Posts Tagged Balance

[WEB PAGE] Go Digital To Aid Standing and Walking in Rehab. Here’s How – Rehab Managment

Go Digital To Aid Standing and Walking in Rehab. Here’s How


Virtual reality video games, activity monitors, and handheld computer devices can help people stand as well as walk, according to an Australia-based study published in PLoS Medicine looking at the effects of digital devices in rehabilitation.

The trial took place in Sydney’s Liverpool Hospital, Bankstown-Lidcombe Hospital, and Adelaide’s Repatriation General Hospital, and included 300 participants ranging in age from 18 to 101 years old who were recovering from strokes, brain injuries, falls, and fractures.

Participants used on average four different devices while in hospital and two different devices when at home. Fitbits were the most commonly used digital device, but also tested on people in hospital and at home were a suite of devices like Xbox, Wii and iPads, making the exercises more interactive and enabling remote connection with their physiotherapist.

The digital devices included virtual reality video games, activity monitors, and handheld computer devices aimed at enabling a higher dose of therapy.

Those who exercised using digital devices in addition to their usual rehabilitation were found to have better mobility (walking, standing up and balance) after 3 weeks and 6 months, according to a media release from University of Sydney.

Patients using the digital devices in rehabilitation reported benefits including variety, fun, feedback about performance, cognitive challenge, enabled additional exercise, and potential to use the devices with others (eg, family, therapists, and other patients), the study’s lead author, Dr Leanne Hassett from the University of Sydney, notes in the release.

“These benefits meant patients were more likely to continue their therapy when and where it suited them, with the assistance of digital health care,” says Hassett, from the university’s Faculty of Medicine and Health.

People were young at heart when it came to devices, she adds.

“Participants loved Fitbits; one woman would demand to put it on in the middle of the night before she went to the toilet, to make sure all her steps were counted,” shares Hassett, who is a Senior Research Fellow in the Institute for Musculoskeletal Health and Senior Lecturer in the Discipline of Physiotherapy.

“This model of rehabilitation therapy proved to be feasible and enjoyable, and demonstrated that it could be used across different care settings, such as post-hospital rehabilitation, with mostly remote support by the physiotherapist.

“The study shows that future physical rehabilitation models should look at including digital devices to improve both inpatient and post-hospital rehabilitation,” she suggests.

The next step will be to trial the approach into clinical practice by incorporating it into the work of physiotherapists; recruitment for this is likely in 12 to 18 months, the release concludes.

[Source(s): University of Sydney, MedicalXPress]


via Go Digital To Aid Standing and Walking in Rehab. Here’s How – Rehab Managment

, , , , , ,

Leave a comment

[ARTICLE] The effects of Ai Chi for balance in individuals with chronic stroke: a randomized controlled trial – Full Text


This study investigated the effectiveness of Ai Chi compared to conventional water-based exercise on balance performance in individuals with chronic stroke. A total of 20 individuals with chronic stroke were randomly allocated to receive either Ai Chi or conventional water-based exercise for 60 min/time, 3 times/week, and a total of 6 weeks. Balance performance assessed by limit of stability (LOS) test and Berg balance scale (BBS). Fugl-Meyer assessment (FMA) and gait performance were documented for lower extremity movement control and walking ability, respectively. Excursion and movement velocity in LOS test was significantly increased in anteroposterior axis after receiving Ai Chi (p = 0.005 for excursion, p = 0.013 for velocity) but not conventional water-based exercise. In particular, the improvement of endpoint excursion in the Ai Chi group has significant inter-group difference (p = 0.001). Both groups showed significant improvement in BBS and FMA yet the Ai Chi group demonstrated significantly better results than control group (p = 0.025). Ai Chi is feasible for balance training in stroke, and is able to improve weight shifting in anteroposterior axis, functional balance, and lower extremity control as compared to conventional water-based exercise.


Stroke is a cerebral vascular disease caused by the interruption of the blood supply to the brain, cutting off the supply of oxygen and nutrients1. Damage to the brain tissue leads to sensory, motor, cognitive, and emotional deficits. With impaired motor and sensory functions, stroke patients suffer from deficits in balance control which plays crucial role in ambulatory function and thus as an important clinical indicator2,3,4,5. Balance is defined as the ability to maintain center of mass (COM) within the stability limits, the boundaries of the base of support (BOS)6. Balance control can be quantified by limit of stability (LOS) test, expressed by movement velocity, displacement excursion, and directional control7,8. Individuals with stroke usually show decline in the abovementioned balance performance9,10,11,12. Bohannon13 noted the correlation between static standing ability and independent mobility in stroke patients (r = 0.62). Lee et al.14 found that walking velocity is associated with maximal displacement excursion in LOS test (r = 0.68, p < 0.01) and Berg balance scale (r = 0.66, p < 0.01) in patients with stroke. In addition, the balance-related fall risks should also be addressed in people with chronic stroke15,16. Therefore, it is crucial to improve balance control in order to improve the balance-related activities for individuals with stroke.

Several elements, such as strengthening, postural control, weight shifting, and agility exercise, are necessary to be incorporated during balance training17. It has also been noted that increased somatosensory inputs and visual deprivation might exert positive effects on top of balance training, as well as enriched environment4,5,18,19. Water-based exercise, by utilizing the properties of water, including buoyancy, viscosity, turbulence, and hydrostatic pressure, has been suggested to improve balance control20,21. Two reviews summarized that the water-based exercise for neurological disorder covers a wide variety, including resistance training, movement facilitation, motor control training, balance training, coordination training and other specific techniques21,22. They indicated that stroke patients improved significantly more in weight shifting ability, dynamic balance, and functional mobility as compared with the land-based intervention21,22.

Ai Chi, first developed by Jun Konno in 1990s23, is one kind of water-based exercise emphasizing characteristics of balance training24. It resembles Tai Chi on land, complemented by Zen shiatzu and Watsu concepts25. Ai Chi is composed of 16 katas (movements), including breathing, upper extremity movements, lower extremity movements, trunk control, and coordinated movements23. With the properties and advantages of water, less weight bearing is required and larger displacement can be achieved. Currently, some studies have mentioned the benefits of Ai Chi for neurological involved patients21,22. Bayraktar et al. showed positive effects of 8 weeks of Ai Chi training on muscle strength, muscle endurance, functional mobility, and fatigue severity in patients with multiple sclerosis26. Noh et al. found that the balance performance and knee flexors strength improved more in the Ai Chi combining Halliwick therapy group than the conventional physiotherapy group in patients with stroke27. Pérez-de la Cruz et al. also showed the feasibility of Ai Chi on balance and functional capacity for people with Parkinson’s disease28.

Taking together, water-based exercise is beneficial for balance performance in patients with stroke. Ai Chi is a specific water-based exercise which emphasizes the characteristics of balance control. However, whether Ai Chi can exert better effect on balance performance than conventional water-based exercise in people with stroke is not known. The aim of this study was to compare the effects of Ai Chi training with conventional water-based exercise on balance performance in people with stroke. We hypothesized that Ai Chi can result in superior effects on balance control than conventional water-based exercise people with stroke. […]

Full Text

, , , ,

Leave a comment

[ARTICLE] Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames? – Full Text



Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these novel exergames as training tool for elderly and, more specifically whether these games can elicit more challenging weight shifts and higher levels of muscle activity compared to existing off-the-shelf exergames. Furthermore, the motivational pull in these new games was studied.


Sixteen healthy older adults were recruited to play the novel games and two reference games that were found to be the most challenging ones in terms of weight shifts or muscle activity in previous studies. Weight shifts were expressed relative to participants’ Functional Limits of Stability (FLOS). Muscular challenge of the games was quantified by dividing the signal into 200 ms blocks and determining the average muscle activity within these blocks. The muscle activity was normalized to maximal voluntary contractions (MVC) to categorize the blocks in zones of < 40, 40–60, 60–80 and > 80% MVC. Subsequently, the number of blocks per intensity level and the number of consecutive blocks above 40% were determined. Motivation to play the games was assessed using the Intrinsic Motivation Inventory (IMI) and scores between the games were analyzed using Generalized Estimated Equations (GEE).


The novel exergames successfully elicited center of mass (COM) displacements with medians of around 80% of FLOS or higher for all directions. Furthermore, the COM displacements in the novel games were larger for each direction than in the reference games, although for one game the sideward left direction reached significance only at the third trial. Compared to the existing games, longer blocks of muscle activation above 40% MVC were found, but overall intensity remained low. IMI scores were high on all subscales, indicating that older adults experienced the games as motivating.


We conclude that affordable hardware can be used to create challenging and enjoyable balance training programs using exergames. The exergames that were successful in eliciting challenging weight shifts and muscle activity should now be further studied in longitudinal randomized controlled interventions, to assess effects on balance, muscle strength and eventually fall risk in healthy older adults.


Studies report that 30–40% of people older than 65 will fall at least once per year and about 10–20% of these falls will result in hospitalization [12]. The number of people aged 65 and older will increase due to the demographic developments worldwide, which will further increase the total number of falls [3]. Major risk factors for falling are an age-related decrease in functional capabilities, especially in balance control and muscle strength [45]. Multidimensional training programs have been shown to ameliorate these risk factors and reduce fall risk in older adults. This is especially the case when strength training and sufficiently challenging balance exercises are provided for at least 3 h per week [1267]. However, ongoing participation in a training program is needed to prevent fading of the benefits due to the progressive strength and balance decline caused by aging [26]. As long-term, structural supervised training is costly, home-based training appears most promising for long-term effects. Sadly, adherence to traditional home-based training programs is low due to the repetitive nature of the exercises, lack of perceived usefulness and therefore motivation [89].

The use of computer games to aid in balance training for older adults, also called exergames balance training, receives increasing attention [10,11,12]. In this study, exergames are defined as computer games using commercial consoles as the Wii and the Kinect console and that are controlled with body movements. Different commercial games are already available that might have a balance training potential [10,11,12]. Potential benefits of exergames over conventional training are: an increase in motivation and thereby adherence [13], the option to offer dual task training [14], the option to provide different forms of feedback [15] and to adapt the training intensity to the skill level of the player so that individualized progression is possible. However, the latter is not always possible in commercial games. Despite these promising features, systematic reviews report varying results on balance [10,11,12], possibly due to the wide variability in games that have been studied and the fact that these games were not specifically developed with the aim to improve balance in older adults. In conventional balance training, strength and specific balance training were shown to be key elements in preventing falls [261617]. It is recommended that balance training is sufficiently challenging by requiring weight-shifts to the limits of stability, by reducingthe base of support (BOS) [6], or by adding a cognitive task. For strength training, it is recommended in literature that the muscles are sufficiently challenged by increasing the intensity of the exercises or the number of repetitions, so that the muscles will fatigue [18]. The American College of Sports Medicine defined the threshold for hypertrophy and strength gains to be 60% of the one-repetition maximum [19]. However, exercises with external weights are unpractical in VR training, which is often performed at home. Recent research showed that strength exercises at low loads, but with high velocities, can induce muscle activations comparable to training with high loads [20]. Furthermore, these low-load exercises also seem to induce benefits for strength and balance in older adults [21]. Finally, ongoing participation in the training program is recommended to prevent fading of the gained benefits [6]. A study that analysed the challenge of balance provided by off-the-shelf games showed that balance is challenged to a varying extent, but that ample room for improvements is left. Moreover, it was found that adaptation to or learning the game, as trials advanced, resulted in a decreasing challenge in some games [2223]. From the analysis of muscle activity in seven off-the shelf games, it was concluded that overall muscle activation was low and that longer periods of muscle activation were scarce [24]. Only the games that required faster movements elicited some muscle activity that seemed challenging enough to be considered as a training impulse [24].

The motivational pull of exergame balance training with off-the-shelf games, was assessed in older adults and results showed that playing exergames can lead to strong intrinsic motivation [25]. Especially games that provide positive feedback resulted in high intrinsic motivation. Furthermore, physically active games containing variation seemed to be the preferred game mechanics [25].

Based on the above summarized recommendations for balance training (e.g. sufficiently challenging balance tasks and strength exercises that lead to muscle fatigue), an exergame package for balance training for older adults was developed [246]. The aim of the current study was to evaluate whether the novel set of exergames (called Virbal), which are controlled with off-the-toy-shelf technologies, are feasible and well-suited from a content perspective for balance training in elderly. The novel games were evaluated to see whether they were more challenging in terms of balance movements and muscle activity than existing off-the shelf games. Furthermore, the novel exergames were evaluated on how motivating they are for older adults. Games were compared regarding the challenge imposed to balance in terms of magnitude of center of mass (COM) displacements and regarding the muscle activation elicited in terms of intensity and duration of muscle activation. Motivation was evaluated using questionnaires on motivation.



via Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames? | Journal of NeuroEngineering and Rehabilitation | Full Text


Screenshots of the mini games of the Virbal game. The overarching game is presented in the middle. From this overarching game different mini games are chosen

, , ,

Leave a comment

[WEB SITE] Electrotherapy Exposed!

Electrotherapy Exposed!

by Kelly Armstrong, OTR/L, MPP-MPS

How Does Electrotherapy Actually Relieve Pain?

From a biomedical prospective, all cellular activity stems from the phenomenon of electrical charge, and all healing requires a change in cellular electrical activity for success. When a muscle or tissue is injured, the injury alters the bio-electrical state of the cells, called “the current of injury.” These electrically imbalanced cells disrupt the cellular exchange process (metabolism) and negatively influence the autonomic nervous system, causing sympathetic upregulation and imbalances of the autonomic nervous system. Cellular “current of injuries” lead to loss of ATP, muscle tonicity/spasm, and chronic pain.

Therefore, to understand how electrotherapy relieves pain is to understand how electrotherapy influences imbalances of the autonomic nervous system (ANS). There are two key branches of the ANS: parasympathetic (rest and healing) and sympathetic (flight/fight/stress). It is the sympathetic system in flight/fight phase that appears to causes most health problems in humans. During SNS flight/fight phase, hormones are released and blood moves from organs to muscles to prepare for engagement. Originally designed for short-term survival, in modern society long-term nervous system stress combined with trauma often produce a lengthened and elevated state of sympathetic upregulation, resulting in chronic pain and disease. Physical traumas to the body, such as surgical scars and injuries, misalignments of the sacrum, jaw, spine, tight muscles, and blocked energetics accumulatively upregulate the SNS. One key theory in managing chronic pain and improving functionality is to learn how to deregulate the sympathetic nervous system using electrotherapy.

Electrotherapy Modalities’ Influence On the Autonomic Nervous System

Why some devices are more successful at managing pain than others may have more to do with the strength of the stimulation they produce. And, it appears, stronger is not always better.

Discovered by 19th-century scientists, the “Arndt-Shultz Law” states that weak stimuli accelerates physiologic activity, and medium to strong stimuli inhibits or even halts physiologic activity.1 Applying this law to modern electro-physiology, some of the success of currents applied at low micro amperage levels is due to the ability to sympathetically deregulate the autonomic nervous system and place the patient into a self-healing parasympathetic state.

TENS: Transcutaneous electrical nerve stimulation (TENS). The United States Food and Drug Administration (FDA) classifies all electro-therapy devices as TENS, regardless of the range of electrical current applied through the skin. The traditional and popular TENS units are used as a prescription device for pain control in most clinics. Traditional TENS units are applied with AC current in the milliamperage.

TENS is usually applied at high frequency (>50 Hz) with an intensity below motor contraction (sensory intensity) or low frequency (<10 Hz) with an intensity that produces motor contraction.2-5 Frequency and amplitude of TENS produces “gate control theory of pain management,” and AC TENS has not been clinically documented to provide autonomic nervous system balance.

MENS: Microcurrent Electrical Nerve Stimulation (MENS) applies extremely small microcurrent (less than 1 milliamperage) electrical impulses to nerves using either pads or point stimulation. Microcurrent units are engineered and built to closely approximate the body’s naturally occurring bio-electric currents, and they produce electrical currents just above the levels of the electrical exchanges of the cellular level in the human body. The theory behind microcurrent therapy is that introducing micro impulses into the body restores cellular balance of positive and negative electrons, positively influencing the autonomic nervous system and accelerating the body’s own healing mechanisms.

Since microamperes are close to the electrical level of the body’s cells, when injured cells become electrically imbalanced, the application of microcurrent helps return the damaged cells to a normal bio-electrical state, re-initiating cellular activity. Research has shown that microcurrent impulses enhance three variables critical to healing: ATP (adenosine triphosphate), Protein synthesis, and Cellular Membrane transport.6-8

One detailed study by Cheng showed microcurrent applied at low levels (10 to 500 microamps) increased ATP production by 500%, protein synthesis by 70%, and metabolism (cell transport) by 40%.6-8 These three variables are critical to healing patients, and are triggered only in a parasympathetic phase. The same research documented that amplitude levels above 1 Ma inhibited ATP, protein synthesis, and cellular membrane transport, all of which are inhibited or blocked in a sympathetic state.

This documented phenomena suggests of a “sympathetic threshold” around 1 milliamperage, with current <1 Ma producing a healing parasympathetic state and current >1 Ma producing further sympathetic upregulation. Is it possible the Arndt-Shultz Law theorized 200 years ago may strongly apply to electro-therapy?

EA: Electro-acupuncture (EA) is a form of acupuncture electro-therapy where a small current, either DC or AC, is applied via point stimulation directly into acupuncture/trigger points without skin puncture. Electro-acupuncture is quite similar to traditional acupuncture in that the same points are often used during treatment, just without the use of needles.9-12 One advantage EA has over traditional acupuncture is that a practitioner does not have to be as precise as with needles, since almost all devices on the market have a “point locator” which measures variances in skin resistance and “detects” acupuncture and trigger points.

EA devices fall into two categories on the market. One category is AC point stimulators, which produce current levels well into the millamperage (Ma) range and frequencies in the 10-15 hz range. The second category is DC point stimulators, which deliver an impulse in the low to medium microcurrent (50-800 mca) range, usually in the 2-4 hz range.

Additionally, EA devices can provide the benefits of integrating traditional acupuncture principles into the clinical setting. Since acupuncture has now been clinically proven to provide “a significant tool for balancing the ANS,”13-16 integrating EA into any pain setting can often provide additional outcomes to suffering patients.

Additional Beneficial Pain Modalities

LASERS: Laser technology is another noninvasive form of treatment for healing local tissues. This technology consists of using red and infrared light to irradiate abnormal tissue with photons. The cellular molecules in the tissue will absorb the energy particles. This absorption will stimulate the cell to produce more energy and to speed up the healing process. When more energy is available to cells, it stimulates healing in the body. In typical treatments the laser is placed over the injured area. There are a variety of lasers that range in wavelengths and strength of applications, with class 4 and class 3b lasers used by therapists in rehab settings as pain-relief tools.

TAPING: Therapeutic tape is an elastic cotton strip with an acrylic adhesive that is used for the purposes of treating pain and disability. Taping is a popular technique that can be applied during a clinical treatment session to facilitate healing after manual therapy. Taping may help with acute soft-tissue injuries such as muscle strains, ligament sprains, and bruising or swelling. Therapists can use taping for muscle facilitation for weak or low tone as well as to help keep joints in alignment or stable. Taping is a great tool to follow therapeutic work to assist outside of the clinic with posture. Furthermore, taping is beneficial for a variety of other issues such as bone injuries, tendinopathies, fasciopathies, systemic conditions, swelling, and edema.

TA: Topical analgesics are analgesics applied to the skin surface and associated with a lower risk of side effects than oral analgesics. There are four types of topical analgesics: counter-irritants, topical NSAIDS, capsaicin creams, and local anesthetics. Some are available as over-the-counter products, while others are available by prescription. These products may be a beneficial addition for temporary pain relief during rehabilitation. Several topical agents have been shown to be useful in short-term relief.17

Hot and cold therapy can also be of assistance in healing tissues. Application of cold packs/ice slow down the blood flood or circulation to the injured tissues and reduces inflammation, muscle spasms, and pain. Cold should be applied in the first 24 to 48 hours after an injury to decrease pain, swelling, and inflammation. Heat opens up the blood flow to the area and promotes oxygen to the tissue to relax muscles and decrease pain. Heat can also be applied during the healing process before stretching and exercises to improve range of motion.

Achieve Balance to Optimize Healing

The bottom line in helping provide pain relief is a thorough knowledge of what causes the body to heal deep inside. Key in my own practice has been cultivating an understanding that the ultimate therapeutic goal is to “swing” patients into a parasympathetic state, and to do this, the “current of injury” has to be cellularly reversed. This is an important first step that sometimes is missed.

After ANS balance, all other therapeutic techniques/modalities will be much more effective. After SNS deregulation, apply hot/cold applications and topical analgesics for acute pain and muscle relaxation, then perform your stretches/exercises with more compliance, no guarding, and better outcomes. RM

Kelly Armstrong, OTR/L, MPP-MPS, has been a practicing occupational therapist for more than 23 years and holds a bachelor of science in occupational therapy from the University of Alabama at Birmingham. For more information, contact


  1. Arndt-Schulz law: the pharmacologic principle of homeopathy and healing, discovered by 19th century scientists, Hugo Schulz and Rudolf Arndt, stating that weak stimuli accelerate physiologic activity, medium stimuli inhibit physiologic activity, and strong stimuli halt physiologic activity.
  2. Ottoson D, Lundeberg T. Pain Treatment by Tens/Transcutaneous Electrical Nerve Stimulation: A Practical Manual. Springer-Verlag; 1988.
  3. Sjolund B, Eriksson M. Relief of Pain by Tens: Transcutaneous Electrical Nerve Stimulation
  4. Chen C, Tabasam G, Johnson M. Does the pulse frequency of transcutaneous electrical nerve stimulation (TENS) influence hypo analgesia? A systematic review of studies using experimental pain and healthy human participants. Physiotherapy. 29008;94(1):11-20.
  5. Chesterton LS, Barlas P, Foster NE, Lundeberg T, Wright CC, Baxter GD. Sensory stimulation (TENS): effects of parameter manipulation on mechanical pain thresholds in healthy human subjects. Pain. 2002;99:253-262.
  6. Cheng N, Van Hoof H, Bockx E, et al. The effects of electric currents on ATP generation, protein synthesis, and membrane transport in rat skin. Clin Orthop Relat Res. 1982;171:264-272.
  7. Carley PJ, Wainapel SF. Electrotherapy for acceleration of wound healing: low intensity direct current. Arch Phys Med Rehabil. 1985;66(7):443-446.
  8. Becker RO. Cross Currents: The Perils of Electropollution, the Promise of Electromedicine. G.P. Putnam’s Sons.
  9. Fisher HW. Acute low back pain treated by spinal manipulation and electronic acupuncture. J Manipulative Physiol Ther. 1992;15(3):199-202.
  10. Cheng R, McKibbon L, Roy B, Pomeranz B. Electroacupuncture elevates blood cortisol levels in naive horses; sham treatment has no effect. Int J Neurosci. 1980;10(2-3):95-97.
  11. Cheng RS, Pomeranz B, Yu G. Electroacupuncture treatment of morphine-dependent mice reduces signs of withdrawal, without showing cross-tolerance. Eur J Pharmacol. 1980;68(4):477-481.
  12. Imai K, Ariga H, Takahashi T. Electroacupuncture improves imbalance of autonomic function under restraint stress in conscious rats. Am J Chin Med. 2009;37(1):45–55
  13. Noguchi E. Acupuncture regulates gut motility and secretion via nerve reflexes. Auton Neurosci. 2010;156(1-2):15-18.
  14. Sakatani K, Kitagawa T, Aoyama N, Sasaki M. Effects of acupuncture on autonomic nervous function and prefrontal cortex activity. Adv Exp Med Biol. 2010;662:455-460.
  15. Uchida S, Kagitani F, Hotta H. Neural mechanisms of reflex inhibition of heart rate elicited by acupuncture-like stimulation in anesthetized rats. Auton Neurosci. 2010;157(1-2):18–23.
  16. Li QQ, Shi GX, Xu Q, Wang J, Liu CZ, Wang LP. Acupuncture effect and central autonomic regulation. Evid Based Complement Alternat Med. 2013;2013:267959. doi: 10.1155/2013/267959. Epub 2013 May 26.
  17. Gibbs M. The role of transdermal fentanyl patches in the effective management of cancer pain. Int J Palliat Nurs. 2009;15(7):354–359.

This article originally appeared in the January/February print issue of Rehab Management, and posted online January 22, 2016.


via Electrotherapy Exposed! – Rehab Managment

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] The FLOAT Offers 3-Dimensional Body Weight Support

Published on 



Reha-Stim Medtec Inc introduces the FLOAT to the US market. Reportedly the world’s first 3-dimensional overhead body weight support system, it is designed to offset a patient’s body weight by up to 200 lbs.

The FLOAT allows patients who are unable to support their own body weight to safely practice and improve gait, general mobility, balance and other activities of daily living. Via the FLOAT, patients can move freely about the therapy area, allowing for movements forward, backward, left, right and up and down and in any combination.

Multi-directional walking, including spontaneous planned or unplanned changes of direction, requires increased neuromuscular coordination and postural control that helps improve mobility and dynamic stability in patients who have experienced a stroke, spinal cord injury, brain trauma or other neurological impairments. By allowing patients to move in a 3D environment during therapy, patients can safely experience the same activities they will face when discharged to the home and community, according to the company in a news release.

“This type of Real-World mobility therapy helps patients reach their highest level of independence and quality of life possible,” says Don Gronachan, VP of Reha-Stim Medtec, North America, Boston, in a media release.


In addition to the unique 3-D movement capabilities, the FLOAT also helps reduce patient and therapist injuries by preventing falls and eliminating the need for therapists to physically engage the patient in an attempt to prevent a fall from occurring.

[Source(s): Reha-Stim Medtech Inc, PRWeb]


via The FLOAT Offers 3-Dimensional Body Weight Support – Rehab Managment

, , , , , ,

Leave a comment

[Abstract] Ergometer training in stroke rehabilitation: systematic review and meta-analysis



Ergometer training is routinely used in stroke rehabilitation. How robust is the evidence of its effects?

Data source

The PubMed database and PEDro database were reviewed prior to 22/01/2019.

Study selection

Randomized controlled trials investigating the effects of ergometer training on stroke recovery were selected.

Data extraction

Two reviewers independently selected the studies, performed independent data extraction, and assessed the risk of bias.

Data synthesis

A total of 28 studies (including 1115 stroke subjects) were included. The data indicates that

(1) ergometer training leads to a significant improvement of walking ability, cardiorespiratory fitness, motor function and muscular force of lower limbs, balance and postural control, spasticity, cognitive abilities, as well as the brain’s resistance to damage and degeneration,

(2) neuromuscular functional electrical stimulation assisted ergometer training is more efficient than ergometer training alone,

(3) high-intensity ergometer training is more efficient that low-intensity ergometer training, and

(4) ergometer training is more efficient than other therapies in supporting cardiorespiratory fitness, independence in activities of daily living, and balance and postural control, but less efficient in improving walking ability.


Ergometer training can support motor recovery after stroke. However, current data is insufficient for evidence-based rehabilitation. More data is required about the effects of ergometer training on cognitive abilities, emotional status, and quality of life in stroke subjects.

via Ergometer training in stroke rehabilitation: systematic review and meta-analysis – Archives of Physical Medicine and Rehabilitation

, , , , , , , , , , , ,

Leave a comment

[Abstract] A Preliminary Study of Dual-Task Training Using Virtual Reality: Influence on Walking and Balance in Chronic Poststroke Survivors



Stroke is a leading cause of death and disability in the Western world, and leads to impaired balance and mobility.


To investigate the feasibility of using a Virtual Reality-based dual task of an upper extremity while treadmill walking, to improve gait and functional balance performance of chronic poststroke survivors.


Twenty-two individuals chronic poststroke participated in the study, and were divided into 2 groups (each group performing an 8-session exercise program): 11 participated in dual-task walking (DTW), and the other 11 participated in single-task treadmill walking (TMW). The study was a randomized controlled trial, with assessors blinded to the participants’ allocated group. Measurements were conducted at pretest, post-test, and follow-up. Outcome measures included: the 10-m walking test (10 mW), Timed Up and Go (TUG), the Functional Reach Test (FRT), the Lateral Reach Test Left/Right (LRT-L/R); the Activities-specific Balance Confidence (ABC) scale, and the Berg Balance Scale(BBS).


Improvements were observed in balance variables: BBS, FRT, LRT-L/R, (P < .01) favoring the DTW group; in gait variables: 10 mW time, also favoring the DTW group (P < .05); and the ABC scale (P < .01). No changes for interaction were observed in the TUG.


The results of this study demonstrate the potential of VR-based DTW to improve walking and balance in people after stroke; thus, it is suggested to combine training sessions that require the performance of multiple tasks at the same time.


via A Preliminary Study of Dual-Task Training Using Virtual Reality: Influence on Walking and Balance in Chronic Poststroke Survivors. – PubMed – NCBI

, , , , , , , , , , ,

Leave a comment

[Abstract] Effect of functional electrical stimulation plus body weight-supported treadmill training for gait rehabilitation in patients with poststroke – a retrospective case-matched study.



Functional electrical stimulation (FES) plus body weight-supported treadmill training (BWSTT) provide effective gait training for poststroke patients with abnormal gait. These features promote a successful active motor relearning of ambulation in stroke survivors.


This is a retrospective study to assess the effect of FES plus BWSTT for gait rehabilitation in patients poststroke.


A retrospective case-matched study.


Participants were recruited from a rehabilitation department in an acute university-affiliated hospital.


Ninety patients poststroke from Yue Bei People’s Hospital underwent BWSTT (A: control group) were compared to an equal number of cross-matched patients who received FES plus BWSTT (B: FES plus BWSTT group).


While B group received FES for 45 minutes plus BSWTT for 30 minutes in the program, group A received time-matched BWSTT alone. The walking speed, step length, step cadence, Fugl-Meyer lower-limb scale (LL-FMA), composite spasticity scale (CSS), 10-Meter Walk Test (10MWT), Tinetti Balance Test (TBT) and nerve physiology testing were collected before and after intervention.


One hundred and eighty patients with poststroke abnormal gait were chosen. There were significant differences in walking speed, step length, step cadence, LL-FMA, CSS, TBT, and 10MWT between baseline and post-intervention (P<0.05). There were significant differences in walking speed, step length, step cadence, LL-FMA, CSS, TBT, and 10MWT between two groups at the end of the eighth week (P<0.05), but not at baseline (P>0.05). In comparison with group A, the peak of somatosensory evoked potential (SEP) and motor evoked potential (MEP) amplitude increased, the latency was shortened, and the conduction velocity of sensory nerve (SCV) and motor nerve (MCV) was significantly increased in the group B (P < 0.05). No adverse events occurred during the study.


This study suggests that FES plus BWSTT could be more effective than BWSTT alone in the improvement of gait, balance, spasticity, and function of the lower limb in patients poststroke.


Introduce effective rehabilitation strategies for poststroke patients with abnormal gait.


via Effect of functional electrical stimulation plus body weight-supported treadmill training for gait rehabilitation in patients with poststroke-a ret… – PubMed – NCBI

, , , , , , , ,

Leave a comment

[Abstract] Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis

To meta-analyze and systematically review the effectiveness of aquatic therapy in improving mobility, balance, and functional independence after stroke.

Articles published in Medline, Embase, CINAHL, PsycINFO, and Scopus up to 20 August 2019.

Studies met the following inclusion criteria: (1) English, (2) adult stroke population, (3) randomized or non-randomized prospectively controlled trial (RCT or PCT, respectively) study design, (4) the experimental group received >1 session of aquatic therapy, and (5) included a clinical outcome measure of mobility, balance, or functional independence.

Participant characteristics, treatment protocols, between-group outcomes, point measures, and measures of variability were extracted. Methodological quality was assessed using Physiotherapy Evidence Database (PEDro) tool, and pooled mean differences (MD) ± standard error and 95% confidence intervals (CI) were calculated for Functional Reach Test (FRT), Timed Up and Go Test (TUG), gait speed, and Berg Balance Scale (BBS).

Nineteen studies (17 RCTs and 2 PCTs) with a mean sample size of 36 participants and mean PEDro score of 5.6 (range 4–8) were included. Aquatic therapy demonstrated statistically significant improvements over land therapy on FRT (MD = 3.511 ± 1.597; 95% CI: 0.381–6.642; P = 0.028), TUG (MD = 2.229 ± 0.513; 95% CI: 1.224–3.234; P < 0.001), gait speed (MD = 0.049 ± 0.023; 95% CI: 0.005–0.094; P = 0.030), and BBS (MD = 2.252 ± 0.552; 95% CI: 1.171–3.334; P < 0.001).

While the effect of aquatic therapy on mobility and balance is statistically significant compared to land-based therapy, the clinical significance is less clear, highly variable, and outcome measure dependent.

via Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis – Alice Mary Iliescu, Amanda McIntyre, Joshua Wiener, Jerome Iruthayarajah, Andrea Lee, Sarah Caughlin, Robert Teasell,

, , , , ,

Leave a comment

[Abstract] Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review



Virtual reality (VR) has emerged as a therapeutic tool facilitating motor learning for balance and gait rehabilitation. The evidence, however, has not yet resulted in standardized guidelines. The aim of this study was to systematically review the application of VR-based rehabilitation of balance and gait in 6 neurologic cohorts, describing methodologic quality, intervention programs, and reported efficacy.


This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. VR-based treatments of Parkinson disease, multiple sclerosis, acute and chronic poststroke, traumatic brain injury, and cerebral palsy were researched in PubMed and Scopus, including earliest available records. Therapeutic validity (CONTENT scale) and risk of bias in randomized controlled trials (RCT) (Cochrane Collaboration tool) and non-RCT (Newcastle-Ottawa scale) were assessed.


Ninety-seven articles were included, 68 published in 2013 or later. VR improved balance and gait in all cohorts, especially when combined with conventional rehabilitation. Most studies presented poor methodologic quality, lacked a clear rationale for intervention programs, and did not utilize motor learning principles meticulously. RCTs with more robust methodologic designs were widely recommended.


Our results suggest that VR-based rehabilitation is developing rapidly, has the potential to improve balance and gait in neurologic patients, and brings additional benefits when combined with conventional rehabilitation. This systematic review provides detailed information for developing theory-driven protocols that may assist overcoming the observed lack of argued choices for intervention programs and motor learning implementation and serves as a reference for the design and planning of personalized VR-based treatments.


via Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. – PubMed – NCBI

, , ,

Leave a comment

%d bloggers like this: