, M. Mamdani, J. Hall, W. McIlroy, D. Cheung, K.E. Thorpe, L.G. Cohen, M. Bayley, et al. Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation. Stroke, 41(7):1477–1484, 2010.
M. Shaughnessy, B.M. Resnick, and R.F. Macko. Testing a model of post-stroke exercise behavior. Rehabilitation nursing, 31(1):15–21, 2006.
M.M. Shoja, R.S. Tubbs, A. Malekian, A.H.J. Rouhi, M. Barzgar, and W.J. Oakes. Video game epilepsy in the twentieth century: a review. Child’s Nervous System, 23(3):265–267, 2007.
P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener. Effects of intensive arm training with the rehabilitation robot armin ii in chronic stroke patients: four single-cases. Journal of neuroengineering and rehabilitation, 6(1):46, 2009.
K. Thomson, A. Pollock, C. Bugge, and M. Brady. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. International Journal of Stroke, 9(4):479–488, 2014.
K. Thomson, A. Pollock, C. Bugge, and M.C. Brady. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disability and Rehabilitation: Assistive Technology, 11(6):454–461, 2016.
B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces. IBM systems journal, 39(3.4):915–931, 2000.
A. Van Delden, C.L.E. Peper, G. Kwakkel, and P.J. Beek. A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke research and treatment, 2012, 2012.
J.H. Van der Lee, R.C. Wagenaar, G.J. Lankhorst, T.W. Vogelaar, W.L. Devillé, and L.M. Bouter. Forced use of the upper extremity in chronic stroke patients. Stroke, 30(11):2369–2375, 1999.
M. Vandermaesen, T. De Weyer, K. Luyten, and K. Coninx. Physicube: providing tangible interaction in a pervasive upper-limb rehabilitation system. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, pages 85–92. ACM, 2014.
P. Wang, G.C.H. Koh, C.G. Boucharenc, T.M. Xu, C.C. Yen, et al. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pages 617–624. ACM, 2017.
J. Whitall, S.M. Waller, K.H. Silver, and R.F. Macko. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31(10):2390–2395, 2000.
H. Woldag and H. Hummelsheim. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. Journal of neurology, 249(5), 2002.
G. Yavuzer, A. Senel, M. Atay, and H. Stam. “playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. European journal of physical and rehabilitation medicine, 44(3):237–244, 2008.


via Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots

, , , , , ,

Leave a comment

[Abstract] A wearable monitoring system for at-home stroke rehabilitation exercises: A preliminary study


When stroke survivors perform rehabilitation exercises in clinical settings, experienced therapists can evaluate the associated quality of movements by observing only the initial part of the movement execution so that they can discourage therapeutically undesirable movements effectively and reinforce desirable ones as much as possible in the limited therapy time. This paper introduces a novel monitoring platform based on wearable technologies that can replicate the capability of skilled therapists. Specifically, we propose to deploy five wearable sensors on the trunk, and upper and forearm of the two upper limbs, analyze partial to complete observation data of reaching exercise movements, and employ supervised machine learning to estimate therapists’ evaluation of movement quality. Estimation performance was evaluated using F-Measure, Receiver Operating Characteristic Area, and Root Mean Square Error, showing that the proposed system can be trained to evaluate the movement quality of the entire exercise movement using as little as the initial 5s of the exercise performance. The proposed platform may help ensure high quality exercise performance and provide virtual feedback of experienced therapists during at-home rehabilitation.

I. Introduction

Stroke is a leading cause of death and disabilities in adults, and the majority of its survivors suffer from upper extremity paresis [1]. There is scientific evidence that repetitive rehabilitation exercises and training could improve motor abilities as a result of motor learning processes [2]. Among many, a reaching movement is a fundamental component of daily movement that requires the coordination of multiple upper extremity segments [3]. It is shown that repetitive reaching exercises improve the smoothness, precision, and speed of arm movements [4]. To continue to improve and to sustain motor function, it is clinically important that patients continue to engage in rehabilitation exercises even outside the clinical settings [5], which emphasizes the importance of the home-based therapy.


via A wearable monitoring system for at-home stroke rehabilitation exercises: A preliminary study – IEEE Conference Publication

, , , , , , , , , , , ,

Leave a comment

%d bloggers like this: