Posts Tagged Balance

[ARTICLE] Whole-Body Vibration in Horizontal Direction for Stroke Rehabilitation: A Randomized Controlled Trial – Full Text

Abstract

Background

As most of the existing whole-body vibration (WBV) training programs provide vertical or rotatory vibration, studies on the effects of horizontal vibration have rarely been reported. The present study was conducted to investigate the effect of WBV in the horizontal direction on balance and gait ability in chronic stroke survivors.

Material/Methods

This study was designed as a randomized controlled trial. Twenty-one stroke survivors were randomly allocated into 2 groups (whole-body vibration group [n=9] and control group [n=12]). In the WBV group, WBV training in the horizontal direction was conducted for 6 weeks, and a conventional rehabilitation for 30 min, 3 days per week for a 6-week period, was conducted in both the WBV and control groups. Outcome variables included the static balance and gait ability measured before training and after 6 weeks.

Results

On comparing the outcome variables before and after training in the WBV group, significant differences were observed in the cadence and single support time of gait ability. However, there were no significant differences in other variables, including velocity, step length, stride length, and double support time. In addition, after training, no significant differences in all variables were observed between the 2 groups.

Conclusions

The results of this study suggest that WBV training in the horizontal direction has few positive effects on balance and gait function in chronic stroke survivors. However, further investigation is needed to confirm this.

Background

Stroke survivors suffer from central nervous system damage, with sensory and motor system damage, which leads to consequences such as decreased control of muscle tone, delay in muscle contraction, and absence of selective movement [1,2]. In addition, stroke survivors have unstable balance and poor gait ability, which naturally limits their activities of daily living and participation in the community, while losing independence [2,3]. Consequently, the first priority for stroke survivors is recovery of independent activities, and for this, the recovery of balance in a standing posture and gait abilities is essential.

For functional recovery of stroke survivors, various methods have been suggested [4], and whole-body vibration (WBV) is a relatively novel form of exercise intervention that could improve functional recovery [5]. WBV involves the use of a vibrating platform in a static position or while performing dynamic movements. In previous studies, it was suggested that WBV training could improve physical functions. Castrogiovanni et al. [6] reported that a multi-component training, including aerobic activity and other types of training (resistance and/or strength exercises), is the best kind of exercise for improving bone mass and bone metabolism in elderly people and especially in osteopenic and osteoporotic women. With regard to whole-body vibration training, studies have suggested that it could be a valid method. Pichler et al. [7] reported that mechanical stimulation such as treadmill and vibration stimulation training inhibits the activity of RANKL in osteoporosis. In addition, Musumeci et al. [8] suggested that, in certain diseases such as osteoporosis, mechanical stimulation including treadmill and vibration platform training could be a possible therapeutic treatment. Based on their results, they proposed the hypothesis that physical activity could also be used as a therapeutic treatment for cartilage diseases such as osteoarthritis. Van Nes et al. [9] introduced WBV as a means of somatic sensory stimulation for functional recovery of stroke survivors. They also reported that somatosensory stimulation through WBV can significantly improve muscle performance, balance, and daily activities. Balance, defined as the ability to maintain the center of pressure (COP) on the support surface in given circumstances, can be held through adjusted harmony of visual, vestibular, and somatic sensory system [10], and vibration stimulation is reported to cause small changes in the skeletal muscle length of the human body and affect the motor neurons to facilitate activation of the spinal reflexes through short spindle-motor neuron connections [11].

Balance is a major component required for controlling or maintaining the COP in mobility and locomotion in which the support surface changes [12]. The information on changes of the support surface along with the biomechanic information needed for movement control is passed on to the central nervous system by muscle spindles, Golgi tendon organs, and joint receptors in the proprioception sense; thus, they have a very important role in controlling balance [13,14]. In addition, Muller and Redfern [15] performed a comparative analysis of the latency of beginning muscle activity by measuring electromyogram (EMG) activation degree of muscle strength of the lower extremities caused by movement of the COP while the support surface moved back and forth. Consequently, the latency of activation of the tibialis anterior muscle was rapid on the support surface moving forward and that of the soleus muscle was rapid when moving backward. Given these reports, for recovery of balance ability, the horizontal vibration in all directions might be needed more than the vertical or rotatory vibration provided by the original WBV training. Additionally, our bodies maintain standing posture using ankle strategy, hip strategy, or both [16]. The ankle strategy, which is the postural control strategy that starts first in postural sway, enables immediate recovery of standing balance through ankle joint muscle contraction [16]. Horizontal vibration, therefore, may significantly activate not only stimulation of somatosensory, but also ankle strategy or hip strategy.

However, since most of the existing WBV training programs provide only vertical or rotatory vibrations, studies on effects of horizontal vibrations have been rarely reported. Accordingly, the present study examined the effects of horizontal WBV in an antero-posterior or medio-lateral direction on balance and gait abilities of stroke survivors.[…]

Continue —> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408868/#__sec6title

An external file that holds a picture, illustration, etc.
Object name is medscimonit-25-1621-g002.jpg

Figure 2
Whole-body vibration in horizontal direction.

, , , , , , ,

Leave a comment

[WEB SITE] Regaining the Ability to Walk – Stroke: Emergency Care and Rehabilitation

Regaining the Ability to Walk

Because an acquired neurologic injury (such as a stroke) affects both sensory and motor function, walking can be severely affected. Sensory changes, weakness, and spasticity affect movement strategies, which alter a person’s ability to successfully respond to losses of balance. A stroke affects how much and how often a person walks and also affects walking adaptability—the ability to adapt to different conditions during ambulation—as well as endurance. Gait training generally starts as soon as possible following a stroke, using manual techniques, task-specific training, strengthening, and, when available, body weight-assisted treadmill training and robotic devices.

Gait Training

image: photo of gait training

An example of over-ground gait training.

Movement Strategies Altered by Stroke

A movement strategy or synergy is a flexible, repeatable pattern of movement that can be quickly and automatically accessed by the central nervous system. Movement strategies allow us to store and reuse patterns of movement that have been successful in the past. Strategies are efficient, automatic movement patterns that evolve over time. Each time a loss of balance threatens, the nervous system draws on these pre-programmed movement strategies to ensure the maintenance of balance.Movement strategies used by the nervous system to respond to perturbations are diminished following a stroke.

Ankle Sway

image: illustration of ankle sway

The ankle strategy is used in response to small perturbations is also called ankle sway. Source: Lauren Robertson.

 

The ankle strategy—also called ankle sway—is used in response to small perturbations or losses of balance. When a small loss of balance occurs—as when standing on a moving bus—the foot acts as a lever to maintain balance by making continuous automatic adjustments to the movement of the bus. When a small balance adjustment is needed, muscles close to the floor (anterior tibialis and gastrocnemius) activate first and flow upward in a distal to proximal pattern.

When a perturbation is too large to be successfully handled by the ankle strategy, the hip strategy is needed. When the hip strategyis used, movement is centered about the hip and ankle muscles (anterior tibialis and gastrocnemius) are almost silent. The muscles in the trunk activate first as activation flows downward to the legs in a proximal to distal pattern. So, if the bus stops suddenly and the body bends forward, the low back and hamstrings will contract in that order to return the body to upright.

If the perturbation is strong and your center of gravity moves well past your base of support, it is necessary to take a forward or backward step to regain balance. This is referred to as a stepping strategy. Studies have shown age-related changes in stepping in older adults. Compared to younger people, older adults initiate the stepping strategy in response to smaller losses of balance and tend to take several small steps rather than one larger step (Maki & McIlroy, 2006).

Arm movements have a considerable role in balance control and are part of the strategies discussed above. The upper limbs start to react at the very beginning of a disruption of balance and continue to be active as the body attempts to regain control. By automatically reaching and grasping for support, the arms perform a protective function. In the case of a small perturbation, upper limb movements can prevent a fall by shifting the center of gravity away from the imbalance.

When upper extremity paresis or spasticity is present, post stroke subjects exhibit poor protective reactions during a perturbation of balance. They demonstrate a deficit in anticipatory and reactive postural adjustments. These impairments of the affected upper limbs limit a person’s ability to recover from perturbations during functional tasks such as walking (Arya et al., 2014).

Even in the absence of a neurologic disorder, age-related changes affect upper extremity reaction time when balance is disrupted. Older adults reach for support surfaces more readily than younger adults but the reach-reaction time is slower. Increased tendency to reach for support and a slowing of these reactions have been found to be predictive of falling in daily activities (Maki & McIlroy, 2006).

Comparing Reflexes, Automatic Reactions, and Volitional Movement

Reflexes

Think for a moment that you are cooking dinner and accidentally touch a scalding hot fry pan. You feel the heat and withdraw instantaneously. You aren’t thinking “I better take my hand off the hot pan before it burns me”—your reflexes take care of that for you. The withdrawal is almost instantaneous because your nervous system senses danger and reflexively withdraws.

Automatic Reactions

This type of reaction is used in movement strategies; they are slower than reflexes but faster than volitional movement. They are fast enough to help us respond to losses of balance without having to think.

Volitional Movement

This type of movement requires thought and is relatively slow compared to reflexive and automatic movement. Using our brains to think about movement isn’t very practical when we need something done really fast—by the time your brain warns you to bend your waist, step forward, or grab onto something when the bus stops abruptly, it’s already too late to regain balance.

Activity

Stand up next to your chair. Make sure you are standing on a flat, firm surface. Now close your eyes. Notice that your body sways a little—you are using the ankle strategy to stay balanced. Notice also that after a short amount of time you sway less—that means your nervous system is adjusting. Often, following a stroke, a person looses the ability to use the ankle strategy. This can have a profound impact on balance.

Stand up again. Ask someone to give you a little nudge from behind. Try not to take a step. If it was a truly small nudge you will likely bend at the waist to try to regain your balance. This is an example of the hip strategy.

Now ask your partner to give you a slightly bigger nudge from behind. If the nudge is big enough you’ll have to take a step. This is the stepping strategy.

We use these strategies automatically, all day long, without effort. Someone who has had a stroke can’t access these strategies as quickly as you can. If faced with a nudge from a passerby, or a bus starting/stopping, or a walk on uneven ground, the inability to adjust quickly may result in a fall.

Importance of Walking Early and Often

Regaining the ability to walk following a stroke is of paramount importance to patients and caregivers alike; improving balance and walking leads to greater independence and improves general well-being.

In the first week following a stroke, only one-third of patients are able to walk without assistance. In the following weeks, walking ability generally improves. At 3 weeks, or at hospital discharge, more than half of stroke survivors can walk unaided. By 6 months, more than 80% are able to walk independently without physical assistance from another person (Balasubramanian et al., 2014).

Following a stroke, walking can take a lot of energy; impaired muscle function, weakness, and poor cardiovascular conditioning can double the amount of energy expended. The high energy cost of walking can affect a person’s ability to participate in daily activities and lead to a vicious cycle where physical activity is avoided. For example, in one study, stroke patients walked 50% of the daily amount of matched sedentary adults and used 75% of their VO2 peak for walking at a submaximal rate (Danielsson et al., 2011).

Walking may improve more rapidly when patients are involved in setting specific goals. The results of several motor learning studies in which the person’s attention was focused on the outcome of an action rather than the action itself produced more effective performance than focusing on the quality of the movement (Carr & Shepherd, 2011).

In the hospital, an early goal for walking might be to walk to the next appointment, or to walk at least part of the way, rather than being transported in a wheelchair. Each day the patient should be encouraged to select a distance to walk independently and safely. Initially, this may be only a few steps. The goal is to walk the chosen distance a certain number of times a day, increasing distance as soon as possible, and keeping a record of progress, which gives the patient a specific focus (Carr & Shepherd, 2011).

Walking Adaptability, Stepping, and Postural Control

Walking is greatly dependent upon our ability to adapt to varying environmental conditions and tasks. Walking from the bedroom to the bathroom with a walker requires a different level of attention and adaptability than walking across a busy street carrying a bag of groceries. Even walking and talking can be a challenge for post stroke patients.

Over time, up to 85% of individuals with a stroke regain independent walking ability, but at discharge from inpatient rehab only about 7% can manage steps and inclines or walk the speeds and distances required to walk competently in the community. Limited ability to adjust to changes in the task and environment means a person either avoids walking in complex situations (a safety strategy) or has a heightened risk of falls when required to walk under these challenging conditions (Balasubramanian et al., 2014).

Despite its importance, assessment of walking adaptability has received relatively little attention. Frequently used assessments of walking ability after stroke involve walking short distances (such as the Timed Up and Go test) and examination of isolated limb movements (such as the Fugl-Meyer Assessment). Although valuable, these assessments do not take into account the skills needed to re-engage in safe and independent ambulation in the home and community. Comprehensive assessments and specific interventions are needed to improve walking adaptability (Balasubramanian et al., 2014).

In addition to the ability to adapt to different conditions and tasks, walking adaptability has two other requirements: (1) stepping, and (2) postural control (Shumway-Cook & Woollocott, 2012). Stepping involves the ability to generate and maintain a rhythmic, alternating gait pattern as well as the ability to start and stop. Postural control involves both the musculoskeletal and nervous systems.

To walk effectively, the central nervous system must:

  1. Generate the basic stepping pattern of rhythmic reciprocal limb movements while supporting the body against gravity and propelling it forward.
  2. Maintain control of posture (equilibrium) to keep the center of mass over a constantly moving base of support and maintain the body upright in space.
  3. Adapt to environmental circumstance or changes in the behavioral goal (Balasubramanian et al., 2014).

Walking Adaptability

image: graph of walking adaptability components

Source: Balasubramanian et al., 2014.

 

These components are especially necessary for complex tasks. For example, walking adaptability is crucial on uneven ground or cluttered terrains and when the task requires walking and turning or negotiating a curved path. There are endless combinations of task goals and environmental circumstances that must be considered to comprehensively capture walking adaptability (Balasubramanian et al., 2014).

Walking adaptability is very important for community ambulation. Patla and Shumway-Cook have described “dimensions” that affect a person’s ability to adapt while walking. These are external demands that must be met for successful community mobility:

  • Distance (distance walked)
  • Temporal factors (time needed to cross a busy street or crosswalk, ability to maintain the same speed as those around them)
  • Ambient conditions (rain, heat, snow, etc.)
  • Physical load (packages carried, number of doors that need to be opened)
  • Terrain (stairs, curbs, slopes, uneven ground, grass, elevators, obstacles)
  • Attentional demands (distractions in the environment, noise, cars, crowds, talking)
  • Postural transitions (stopping, reaching, backing up, turning head, change direction)
  • Traffic density (number of people within arm’s reach, unexpected collisions and near collisions with other people) (Shumway-Cook et al., 2002)

Improving Endurance for Walking

It is evident that many patients are discharged from inpatient rehabilitation severely deconditioned, meaning that their energy levels are too low for active participation in daily life. Physicians, therapists, and nursing staff responsible for rehabilitation practice should address this issue not only during inpatient rehabilitation but also after discharge by promoting and supporting community-based exercise opportunities. During inpatient rehabilitation, group sessions should be frequent and need to include specific aerobic training. Physical therapy must take advantage of the training aids available, including exercise equipment such as treadmills, and of new developments in computerized feedback systems, robotics, and electromechanical trainers.

Janet Carr and Roberta Sheperd
University of Sydney, Australia

Although many people affected by stroke have regained some ability to walk by the time they are discharged from rehab, many have low endurance, which limits their ability to perform household tasks or even to walk short distances. After a stroke, walking requires a much higher level of energy expenditure, and upon discharge many stroke patients are not necessarily functionalwalkers (Carr & Sheperd, 2011).

Functional walking is assessed using tests of speed, distance, and time. Minimal criteria for successful community walking include an independent walking velocity of 0.8 m/s or greater (about 2.6 feet/second), the ability to negotiate uneven terrain and curbs, and the physical endurance to walk 500 meters or more. In a review of 109 people discharged from physical therapy, only 7% achieved the minimum level. Cardiorespiratory fitness training can address both the efficiency with which people affected by stroke can walk and the distance they are able to achieve (Carr & Sheperd, 2011).

The loss of independent ambulation outdoors has been identified as one of the most debilitating consequences of stroke. Among stroke survivors 1 year after stroke, the most striking area of difficulty was low endurance measured by the distance walked in a 6-minute walk test. Those subjects able to complete this test were able to walk on average only 250 meters (820 feet) compared to the age-predicted distance of >600 meters (almost 2,000 feet), equivalent to 40% of their predicted ability and not far enough for a reasonable and active lifestyle. The detrimental effect of low exercise capacity and muscle endurance on functional mobility and on resistance to fatigue is likely to increase after discharge if follow-up physical activity and exercise programs are not available (Carr & Sheperd, 2011).

In 2002 the American Thoracic Society (ATS) published guidelines for the 6-minute walk test with the objective of standardizing the protocol to encourage its further application and to allow direct comparisons among different studies and populations. The American Thoracic Society guidelines include test indications and contraindications, safety measures, and a step-by-step protocol as well as assistance with clinical interpretation (Dunn et al., 2015).

Key components of the protocol include the test location, walkway length, measurements, and instructions. According to the American Thoracic Society protocol, the test should be performed on a flat, enclosed (indoor) walkway 30 m (just under 100 feet) in length. This protocol requires 180° turns at either end of the walkway and additional space for turning. The guidelines advise that shorter walkway lengths require more directional changes and can reduce the distances achieved. The influence of directional changes may be amplified in the stroke population, who characteristically have impaired balance, asymmetric gait patterns, and altered responses for turn preparation. Conversely, reducing the number of directional changes may increase the distance achieved (Dunn et al., 2015).

Body Weight-Supported Treadmill Training

Body weight-supported treadmill training (BWSTT) is an increasingly being used to encourage early walking following a stroke. It is a rehabilitation technique in which patients walk on a treadmill with their body weight partly supported. Body weight-supported treadmill training augments walking by enabling repetitive practice of gait (Takeuchi & Izumi, 2013).

In patients who have experienced a stroke, partial unloading of the lower extremities by the body weight-support system results in straighter trunk and knee alignment during the loading phase of walking. It can also improve swing1 asymmetry, stride length, and walking speed, and allows a patient to practice nearly normal gait patterns and avoid developing compensatory walking habits, such as hip hiking and circumduction2 (Takeuchi & Izumi, 2013).

1Swing phase of gait: during walking, the swing phase begins as the toe lifts of the ground, continues as the knee bends and the leg moves forward, and ends when the heel come in contact with the ground.

2Circumduction: a gait abnormality in which the leg is swung around and forward in a semi-circle. The hip is often hiked up to create enough room for the leg to swing forward.

Locomotor Training

image: photo of patient on body-weight supported treadmill

Locomotor Training Program (LTP). Source: Duncan et al., 2007.

image: photo of patient on body-weight supported treadmill

Another example of a body-weight supported treadmill. Source: NIH, 2011.

Treadmill walking allows for independent and semi-supervised practice, for those with more ability, as well as improving aerobic capacity and increasing walking speed and endurance. The very early practice of assisted over-ground and harness-supported treadmill walking is probably critical to good post-discharge functional capacity in terms of both performance and energy levels (Carr & Shepherd, 2011).

The Locomotor Experience Applied Post Stroke (LEAPS) trial—the largest stroke rehabilitation study ever conducted in the United States—set out to compare the effectiveness of the body weight-supported treadmill training with walking practice. Participants started at two different stages—two months post stroke (early locomotor training) and six months post stroke (late locomotor training). The locomotor training was also compared to a home exercise program managed by a physical therapist, which was aimed at enhancing flexibility, range of motion, strength, and balance as a way to improve walking. The primary measure was improvement in walking at 1 year after the stroke (NINDS, 2011).

In the LEAPS trial, stroke patients who had physical therapy at home improved their ability to walk just as well as those who were treated in a training program that requires the use of a body weight-supported treadmill device followed by walking practice. The study, funded by the NIH, also found that patients continued to improve up to 1 year after stroke—defying conventional wisdom that recovery occurs early and tops out at 6 months. In fact, even patients who started rehabilitation as late as 6 months after stroke were able to improve their walking (NINDS, 2011).

“We were pleased to see that stroke patients who had a home physical therapy exercise program improved just as well as those who did the locomotor training,” said Pamela W. Duncan, principal investigator of LEAPS and professor at Duke University School of Medicine. “The home physical therapy program is more convenient and pragmatic. Usual care should incorporate more intensive exercise programs that are easily accessible to patients to improve walking, function, and quality of life.”

Robotic Gait Training Devices

Several lower-limb rehabilitation robots have been developed to restore mobility of the affected limbs. These systems can be grouped according to the rehabilitation principle they follow:

  • Treadmill gait trainers
  • Foot-plate-based gait trainers
  • Over-ground gait trainers
  • Stationary gait trainers
  • Ankle rehabilitation systems
    • Stationary systems
    • Active foot orthoses (Díaz et al., 2011)

The Lokomat System

image: photo of patient using Lokomat

Source: Diaz et al., 2011.

 

Many robotic systems have been developed aiming to automate and improve body weight-assisted treadmill trainers as a means for reducing therapist labor. Usually these systems are based on exoskeleton type robots in combination with a treadmill. One such system—the Lokomat—consists of a robotic gait orthosis and an advanced body weight-support system, combined with a treadmill. It uses computer-controlled motors (drives) that are integrated in the gait orthosis at each hip and knee joint. The drives are precisely synchronized with the speed of the treadmill to ensure a precise match between the speed of the gait orthosis and the treadmill (Díaz et al., 2011).

The LocoHelp System

image: photo of patient using LocoHelp

The LokoHelp gait trainer “Pedago.” Source: Diaz et al., 2011.

 

The LokoHelp is another device developed for improving gait after brain injury. The LokoHelp is placed in the middle of the treadmill surface, parallel to the walking direction and fixed to the front of the treadmill with a simple clamp. It also provides a body weight-support system. Clinical trials have shown that the system improves the gait ability of the patient in the same way as the manual locomotor training; however, the LokoHelp required less therapeutic assistance and thus therapist discomfort is reduced. This fact is a general conclusion for almost all robotic systems to date (Díaz et al., 2011).

The KineAssist

image: photo of KineAssist

Source: Diaz et al., 2011.

 

Over-ground gait trainers consist of robots that assist the patient in walking over ground. These trainers allow patients to move under their own control rather than moving them through predetermined movement patterns. The KineAssist is one robotic device used for gait and balance training. It consists of a custom-designed torso and pelvis harness attached to a mobile robotic base. The robot is controlled according to the forces detected from the subject by the load cells located in the pelvic harness (Díaz et al., 2011).

The ReWalk Robotic Suit

image: photo of patient using ReWalk Robotic Suit

Source: Diaz et al., 2011.

ReWalk is a wearable, motorized quasi-robotic suit that can be used for therapeutic activities. ReWalk uses a light, wearable brace support suit that integrates motors at the joints, rechargeable batteries, an array of sensors, and a computer-based control system. Upper-body movements of the user are detected and used to initiate and maintain walking processes (Díaz et al., 2011).

The capacity of robots to deliver high-intensity and repeatable training make them potentially valuable tools to provide high-quality treatment at a lower cost and effort. These systems can also be used at home to allow patients to perform therapies independently, not replacing the therapist but supporting the therapy program. However, despite the attractiveness of robotic devices, clinical studies still show little evidence for the superior effectiveness of robotic therapy compared to current therapy practices, although robotics have been shown to reduce therapist effort, time, and costs (Díaz et al., 2011).

via Regaining the Ability to Walk | Stroke: Emergency Care and Rehabilitation

, , , , , , , , , , , , ,

Leave a comment

[WEB SITE] Connecting Care for Stroke Patients – Rehab Managment

 

 

by Meri K. Slaugenhaupt, MPT, and Valerie Bucek, MA, CCC-SLP/L

According to the Centers for Disease Control and Prevention, someone in the United States has a stroke every 40 seconds. Someone dies from a stroke every 4 minutes. It is a leading cause of long-term disability. A stroke occurs when there is a disruption in blood flow to the brain. The most common kind of stroke, ischemic stroke, occurs when a clot or mass obstructs a blood vessel. A hemorrhagic stroke occurs when a weakened blood vessel ruptures.

This article follows the treatment of stroke survivor Greg Myers, who was finishing his workday when he suddenly became confused and had difficulty walking and talking. A co-worker called Emergency Medical Services, and Myers was transported to the nearest acute care primary stroke center for treatment. Myers had suffered a right cerebellar hemorrhage. His hospital course was complicated by the need for evacuation of the hematoma, post-occipital craniotomy, and wound dehiscence. After several days of acute medical care and monitoring, it was determined that Myers would benefit from intensive multidisciplinary rehabilitation services to address his residual physical deficits and cognitive needs. To begin his stroke rehabilitation journey, Myers chose HealthSouth Harmarville Rehabilitation Hospital (which will be known as Encompass Health Rehabilitation Hospital of Harmarville beginning January 1, 2019).

Evidence-Based Rehabilitation

Since 2002, HealthSouth Harmarville has been certified as a Joint Commission Disease-Specific Care Stroke Program. The team follows evidence-based Clinical Practice Guidelines (CPG) for treatment of individuals with stroke. By following these guidelines, the team has confidence that treatments are based upon the most current evidence-based research and philosophies.

Comprehensive rehabilitation services, such as those provided at HealthSouth Harmarville, are found to be one of the most effective ways to achieve functional recovery and independence after a stroke. Intensive rehabilitation services facilitates neuroplasticity and recovery of motor function. Neuroplasticity is the ability for the brain to “rewire” or adapt to new circumstances by reorganizing synaptic connections. By engaging in therapy that is challenging, repetitive, and task specific, motor pathways that have been disrupted by the stroke can be rewired and strengthened.

Reducing Complications of Stroke

One of the goals of the clinical practice guidelines is to reduce the complications of stroke. One of the most frequent complications following a stroke is difficulty swallowing, or dysphagia. Stroke survivors with dysphagia have an increased risk of pneumonia, dehydration, and malnutrition. Instrumental assessment in the form of a Modified Barium Swallow study (MBS) or Fiber-Optic Endoscopic Evaluation of Swallowing (FEES) determine an appropriate, safe diet and the course of treatment. Swallowing difficulty is treated by exercise, diet modification, and technology, such as neuromuscular electrical stimulation.

Early therapy intervention is also important to maximize motor recovery in our stroke patients. Deconditioning and non-use are a hurdle to restoring function, especially with the elderly stroke population. Physiological changes and complications as a result of prolonged bedrest can lead to additional loss of muscle mass, contractures, skin breakdown, and deep vein thrombosis, all of which further hinder the stroke-recovery process.

Technology and the Path to Walking

Being able to walk again is a common goal shared by most stroke survivors, and Myers was no exception. Studies show that stroke affects mobility in greater than half of stroke survivors. Those suffering from gait disturbances often have further difficulties with balance and cardiovascular endurance, and are subsequently more likely to fall. Therefore, improvements achieved with gait function frequently carry over to improvements in many other aspects of daily living.

In the past decade, technology has moved to the forefront of therapeutic intervention as an adjunct to conventional practice. This is true for all disciplines and ranges from Vital Stimulation in the treatment of dysphagia to robotics in the treatment of movement disorders.

Body weight-supported technology is one such area of technological advancement being utilized for gait training. Partial body weight (PBW)-supported devices are designed to use a harness and/or suspension system to assist with standing and safety during ambulation. When partial body weight devices are used over a treadmill, the therapist is able to change gait speed and work on gait quality under controlled, safe conditions. However, many PBW devices do not require use of a treadmill and can be used over the ground while providing similar training benefits to patients.

Automated technology incorporates the use of robotics, using attachments to the patient’s hip, knees, and ankles. These robotics guide the patient’s lower-extremity movement and promote normal movement throughout the entire gait cycle. Robotic body weight support is generally used with more involved patients who have significant difficulty with lower extremity movement. These devices allow the therapist to gradually decrease the support provided as gait improves.

Fall Protection and Balance

A clinical advantage that these technologies have over other conventional gait training is the reduced support required by the therapist. When asked about using a PBW support device, Tammy Whitlinger, a physical therapist assistant at HealthSouth Harmarville for 28 years, states, “I am able to safely initiate gait training earlier, and my patients are less anxious about the training because they know that they can’t fall.”

Balance deficits resulting from a stroke can also be very debilitating and frustrating for individuals. Since Myers had a stroke that affected the cerebellar part of his brain, balance training was also a major component of his therapy program. Myers’s balance program included a variety of approaches including altering visual feedback and multi-surface challenges. Equipment utilized for balance deficits can be as simple as carpet or foam. More complex devices are designed to use interactive technology and visual feedback to further analyze a patient’s posture and balance deficits.

Treadmills are another piece of technology commonly found in the clinic that are used to improve motor recovery after stroke. Treadmill training can be used with or without partial body weight support. When used along with conventional therapy, treadmill training has been shown to improve gait quality and efficiency, strength, and cardiovascular fitness. Other adjunct modalities are also utilized by physical therapists to address aerobic fitness and reciprocal movements of the lower extremities, such as stepper machines, elliptical trainers, and stationary/recumbent bikes.

Upper Extremity Dysfunction

Advanced technology used for the treatment of upper extremity dysfunction has also impacted stroke rehabilitation. Improving deficits in fine motor control, coordination, and weakness are often a focus of treatment in stroke recovery. Electrical stimulation, biofeedback, or robotics are utilized in many technologies to retrain arm movements and hand function. Some of these devices are even coupled with gaming to provide motivation and entertainment for the patient while exercising.

Family/caregiver involvement early on is very beneficial to a successful inpatient rehabilitation stay and transition to home. Our Clinical Practice Guidelines recommend that patients and caregivers be educated throughout the entire stay to learn about disease process, expected outcomes, treatment goals, and follow-up support services available in the home and community. As part of our discharge planning and preparation for a safe transition home, we completed a home visit for Myers. This is when the physical and occupational therapist team takes the patient home in order to problem-solve accessibility issues and to perform caregiver training in their own environment. By doing this, Myers and his wife were less anxious and fearful about their transition home.

Neuro-Focused Outpatient Rehab

Quality inpatient rehabilitation is a vital step in the journey of returning to community participation. Many patients choose to receive home health services after inpatient rehabilitation to assist with the transition to home. Myers briefly utilized home health before initiating the next stage of his recovery, which was a neuro-focused outpatient program found at HealthSouth Harmarville. Outpatient therapy provides an opportunity for stroke survivors to build endurance and to practice skills in higher levels of difficulty. Concerns and issues that have arisen from community integration can be incorporated into treatment and resolved. Instrumental activities of daily living are also a focus of the outpatient program. Participation in activities such as disease-specific support groups and wellness programs can help to facilitate return to the community.

HealthSouth Harmarville offers the entire continuum of care for patients, ranging from inpatient rehabilitation to home health to outpatient services to community support groups. Myers’s wife, Cathy, has become an active participant in the hospital’s Stroke Support Group, attending the educational programs and interacting with families of other stroke survivors. Myers, himself, continues to make gains in physical functioning, daily living skills, communication, and cognitive skills in outpatient therapy. He has returned to some of the leisure activities he enjoyed before his stroke. The couple took another step toward normalcy by going on a vacation to Aruba in August.

Additionally, Greg Myers was honored at the hospital’s National Rehabilitation Awareness Week celebration in September as one of five Rehab Champions treated in the last year who displayed determination, a positive attitude, and the ability to overcome obstacles in order to be successful. RM

Meri K. Slaugenhaupt, MPT, has served on the HealthSouth Harmarville Rehabilitation Hospital team since 1993, beginning as a physical therapist and now serves as the team’s program champion of the stroke program. In this role, Slaugenhaupt has obtained Stroke Joint Commission Disease Specific Certification, making HealthSouth Harmarville the first rehabilitation hospital to achieve this status in 2002. Under Slaugenhaupt’s leadership the hospital has achieved its 8th Joint Commission disease-specific care certification in 2017 for the stroke program. She earned her bachelor’s degree in physiology with a minor in exercise science from Penn State University in 1991. She then earned her master’s in physical therapy at the University of Pittsburgh.

Valerie Bucek, MA, CCC-SLP/L, has been a member of the HealthSouth Harmarville Rehabilitation Hospital team for more than 25 years. She began her work there as a staff speech pathologist and a speech therapy supervisor prior to her current role as the hospital’s therapy manager. Bucek received a bachelor’s degree in speech pathology from Duquesne University and a master’s degree in communication disorders from the University of Pittsburgh. She is one of the leaders of the hospital’s stroke and Parkinson’s disease programs, is founder and facilitator of the HealthSouth Harmarville Community Stroke Support Group, and is an affiliate for the ASHA Special Interest Division-Adult Neurogenic Communication Disorders. For more information, contactRehabEditor@medqor.com.

via Connecting Care for Stroke Patients – Rehab Managment

, , , , , , , ,

Leave a comment

[WEB SITE] Transcranial Magnetic Stimulation for the Recovery of Gait and Balance in Stroke Patients – BrainPost

Post by Thomas Brown

What’s the science?

The permanent brain damage which occurs following ischemic stroke makes functional recovery difficult. While physiotherapy can result in improved voluntary motor recovery, the improvement of balance and gait can be harder. Issues with balance pose a safety risk for stroke patients, who may be more likely to fall. Ultimately, problems with balance can mean reduced independence for patients. The cerebellum, a structure located at the back of the brain, is known to regulate movement, gait and balance. Deficits to the cerebellum often result in ataxia and widened gaits, making this area a prime target for functional recovery analysis. This week in JAMA Neurology Koch and colleagues demonstrate in a phase IIa clinical trial, an increase in gait and balance in hemiparetic stroke patients, up to three weeks after physiotherapy supplemented with transcranial magnetic stimulation of the cerebellum.

How did they do it?

A group of 36 hemiparetic (one side affected) stroke patients were randomly assigned to one of two age-matched groups; control or experimental. The experimental group was treated with intermittent theta-burst magnetic stimulation (TBS) of the cerebellar region ipsilateral (same side) to their motor issues. Intermittent TBS is a process by which bursts of magnetic energy are applied to the scalp over an area of interest. TBS was administered in conjunction with physiotherapy to the experimental group for three weeks. The control group still received physiotherapy, but received sham (fake) TBS. Patients were assessed using a wide range of balance and gait analysis tests to determine the degree of recovery. The authors relied primarily on the Berg Balance Scale, which is a series of 14 tests that determine the ability of an individual to balance without aid. Gait analysis was also performed, in which patients were asked to walk while a machine measured their gait (the space between each foot while walking). Neural activity was measured with electroencephalography while transcranial magnetic stimulation was applied simultaneously (EEG-TMS). This technique was used to measure neural activity changes in motor regions of the brain following activation of the motor cortex using a different TMS paradigm than the one used for treatment.

What did they find?

The authors found that after three weeks of the last treatment with either sham or cerebellar TBS, there was an average increase in the Berg Balance Scale score in those treated with TBS compared to controls. They also showed a reduction in gait width; a wide gait is often associated with the body’s attempt to compensate for problems with balance. This finding was supported by correlational analysis which found that a reduction is step width was associated with an improvement in Berg Balance Scale score. Interestingly, three weeks after treatment there was also an increase in neural activity in the motor (M1) region of the brain in the hemispheres affected by the stoke, in treated patients compared to controls. This area of the cortex is associated with the movement execution. Altogether these findings suggest that there were significant balance, gait and motor cortex activity improvements following treatment with TBS. Critically, no adverse effects were observed following treatment with TBS during the clinical trial.

stroke_image.png

What’s the impact?

These findings suggest that theta-burst stimulation may be an effective way of supplementing physiotherapy in those suffering with balance and gait deficits following stroke. Theta-burst stimulation in conjunction with physiotherapy, was able to improve both balance and gait in stroke patients. Treatment with theta-burst stimulation could reduce the chance of falling and improve independence in stroke patients.

stroke_quote.png

Koch et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery
in Patients With Hemiparetic Stroke. JAMA Neurology (2018).Access the original scientific publication here

 

via Weekly BrainPost — BrainPost

, , , , , , , , ,

Leave a comment

[WEB SITE] Power up! Sunset Park hospital’s new video game helps stroke victims recover

Power glove: Susan Chan used the NYU Langone Hospital-Brooklyn’s weighted joystick to play video games as part of her stroke-recovery therapy.

By Colin Mixson

This treatment is next level!

A Sunset Park medical center is using new video-game technology to help stroke survivors and victims of other brain injuries regain motor function, a treatment one hospital honcho called effective — and fun.

“There was a boredom factor to try and get a person to cooperate through the whole treatment,” said Vincent Cavallaro, NYU Langone Hospital–Brooklyn’s vice president of neurology and rehabilitation. “This is much more engaging.”

But patients at the 55th Street hospital between First and Second avenues don’t play with your run-of-the-mill Nintendo controller. Instead, they guide digital avatars — including cartoon go-kart racers in a game similar to Mario Kart — using a motorized machine that challenges them to keep theirmotor functionwhile helping their recovering brains develop new ways to communicate with their bodies.

And the machine, called Kore Balance, isn’t just loaded with the go-karting program. It features a variety of games that also includes one in which patients guide a penguin as it slides down a ski slope, which allows them to track their progress and even play against others in recovery, according to another hospital employee.

“You get to compete against yourself, and other patients as well,” said Kara Nizolek, who directs rehabilitation at the hospital.

The Kore Balance contraption is the latest in the medical center’s fleet of video-game-like devices that assist those recuperating, which also include a sensor-equipped glove and corresponding program that helps fine tune motor skills by allowing patients to play music by making various gestures with their hands, and a joystick with a weighted support that allows people who can only partially move their arms to improve their range of motion.

Those devices have proven extremely effective in aiding recovery over the years, according to Nizolek, who said video-game-assisted rehabilitation is no longer the future, but the present.

“This is the new hot topic,” she said. “Virtual reality and robotic interventions are seen as best practices.”

via Power up! Sunset Park hospital’s new video game helps stroke victims recover | Brooklyn Daily

, , ,

Leave a comment

[Abstract] Do active video games improve motor function in people with developmental disabilities? A meta-analysis of randomized-controlled trials

Abstract

Objective

To conduct a meta-analysis to examine the effectiveness of active video games (AVGs) interventions on motor function in people with developmental disabilities.

Data sources

An electronic search of seven databases (Pubmed, EbscoHost, Informit, Scopus, ScienceDirect, Proquest, and PsychInfo) was conducted for randomized controlled trials (RCTs) evaluating active video games to improve motor function in people with developmental disability, published through to May 2018.

Study selection

Only articles in a peer-reviewed journal in English were selected, and screened by two independent reviewers for RCTs that compared AVGs to conventional therapy. Twelve RCTs involving 370 people with developmental disabilities met the inclusion criteria for quantitative analysis.

Data extraction

Two independent reviewers assessed risk of bias and study quality using the Egger’s R, GRADE and TiDier checklists.

Data synthesis

Three meta-analyses revealed a large effect size for AVGs to improve gross motor skills (Hedge’s g = 0.833, CI = 0.247 to 1.420), small to medium effects for balance (g = 0.458, CI = 0.023, 0.948), and a small, non-significant effect for functional mobility (g = 0.425, CI = -0.03, 0.881). Training frequency (i.e. number of sessions per week) moderated the effect of AVGs on motor function in people with developmental disabilities.

Conclusion

We conclude that AVGs show task-specific effectiveness for gross motor skills but the effects are moderated by training intensity. However, due to the low number of trials, diverse diagnoses, variable dosage and multiple outcome measures of the included trials, these results need to be interpreted with caution.

 

via Do active video games improve motor function in people with developmental disabilities? A meta-analysis of randomized-controlled trials – Archives of Physical Medicine and Rehabilitation

, , , , ,

Leave a comment

[Abstract] The Efficacy of Lower Extremity Mirror Therapy for Improving Balance, Gait, and Motor Function Poststroke: A Systematic Review and Meta-Analysis

Abstract

Background

Mirror therapy is less commonly used to target the lower extremity after stroke to improve outcomes but is simple to perform. This review and meta-analysis aimed to evaluate the efficacy of lower extremity mirror therapy in improving balance, gait, and motor function for individuals with stroke.

Methods

PubMed, Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Cumulative Index to Nursing and Allied Health Literature, Physiotherapy Evidence Database, and PsychINFO were searched from inception to May 2018 for randomized controlled trials (RCTs) comparing lower extremity mirror therapy to a control intervention for people with stroke. Pooled effects were determined by separate meta-analyses of gait speed, mobility, balance, and motor recovery.

Results

Seventeen RCTs involving 633 participants were included. Thirteen studies reported a significant between-group difference favoring mirror therapy in at least one lower extremity outcome. In a meta-analysis of 6 trials that reported change in gait speed, a large beneficial effect was observed following mirror therapy training (standardized mean differences [SMD] = 1.04 [95% confidence interval [CI] = .43, 1.66], I2 = 73%, and P < .001). Lower extremity mirror therapy also had a positive effect on mobility (5 studies, SMD = .46 [95% CI = .01, .90], I2 = 43%, and P = .05) and motor recovery (7 studies, SMD = .47 [95% CI = .21, .74], I2 = 0%, and P < .001). A significant pooled effect was not found for balance capacity.

Conclusions

Mirror therapy for the lower extremity has a large effect for gait speed improvement. This review also found a small positive effect of mirror therapy for mobility and lower extremity motor recovery after stroke.

 

via The Efficacy of Lower Extremity Mirror Therapy for Improving Balance, Gait, and Motor Function Poststroke: A Systematic Review and Meta-Analysis – Journal of Stroke and Cerebrovascular Diseases

, , , , , , ,

Leave a comment

[WEB PAGE] Gait & Balance Technology Showcase – Rehab Managment

Published on 

The market for gait and balance products is robust. The rising number of aging Baby Boomers and those affected by neurological conditions continues to stimulate a need for technologies designed to help rehabilitate and restore function when mobility becomes impaired. Rehab Management has gathered a select group of products to showcase some of the latest technologies on the market being used in clinical settings and research. These products are powered by features that can help patients regain the functional abilities to meet the everyday challenges of living safely and comfortably in their environments. Review the products in this section to better understand how they can help improve safety, efficiency, and outcomes in the rehab setting.

motorika_Clean_RA[1]_small

Optimal-G Pro – Get One Step Ahead

Optimal G Pro, an advanced robotic gait rehabilitation platform, is designed to accelerate the rehabilitation journey and to improve outcomes in both adults and pediatric patients suffering from post-neurological trauma and orthopedic injury. Incorporating Enhanced Learning Intelligence Technology (E.L.I.T.E.) pro-active motor learning technology, the Optimal G Pro is made to enhance clinical decision-making via an adaptive and progressive therapy session. The robotic system can constantly challenge and engage the patient through various modes of operation, feedback threshold control, interactive exercises and games, virtual reality, alongside instant visual and auditory feedback — all personalized to each patient’s needs. Based on clinical principles of brain recovery in gait rehabilitation with breakthrough technology, the Optimal-G Pro enables neuromuscular re-education and brain retraining.

For more information, contact Motorika USA Inc, (877) 236-0313, http://www.motorika.com

 

Biodex

GAIT TRAINER 3 WITH MUSIC-ASSISTED THERAPY

The Gait Trainer 3 treadmill, from Biodex Medical Systems Inc, headquartered in Shirley, NY, features sensorimotor music enhancements developed in collaboration with physical and music therapists. The library of tempo-to-cadence-matched music selections are composed to inspire correct movement. Its instrumented track can detect where each foot strikes as a patient walks, and displays those footsteps on a large LCD screen. The Gait Trainer’s track records and analyzes step length, step speed, and step symmetry, documenting the effectiveness of gait therapy. This combination of music, biofeedback and gait repetition is aimed at enhancing neuroplasticity, to recover movement lost to injury or disease.

For more information, contact Biodex Medical Systems Inc, (800) 224-6339; www.biodex.com

ClarkeHealthCare

DST8000 TRIPLE PRO STAIR TRAINER

Clarke Health Care Products Inc, Oakdale, Pa, introduces the Dynamic Stair Trainer DST8000 Triple Pro, designed to motivate and increase a patient’s rehabilitation and make easy work for therapist’s reports. The stair trainer features electronically elevating steps that allow clients to start stair climbing at a level appropriate to their ability. The remote-controlled elevating steps start from a flat plane and rise to 6.5 inches. On the other side is an increasing incline, which raises and lowers. The patient’s performance in past and current sessions is displayed on the computer. DST Factor is a parameter which summarizes the patient’s status and estimated potential for future improvement.

For more information, contact Clarke Health Care Products Inc, (888) 347-4537; www.clarkehealthcare.com

Exertools Strobe Glasses

STROBE FOR PERFORMANCE IMPROVEMENT

The Senaptec Strobe from Exertools, Petaluma, Calif, is designed to train the connections between an individual’s eyes, brain, and body. Using liquid crystal technology, the lenses flicker between clear and opaque, removing visual information and forcing the individual to process more efficiently. The Senaptec Strobe can be integrated into existing sports training drills and exercises, or be added to vision therapy protocols as an uploading technique. As an athlete, the strobes can help move training to a higher level. The curved liquid crystals provide a full 180-degree field of view that allows users to enhance their visuals skills in the training room, or on the field of play.

For more information, contact Exertools, (707) 570-5158; www.exertools.com

Adobe Photoshop PDF

FULL FOOT AND COMBINATION LIFTS

G&W Heel Lift, Cuba, Mo, offers Clearly Adjustable Full Foot & Combination Lifts, engineered to provide minimal ankle angulation using a foundation of the entire length of the foot and made with clear vinyl in true 1 mm layers. According to the company, keeping the foot as level as possible helps reduce gait changes, foot pressure, and tendon length. The lift is adjustable to 8 mm, and the Combination is adjustable to 18 mm. It is available in various shoes sizes, for both left and right foot.

For more information, contact G&W Heel Lift Inc, (800) 235-4387; www.gwheellift.com

GaitRite

PORTABLE GAIT ANALYSIS

GAITRite systems, from CIR Systems Inc, Franklin, NJ, is engineered to capture objective data to reliably document patient condition and progression. The software identifies, through a multitude of specific Spatial-Temporal Gait parameters, objective numbers which allow for informed assessment of targeted interventions and readily synchronizes with other systems, including video, EMG, etc. Robust reporting options allow for tailorable reports with multiple export functions available.

For more information, contact CIR Systems Inc, (888) 482-2362; www.gaitrite.com

GorbelMedical

OVERHEAD FALL PROTECTION

SafeGait ACTIVE from Gorbel Medical, Victor, NY, is an overhead fall protection device that allows patients to move dynamically through treatment sessions. It is designed to treat patients further along the continuum of care and is ideal for hospital-based or private practice outpatient clinics. SafeGait ACTIVE is designed to allow for multi-directional movement while also protecting patients as they practice gait, balance, jumps, transfer, and stair exercises. Exclusive Dynamic Fall Protection (DFP) technology distinguishes between a patient’s intentional movement downward and a fall so therapists can safely challenge patients and facilitate error.

For more information, contact Gorbel Medical, (844) 846-8744; www.safegait.com

Hocoma

TRAINING TREADMILL VIA VIRTUAL REALITY

C-Mill, available from Hocoma Inc, Norwell, Mass, is engineered as complete, advanced evaluation and training treadmill, with the ability to simulate everyday life challenges through augmented and virtual reality in a safe and comfortable environment. C-Mill can help patients train for everyday life’s environments and changing circumstances, such as walking in a crowded area or avoiding obstacles. A patient’s performance is measured and saved to provide both short- and long-term results and insights. The optional Body Weight Support (BWS) System and additional versatile balance exercise applications enable extended training possibilities.

For more information, contact Hocoma Inc, (877) 944-2200; www.hocoma.com

MobilityResearch

BODY WEIGHT SUPPORT OVER TREADMILL OR GROUND

LiteGait is a gait training device that simultaneously controls weight-bearing, posture, and balance over a treadmill or overground. Offered by Mobility Research, Tempe, Ariz, LiteGait creates an ideal environment for treating patients with a range of impairments and functional levels. Its harness design not only permits unilateral or bilateral support, allowing progression of the weight-bearing load from non to full weight bearing, but also allows the clinician to manually assist the legs and pelvis. LiteGait provides proper posture, reduces weight-bearing, eliminates balance concerns, and facilitates training of coordinated lower extremity movement.

For more information, contact Mobility Research, (800) 332-9255; www.litegait.com

ProtoKinetics

 ZENO ELECTRONIC WALKWAY SYSTEM

Managing and synthesizing accurate gait data is essential to outcomes-driven healthcare. The Zeno Walkway from ProtoKinetics, Havertown, Pa, has a wide surface that allows for the capture of assistive device performance in addition to the loading patterns of the patient’s footsteps. PKMAS software is engineered to automatically eliminate walker tracks, while expertly identifying overlapping steps, to provide robust temporal-spatial measurements for even the most complicated gait patterns. Recent implementation of the enhanced Gait Variability Index (eGVI) and automated Four Square Step Test are two examples of rehabilitation-related outcome measures which may assist in clinical decisions about balance control to plan therapy and discharge from the hospital.

For more information, contact ProtoKinetics, (610) 449-4879; www.protokinetics.com

Tekscan

GAIT ANALYSIS SYSTEM

Strideway, available from Tekscan, South Boston, is a modular system designed to calculate spatial, temporal, and kinetic parameters essential for a comprehensive gait analysis. Data is presented in easy-to-understand tables and graphs to quickly compare patient progress between visits. Symmetry tables provide quick insights into differences between left and right sides. The pressure data provided by the Strideway is useful to identify asymmetries, potential problem areas, pain points, or areas of ulceration. Featuring a smooth, flush surface, the Strideway is ideal for patients of all ages and its width easily accommodates those with walking aids. It is available in multiple lengths and provides flexibility to add or subtract length at any time. With a quick set-up time, full data collection can be completed in minutes.

For more information, contact Tekscan, (800) 248-3669; www.tekscan.com/strideway

VistaMedical

BODITRAK BALANCE MAT

Vista Medical, Winnipeg, Manitoba, Canada, introduces the BodiTrak Balance Mat, designed to assess steadiness, symmetry, and dynamic stability as an aid for fall prevention, concussion evaluation and recovery, athlete rehabilitation, and general postural/sway. The BodiTrak Balance Mat measures weight-bearing, like a force plate, but also pressure-maps each foot individually, including heel/toe segmentation. Additionally, the BodiTrak Balance Mat tracks center-of-pressure (COP) total distance moved, maximum COP displacement, and velocity of COP movement The Mat is engineered to bring quantification and objectivity to balance tests such as mCTSIB, which have historically been observational and subjective. By displaying and reporting detailed data about various balance-related metrics, it is designed to enable the detection of even slight improvements in outcomes over time—thereby enhancing the quality and value of reports for both physicians and insurers.

For more information, contact Vista Medical, (800) 822-3553; www.boditrak.com

 

via Gait & Balance Technology Showcase – Rehab Managment

, ,

Leave a comment

[Abstract] Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study

PDF

 

BACKGROUND: Intermittent theta burst stimulation (iTBS) was widely used in stroke rehabilitation and was more efficient than repetitive transcranial magnetic stimulation in terms of inducing larger motor evoked potential and producing longer effects. To our knowledge, the outcomes are not available combining rehabilitation and iTBS for improving motor function of lower extremities in patients with stroke.
AIM: To evaluate the feasibility and effectiveness of intermittent theta burst stimulation aiming to stimulate bilateral leg motor cortex and promote functional improvements.
DESIGN: A single blind, randomized controlled pilot study.
SETTING: Rehabilitation ward.
POPULATION: Twenty patients with chronic stroke finally enrolled for analyzed.
METHODS: Participants were randomized into two groups to receive 10 sessions of iTBS group and sham group over a 5-week period. The iTBS was delivered over the midline of skull to stimulate bilateral leg motor cortex. The outcome measures included balance, mobility, and leg motor functions were measured before and after interventions.
RESULTS: Within-group differences were significant in the Berg Balance Scale for both groups (Z=-2.442, P=0.015 in iTBS group; Z=-2.094, P=0.036 in sham group), in the Fugl-Meyer Assessment (Z=-2.264, P=0.024) and Overall Stability Index of Biodex Balance System of iTBS group (Z=-2.124, P=0.034). However, no significant between-group differences were found.
CONCLUSIONS: There was no powerful evidence to support the effectiveness of iTBS group better than sham control group. Some essential technical issues should be considered for future studies applying iTBS to stimulate bilateral leg motor cortex.
CLINICAL REHABILITATION IMPACT: iTBS combined with stroke rehabilitation are probably expected to be useful for promote brain plasticity and functional performance but some technical issues should be carefully considered.

via Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study – European Journal of Physical and Rehabilitation Medicine 2018 Aug 27 – Minerva Medica – Journals

, , , , , , ,

Leave a comment

[Abstract] The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke

via The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke – IOS Press

, , , ,

Leave a comment

%d bloggers like this: