Posts Tagged Balance

[WEB SITE] AFOs and balance issues in peripheral neuropathy

 

At a symposium in Cape Town, South Africa, an orthotist demonstrated his technique for treating balance issues in patients with peripheral neuropathy using ankle foot orthoses (AFOs), and a team of researchers theorized about evidence-based concepts that could help explain his findings.

By Cary Groner

A symposium at the recent 2017 World Congress of the International Society for Prosthetics and Orthotics (ISPO)1 shed new light on a long-vexing question: How can clinicians help patients with peripheral neuropathy improve their balance using ankle foot orthoses (AFOs)?

People with severe neuropathy typically have trouble with balance and gait, partly because they receive little or none of the sensory information the rest of us get from the plantar surfaces of the feet. That input helps most people manage the body’s ever-swaying center of mass, much of which is controlled at the ankle. If the ankle lacks the necessary plantar feedback, the whole kinetic chain is destabilized, and people must compensate with movements at the knee, hip, and trunk. The result is often difficulty maintaining balance while standing and walking.

Unfortunately, there’s a paucity of research on interventions that might address the problem, so clinicians have largely been left to their own devices. AFOs are often prescribed for conditions that affect joint stability and positioning, pressure distribution, and neuro­muscular issues, and research suggests they can be effective for adjusting various gait parameters.2 A 2010 systematic review in the Journal of Prosthetics & Orthotics (JPO), moreover, reported that although rigid AFOs seemed to facilitate static balance, dynamic balance problems were usually better treated with more flexible leaf-spring devices.2 But unfortunately, little of this research is directly applicable to patients with neuropathy, whose concerns include the risk of falls.

LER has previously reported that, although AFOs can be helpful for improving balance, their utility for preventing falls is open to question—and, for most patients with impaired balance, falls present the biggest danger.3 Part of the issue is that balance itself is achieved via a complex system of visual, cognitive, motor, vestibular, proprioceptive, and neurological functions at both the central and peripheral levels.3 The goal is to maintain the body’s center of gravity within the base of support while a patient is stationary (static balance), and to control the center of mass in dynamic situations such as walking (dynamic balance).2

Applying constraint theory to AFOs for peripheral neuropathy, one reduces the degrees of freedom at the ankle to let the patient control what they can easily control.

So, when Paul Charlton, MSc, a senior orthotist at Peacocks Medical Group in Newcastle Upon Tyne, UK, showed Stefania Fatone, PhD, BPO(Hons) some of the results he was getting by treating patients with neuropathy using rigid AFOs, she took notice. Fatone, an associate professor in physical medicine and rehabilitation at Northwestern University in Chicago, put together a team of researchers to examine Charlton’s methods and consider a theoretical underpinning that could help explain his findings.

The ISPO symposium was the result; it included Charlton and Fatone, as well as Cleveland Barnett, PhD, a senior lecturer in biomechanics at Nottingham Trent University in the UK, and Nerrolyn Ramstrand, PhD, BPO(Hons), an associate professor of prosthetics and orthotics at Jonkoping University in Sweden and coauthor of the 2010 review in JPO.

Paul Charlton, MSc, and a healthy volunteer demonstrate his technique for assessing balance in patients with peripheral neuropathy. He starts by asking patients to stand still, to establish a baseline (left). He then has the patient sit. He sits opposite them and positions his knees just below theirs, at the top of their tibias. He grasps the back of the patient’s calves near the top and pulls them toward him, so the tibias are slightly inclined. He has the patient stand as he does this—essentially mimicking the effects of a rigid AFO (center and right). (Photos courtesy of Paul Charlton, MSc.)

Assessment

“Paul’s videos of his patients’ results are really startling, because you see dramatic changes,” Fatone said. “We wanted to try to elucidate the mechanism by which he was getting those effects.”

Charlton’s four presented case studies comprised different diagnostic pathologies, Fatone explained, but all the patients had peri­pheral neuropathy in common.

“Initially, we wanted to talk about orthotic function with regard to a diagnosis; if you have a stroke you do this, if you have Parkinson’s you do this, if you have MS [multiple sclerosis] you do this,” she continued. “But Paul’s approach was less about diagnosis and more about evaluating the person’s sensation and how that influenced balance. He developed a way to assess whether the peripheral neuro­pathy is the primary contributor to balance problems.”

Charlton explained his process (see images above) to LER.

“Balance is so complex that as a clinician, I have to start by determining which mechanism is affecting it,” he said. “I can’t address all of those causes, but I know I can have an impact on peripheral neuropathy. So, I want to start by confirming that condition and assessing their proximal control.”

He starts by asking his patients to stand still; it’s difficult for many of them, but those who do it more easily are then asked to move their feet closer together, which increases the postural challenge. Those who manage that reasonably well are then asked to close their eyes.

“That baseline isn’t just for me,” Charlton said. “It also gives the patient a better understanding of their level of impairment, of how poor their balance is. If they can stand still with their feet together and their eyes closed, the [rigid] AFO intervention I use is probably too aggressive.”

Once he’s established the baseline, Charlton has the patients sit. He sits opposite them and positions his knees just below theirs, at the top of their tibias. He then grasps the back of the patient’s calves near the top and pulls them toward him, so the tibias are slightly inclined forward and clamped between his hands and his knees. He then has the patient stand as he does this—essentially mimicking the effects of a rigid AFO.

Patients with peripheral neuropathy are usually much steadier during this process than when standing on their own, he said.

“They’ll say, ‘Well of course I’m steadier, you’re holding me still,’ but I’m only holding them below the knees,” Charlton said. “The point is that if I make their ankle rigid this way, then they can more effectively use the balance mechanisms at their knees, hips, and proximally, because they’re on a stable base. My proposition is that their balance is actually normal, apart from that distal segment. When their ankle is stabilized, they use their knees more effectively, and they become less dependent on their eyesight to maintain their balance.”

Charlton emphasized the importance of the forward tibial incline, as well.

“It doesn’t have to include ankle dorsiflexion,” he said. “I usually use heel lifts to pitch them forward to what I feel is optimal, which is usually around seven degrees. My feeling is that the ground reaction force [GRF] vector should be posterior to the center of the knee joint through midstance. I think what we’re doing with alignment is putting more appropriate demands on the neuromuscular system; you want a flexion moment at the knee, so you’re using your quadriceps and gluteals to keep yourself up.”

Charlton explained, further, that the tibial incline angle varies with the length of the shank; if the ideal is to position the knee joint 1 cm ahead of the GRF vector, a long-shanked person would require a smaller inclination angle to achieve that position than someone with a shorter shank.

“That’s my hypothesis, anyway, for which I have no proof,” he said with a laugh.

But there’s proof, and then there’s proof. Does Charlton have randomized controlled trials? No. But he does have compelling videos of patients walking with dramatically more normalized gait.

“I can show what I see clinically, anyway,” he added. “Then I ask the academics to prove it.”

Constraints

At the ISPO symposium, the academics did their best to comply.

“My role was to look at things from a theoretical perspective,” said Cleveland Barnett. “I’m a biomechanist by trade, so I was trying to explain Paul’s results using biomechanical principles and motor control theories. My orientation is dynamical-systems theory, which is based on the constraints-led approach.”

Briefly, the approach notes humans have “motor abundance”—that is, lots of ways to achieve a given task. If you want to scratch your nose, there are essentially infinite ways in which you can bring the tip of your fingernail to the skin atop your alar cartilage, involving positional changes at the hand, wrist, elbow, and shoulder. A “constraint,” in this context, is just what it sounds like—the placing of a restriction on one or more aspects of that movement menu.

Does Charlton have randomized controlled trials? No. But he has compelling videos of patients with peripheral neuropathy walking with dramatically more normalized gait.

“If you have peripheral neuropathy, you’ll have poor control at the ankle, but your more proximal control may be very good,” Barnett said. “If you fix the ankle joint with an AFO, you reduce the need for neuromuscular control at that joint. When we’re learning something, we are usually quite rigid and stiff; then, as we get better at it, we loosen up, allow for more variation. So, if someone finds a given task difficult, you can help by imposing a constraint, which helps them explore how to coordinate their other movements. Paul freezes the ankle joint with an AFO, which allows patients to stop worrying about controlling the ankle and use the control they have at the knee and hip. In watching his videos, I’ve never seen interventions work so quickly.”

Stef Fatone concurred.

“If you can reduce a task to its least complex form and block redundant degrees of freedom, then people can learn the task more easily,” Fatone said. “In Paul’s approach, we’re using constraint theory to reduce the degree of freedom at the ankle joint and let the person control what they can easily control, where they have feedback and sensation. We’re not necessarily training them, but we’re taking away the thing they can’t control and letting them work with everything else more effectively.”

The literature

Part of the challenge involved in conducting a broad theoretical inquiry into the problem is that what scant literature there is tends to be uneven in its findings. As LER has reported previously, for example, researchers aren’t always certain whether AFOs work by affecting gait mechanics, sensory feedback, or both.3-5

“It’s really difficult to divorce those two things,” Fatone acknowledged. “If someone was completely paralyzed, with no sensation, and the AFO provided a corrective response to postural perturbations, you could say, ‘OK, we’re definitely seeing a mechanical input.’ I suppose you could test that using a nerve block, but does the benefit of what you might learn from that outweigh the risks? It’s a tough study to do. We know that our population of neuropathy patients has diminished sensation, but the amount and kind of sensation loss varies. Is it proprioceptive, touch-receptive, mechanoreceptive— what, exactly, is diminished? It’s very hard to discriminate. The orthosis could be acting in different ways, and teasing those out in any given study is extremely challenging.”

Fatone argues the lack of appropriate studies doesn’t mean researchers are flying completely blind, however.

“We haven’t found any studies that investigated rigid AFOs directly in patients with peripheral neuropathy,” she said. “The study that would test the scenarios Paul is enacting in his clinic, with the exact kind of people he works with, hasn’t been done. But we do have studies that have investigated rigid AFOs more broadly, in mixed populations, and we can infer certain things from that—
including that it’s not unreasonable that rigid AFOs would facilitate static balance in those with neuropathy, because they’ve done it in other populations.”

For example, some studies have shown that AFOs have positive effects on gait regularity6 and postural stability5 in neuropathic patients, and one found that auxiliary sensory cues improved automatic postural responses in those with diabetic neuropathy.7 However, a 2016 systematic review reported that in the absence of randomized controlled trials, the literature offered little consistent evidence of efficacy.8

Since coauthoring the 2010 review mentioned earlier, Nerrolyn Ramstrand has continued to monitor the literature, and she told LER that it offers little justification for changing her conclusions.

“We said that the rigid AFO was good for static balance, and that a leaf-spring design was better for dynamic balance, and I think the literature still supports those conclusions,” Ramstrand said. “I’m a researcher, I’m interested in evidence-based practice, and from a purely academic point of view, there’s no evidence to support the theory that rigid AFOs will help neuropathic patients with dynamic balance. But the modern definition of evidence-based practice includes both the literature and individual clinical experience, and obviously Paul can’t ignore his own experience. You have to consider that, as well as the patient’s desires, in addition to the literature.”

Ramstrand noted, too, that there’s an inherent tension between the demands of a research environment, in which conclusions can be drawn only in the presence of experimental uniformity across a cohort of participants, and the practical exigencies of a clinic, where treatments must be customized according to the clinician’s experience and the patient’s needs.

“People haven’t been using rigid AFOs in neuropathy patients because they didn’t think they were useful,” Ramstrand said. “But now we may need to go back and say, ‘OK, there are people having success with these, so why is that?’”

She noted, too, that clinicians may need to distinguish pathology from clinical presentation in their patient evaluations.

“We have to stop talking about pathologies with this cookbook approach to orthotic prescription,” she said. “Instead, we need to ask what’s behind the patient’s clinical presentation—muscle strength, range of motion, all those things. Then we can consider what might be the most appropriate orthosis for that condition: How well are its mechanical properties suited to managing the clinical presentation of that patient? Different orthosis designs can achieve the exact same goal. There’s lots to figure out, and I think we’ve really just started to identify some of the problems.”

Barnett agreed.

“Instead of talking about individual AFOs, you may say that this type of AFO may have this type of effect,” he said. “But beyond that, I think one of Paul’s points is that a given patient’s treatment depends very much on how that patient presents. Two people with different diagnoses can have similar functional deficits, and for the deficits Paul was seeing, I think rigid AFOs are definitely beneficial; they clearly allow people to do things they couldn’t do before. Never mind the intricacies of the biomechanics: If they’re able to walk farther or faster, it’s likely they’re going to feel better about themselves. If they’re able to walk to the shops unaided with a rigid AFO rather than a flexible one, it’s better for their physical and mental health.”

Improvement?

In Barnett’s presentation, he suggested that once patients become comfortable and better balanced with rigid AFOs, it might be possible to loosen them up and allow more of their natural flexibility.

“Long-term, my feeling is that if you put a constraint like that on someone and they make progress, it’s a question of how long you let them use that before you try to challenge them again,” he said. “The theory would suggest that if you slowly allow an increase in articulation, reduce the rigidity of the AFO, they would start to learn to control that to some extent. They might find it difficult at first—their neuro­pathy might limit them—but they could gradually get used to it.”

Paul Charlton respectfully differed, however.

“I’m slightly skeptical of that,” he acknowledged. “If the patient has a range of motion in a joint that they can’t control, then I see benefit from fixing them in an optimum position. If you give them more movement, it’s fine if they have the control to use it, but if they don’t, you’re not doing them any favors. It depends on the pathology and the patient’s potential. Some peripheral neuropathies can improve, such as in Guillain-Barré syndrome, or in patients with an insult to the central nervous system such as a stroke or a brain injury. For such patients to progress, they should be given more range of movement by reducing the stiffness of the AFO. But in patients where there isn’t that potential for improvement, I doubt if it would work.”

Fatone emphasized the degree to which Charlton customizes his AFOs, for that matter. In his presentation, only one of the cases involved a patient with diabetic peripheral neuropathy, for example, and he fabricated a specially designed external orthosis for her.

“In that case, he made an AFO with a rigid, lateral carbon-fiber strut that attached to the base of her diabetic footwear,” Fatone explained. “The others had more typical AFOs that went into the shoe and had plastic directly in contact with the foot, but in her case he used a completely different strategy to achieve the same control, so that it didn’t change the pressure experienced by her foot. The only problem was that she started walking so much more that her shoes weren’t able to protect her from the increased activity level, and she started to have tissue breakdown in her feet. So you can never win, right?”

Charlton acknowledged another problem, as well: His patients are sometimes intimidated by their new capabilities.

“Quite often the patients have developed a lot of compensations in their gait,” he said. “Then, suddenly, they’re in a situation where they get a real heel strike. They go from that to foot flat, and their tibia is pushed forward, and it’s a shock to their system. They’re walking more normally, but it’s scary, it takes practice, and I really have to persuade them to stay with it. But if I can convince them to do that, a more normal gait comes very quickly.”

Charlton emphasized that his approach isn’t out of the reach of most clinicians.

“None of this is high-tech,” he said. “It’s simple, it’s practical, and it uses existing technology. And it provides a framework as to the patients for whom it might best be applied.”

Down the road

Fatone said that Charlton’s work, along with the admittedly vague messages from the literature, are pointing a way forward for future research.

“I think we’re evolving a theoretical framework for the kinds of hypotheses we want to test,” she said. “We know what the gaps in the literature are, and by looking at those, as well as at the work that’s been done well, it allows you to design a better research project. That, coupled with the fact that we now have a good hypothesis based on a theoretical understanding of what we think is going on, puts us in a better position to design a study to answer the question of how Paul is getting such good results.”

Cary Groner is a freelance writer in the San Francisco Bay Area.

Source: AFOs and balance issues in peripheral neuropathy | Lower Extremity Review Magazine

Advertisements

, , ,

Leave a comment

[ARTICLE] Feasibility and Effectiveness of Virtual Reality Training on Balance and Gait Recovery Early after Stroke: A Pilot Study – Full Text

Abstract

Objective: To investigate the feasibility and effectiveness of virtual reality training for improving balance and/or gait during inpatient rehabilitation of patients within 12 weeks after stroke.

Methods: Sixteen patients within 12 weeks after stroke and dependent gait as categorised with a Functional Ambulation Category score of 2 or 3 were included in this longitudinal pilot study. Participants received eight 30-min sessions of virtual reality training during four weeks as part of the regular inpatient rehabilitation program. Feasibility was assessed using compliance with the training, adverse events, experiences of the participants and the physiotherapists; and effectiveness with the Berg Balance Scale, centre of pressure velocity, Functional Ambulation Category and 10-meter walking test.

Results: Participants positively evaluated the intervention and enjoyed the training sessions. Also, physiotherapists observed the training as feasible and beneficial for improving balance or gait. Compliance with the training was 88% and no serious adverse events occurred. The Berg Balance Scale, anterior-posterior centre of pressure velocity, Functional Ambulation Category and 10-meter walking test showed significant improvement after four weeks of training (p<0.05).

Conclusion: This study demonstrates that virtual reality training in patients early after stroke is feasible and may be effective in improving balance and/or gait ability.

Introduction

Balance and gait recovery are considered as key aspects in stroke rehabilitation [13]. To date, physiotherapy and occupational therapy focus on high intensity, repetitive and task-specific practice, which are important principles of motor learning, to elicit improvements in the early rehabilitation phase [1,4,5]. In addition to high intensity, repetitive and task-specific training, variability in practice is important for motor learning. Also, cognitive involvement, functional relevance and the presence of feedback enhance learning [5]. In current physiotherapy or occupational therapy it is difficult to meet all of these above-mentioned training characteristics as therapy may be tedious and resource-intensive [69]. In addition, the frequency and intensity of current therapies have been indicated as insufficient to achieve maximum recovery in the early phase of rehabilitation [8,10]. There is need for engaging, motivating and varied therapy that achieves maximal recovery [11].

In recent years, virtual reality (VR) is introduced in the field of balance and gait rehabilitation after stroke [12]. Since VR training is characterised by individualised, high intensity training in a variety of virtual environments with a high amount of real-time feedback [1315] it might be valuable in stroke rehabilitation. This is confirmed by recent studies [12,1518]. However, almost all studies on the effect of VR on balance and/or gait ability were conducted in the chronic phase after brain injury [9,12,16,17,1923]. Because of the potential relevant characteristics of VR for motor learning and neuroplasticity [14], VR may be of even more added value during the earlier rehabilitation phase. Three studies [2426] that investigated the effect of VR in this time period after stroke indicated a positive effect of commercially available VR systems (Nintendo Wii Fit or IREX) on balance and/or gait recovery. However, the results of these studies cannot be generalised to the whole population of patients with stroke because included participants had a relatively high functional level regarding balance and gait at the start of the VR intervention. A lack of studies including patients with lower functional status after stroke might be caused by the idea that the feasibility of using advanced VR technology may be restricted because of visual, cognitive and/or endurance impairments. These impairments are more often present in the more impaired patients early after stroke [2729]. Because of the expected promising effects of VR training for the recovery of balance and gait in patients with low functional level early after stroke, it is important to investigate the feasibility of this innovative form of training and to determine whether the above-mentioned impairments interfere with the use of VR training early after stroke.

Therefore, the aim of the present study was to investigate the feasibility and effectiveness of VR training for improving balance and/or gait during the inpatient rehabilitation of patients with stroke. The specific research questions were:

• What is the feasibility, from the perspective of patients and physiotherapists, of VR training aimed to improve balance and gait ability?

• What is the effectiveness of VR training, embedded within an inpatient rehabilitation program, on balance and gait ability in people with impaired balance and dependent gait within 12 weeks after stroke?

Methods

Study design

This longitudinal pilot study involved two assessments, one before and one after a four-week VR training intervention, performed within the inpatient rehabilitation program of patients with stroke at (Revant Rehabilitation Centres, Breda, the Netherlands).

Participants

Patients with stroke who were following an inpatient rehabilitation program with a treatment goal to improve balance and/or gait. They received balance and/or gait training with VR as part of their regular rehabilitation program. Besides the VR training, the regular rehabilitation program could include therapy given by a physiotherapist, occupational therapist, speech therapist, psychomotor therapist, psychologist and social worker, depending on the goals of the patient with stroke. Inclusion criteria consisted of hemiplegia resulting from a stroke, a time since stroke of less than 12 weeks, a Berg Balance Scale (BBS) score of at least 20, i.e. the minimum level of balance deemed safe for balance interventions [30], and a Functional Ambulation Category (FAC) score of 2 or 3 out of 5 [31]. Exclusion criteria were patients with stroke with terminal diseases, lower-limb impairments not related to stroke, severe cognitive impairments, severe types of expressive or receptive aphasia, visual impairments, age over 80 years and experiencing epileptic seizures. All participants provided written consent to use data obtained during the rehabilitation program for research, and anonymity was assured. The study procedures follow the principles of the Declaration of Helsinki.

VR training intervention

The intervention consisted of balance and gait training using the recently developed treadmill based Gait Real-time Analysis Interactive Lab (GRAIL, Motekforce Link, Amsterdam, The Netherlands). The GRAIL comprises a dual-belt treadmill with force platform, a motion-capture system (Vicon, Oxford, UK) and speed-matched virtual environments projected on a 180° semi-cylindrical screen (Figure 1) [32].

[…]

Continue —> Feasibility and Effectiveness of Virtual Reality Training on Balance and Gait Recovery Early after Stroke: A Pilot Study | Open Access Journals

, , , ,

Leave a comment

[REVIEW] INFLUENCE OF TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION ON SPASTICITY, BALANCE, AND WALKING SPEED IN STROKE PATIENTS: A SYSTEMATIC REVIEW AND META-ANALYSIS – Full Text PDF

Objective: To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis.

Methods: PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model.

Results: Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = –0.71; 95% confidence interval (95% CI) = –1.11 to –0.30; p =0.0006), improved static balance with open eyes (SMD = –1.26; 95% CI = –1.83
to –0.69; p<0.0001) and closed eyes (SMD = –1.74; 95% CI = –2.36 to –1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = –0.60; 95% CI=–1.22 to 0.03; p = 0.06).

Conclusion: Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.

Download Full Text PDF

 

, , , , ,

Leave a comment

[ARTICLE] Effects of inclined treadmill walking training with rhythmic auditory stimulation on balance and gait in stroke patients – Full Text PDF

Abstract.

[Purpose] The purpose of this study was to determine if an inclined treadmill with rhythmic auditory stimulation gait training can improve balance and gait ability in stroke patients.

[Subjects and Methods] Thirty participants were randomly divided into three groups: inclined treadmill with rhythmic auditory stimulation training group (n=10), inclined treadmill training group (n=10), and treadmill training group (n=10). For all groups, the training was conducted for 4 weeks, 30 minutes per session, 5 times per week. Two subjects dropped out before study completion.

[Results] All variables of balance and gait, except for the timed up and go test in the treadmill group, significantly improved in all groups. Moreover, all variables showed a more significant improvement in the inclined treadmill with rhythmic auditory stimulation group when compared with the other groups. Timed up and go test, Berg balance scale, 6 m walking test, walking speed, and symmetric index were significantly improved in the inclined treadmill group when compared with the treadmill group.

[Conclusion] Thus, for stroke patients receiving gait training, inclined treadmill with rhythmic auditory stimulation training was more effective in maintaining balance and gait than inclined treadmill without rhythmic auditory stimulation or only treadmill training.

INTRODUCTION
Patients with stroke show various muscle abnormalities, including a combination of denervation, disuse, remodeling, and spasticity1). These reduce their balance ability and lead to gait disorders2). Abnormal gaits cause flexion and extension synergy patterns due to compensatory actions of muscles, etc., on the unaffected side, impairment of proprioceptive sensibility, and abnormal coordination of stiffened muscles of the lower limb3). As a substitute of stair climbing exercise, inclined treadmill walking training, which is aimed at improving these gait disorders, is being considered as an essential means for indoor and outdoor movements of the disabled, the elderly, or pregnant women who are unable to use stairs4). However, Rhea et al.5) stated that treadmill walking training, compared with walking on flat ground, is characterized by a shorter step length. Oh, Kim, and Woo6) argued that treadmill walking training has negative effects on gait asymmetry. Sensory elements play an important part in compensating for these weaknesses7), and rhythmic auditory stimulation (RAS) can be used as a complementing intervention8). In this intervention, the external auditory sense of rhythms generates rhythmic and more symmetrical alternate movements in the lower limbs of stroke patients who show gait asymmetry6, 9). Existing studies have not shown consistent results regarding the effects of treadmill walking training on the gait of stroke patients. In particular, with regard to balance and gait, which are essential for the activity and participation of stroke patients, there are no systematic studies showing the effects of inclined treadmill walking training with RAS thus far.[…]

Full Text PDF

, , , ,

Leave a comment

[WHITE PAPER] Virtual and augmented reality based balance and gait training – Full Text PDF

The use of virtual and augmented reality for rehabilitation has become increasingly popular and has received much attention in scientific publications (over 1,000 papers). This white paper aims to summarize the scientific background and efficacy of using virtual and augmented reality for balance and gait training. For many patients with movement disorders, balance and gait training is an important aspect of their rehabilitation process and physical therapy treatment. Indications for such training include, among others, stroke, Parkinson’s disease, multiple sclerosis, cerebral palsy, vestibular disorders, neuromuscular diseases, low back pain, and various orthopedic complaints, such as total hip or knee replacement. Current clinical practice for balance training include exercises, such as standing on one leg, wobble board exercises and standing with eyes closed. Gait is often trained with a treadmill or using an obstacle course. Cognitive elements can be added by asking the patient to simultaneously perform a cognitive task, such as counting down by sevens. Although conventional physical therapy has proven to be effective in improving balance and gait,1,2 there are certain limitations that may compromise treatment effects. Motor learning research has revealed some important concepts to optimize rehabilitation: an external focus of attention, implicit learning, variable practice, training intensity, task specificity, and feedback on performance.3 Complying with these motor learning principles using conventional methods is quite challenging. For example, there are only a limited number of exercises, making it difficult to tailor training intensity and provide sufficient variation. Moreover, performance measures are not available and thus the patient usually receives little or no feedback. Also, increasing task specificity by simulating everyday tasks, such as walking on a crowded street, can be difficult and time consuming. Virtual and augmented reality could provide the tools needed to overcome these challenges in conventional therapy. The difference between virtual and augmented reality is that virtual reality offers a virtual world that is separate from the real world, while augmented reality offers virtual elements as an overlay to the real world (for example virtual stepping stones projected on the floor). In the first part of this paper we will explain the different motor learning principles, and how virtual and augmented reality based exercise could help to incorporate these principles into clinical practice. In the second part we will summarize the scientific evidence regarding the efficacy of virtual reality based balance and gait training for clinical rehabilitation.

Full Text PDF

, , , , ,

Leave a comment

[ARTICLE] Effect of upper extremity coordination exercise during standing on the paretic side on balance, gait ability and activities of daily living in persons with stroke – Full Text PDF

Objective: The purpose of this study was to determine the effect of upper extremity coordination exercise (UECE) during standing on the paretic side on balance, gait ability and activities of daily living (ADL) in persons with stroke.
Design: A randomized controlled trial.
Methods: A total of 27 patients with hemiplegic diagnosis after stroke were divided into two groups. Fourteen patients were in the study group and 13 patients were in the control group. The study group received conventional physical therapy and UECE during standing on the paretic side. The control group received conventional physical therapy and simple upper extremity exercise (SUEE). Subjects in both groups were given upper extremity training for 30 minutes per day, five times a week for 4 weeks. Initial evaluation was performed before treatment and reevaluated 4 weeks later to compare the changes of balance, gait ability and ADL (Korean version of modified Barthel index, K-MBI).
Results: Both groups showed a significant effect for balance, gait ability and ADL (p<0.05). In the Independent t-test, between both groups showed a significant effect for balance and gait ability except ADL (p<0.05).
Conclusions: In this paper, we investigated the changes in balance, walking, and ADL through UECE. We found significant changes in the study group and the control group. Results of the present study indicated that UECE during standing on the paretic side for 4 weeks had an effect on balance, gait ability and ADL (K-MBI) in persons with hemiplegia after stroke.

Download Full Text PDF

 

, , , , , , , , , , ,

Leave a comment

[Abstract] Effect of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials

 

Highlights

  • Motor imagery (MI) is a beneficial intervention for stroke rehabilitation.
  • MI shows superior to routine methods of treatment or training in improving walking and motor function.
  • Effects of MI on walking and motor function are not affected by treatment duration.

Abstract

Objective

This study aimed to evaluate effects of motor imagery (MI) on walking function and balance in patients after stroke.

Methods

Related randomized controlled trials (RCTs) were searched in 12 electronic databases (Cochrane Central Register of Controlled Trials, PubMed, Science Direct, Web of Science, Allied and Complementary Medicine, Embase, Cumulative Index to Nursing and Allied Health Literature, PsycINFO, China National Knowledge Infrastructure, Chinese Biomedical Literature Database, WanFang, and VIP) from inception to November 30, 2016, and Review Manager 5.3 was used for meta-analysis. References listed in included papers and other related systematic reviews on MI were also screened for further consideration.

Results

A total of 17 studies were included. When compared with “routine methods of treatment or training,” meta-analyses showed that MI was more effective in improving walking abilities (standardized mean difference [SMD] = 0.69, random effect model, 95% confidence interval [CI] = 0.38 to 1.00, P < 0.0001) and motor function in stroke patients (SMD = 0.84, random effect model, 95% CI = 0.45 to 1.22, P < 0.0001), but no statistical difference was noted in balance (SMD = 0.78, random effect model, 95% CI = −0.07 to 1.62, P = 0.07). Statistically significant improvement in walking abilities was noted between short-term (0 to < six weeks) (SMD = 0.83, fixed effect model, 95% CI = 0.24 to 1.42, P = 0.006) and long-term (≥six weeks) durations (SMD = 0.45, fixed effect model, 95% CI = 0.25 to 0.64, P < 0.00001). Subgroup analyses results suggested that MI had a positive effect on balance with short-term duration (0 to < six weeks) (SMD = 4.67, fixed effect model, 95% CI = 2.89 to 6.46, P < 0.00001), but failed to improve balance (SMD = 0.82, random effect model, 95% CI = −0.27 to 1.90, P = 0.14) with long-term (≥six weeks) duration.

Conclusion

MI appears to be a beneficial intervention for stroke rehabilitation. Nonetheless, existing evidence regarding effectiveness of MI in stroke patients remains inconclusive because of significantly statistical heterogeneity and methodological flaws identified in the included studies. More large-scale and rigorously designed RCTs in future research with sufficient follow-up periods are needed to provide more reliable evidence on the effect of MI on stroke patients.

Source: Effect of motor imagery on walking function and balance in patients after stroke: A quantitative synthesis of randomized controlled trials – Complementary Therapies in Clinical Practice

, , , , , , , ,

Leave a comment

[ARTICLE] Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review – Full Text

Abstract

Background

Virtual reality (VR) based applications play an increasing role in motor rehabilitation. They provide an interactive and individualized environment in addition to increased motivation during motor tasks as well as facilitating motor learning through multimodal sensory information. Several previous studies have shown positive effect of VR-based treatments for lower extremity motor rehabilitation in neurological conditions, but the characteristics of these VR applications have not been systematically investigated. The visual information on the user’s movement in the virtual environment, also called movement visualisation (MV), is a key element of VR-based rehabilitation interventions. The present review proposes categorization of Movement Visualisations of VR-based rehabilitation therapy for neurological conditions and also summarises current research in lower limb application.

Methods

A systematic search of literature on VR-based intervention for gait and balance rehabilitation in neurological conditions was performed in the databases namely; MEDLINE (Ovid), AMED, EMBASE, CINAHL, and PsycInfo. Studies using non-virtual environments or applications to improve cognitive function, activities of daily living, or psychotherapy were excluded. The VR interventions of the included studies were analysed on their MV.

Results

In total 43 publications were selected based on the inclusion criteria. Seven distinct MV groups could be differentiated: indirect MV (N = 13), abstract MV (N = 11), augmented reality MV (N = 9), avatar MV (N = 5), tracking MV (N = 4), combined MV (N = 1), and no MV (N = 2). In two included articles the visualisation conditions included different MV groups within the same study. Additionally, differences in motor performance could not be analysed because of the differences in the study design. Three studies investigated different visualisations within the same MV group and hence limited information can be extracted from one study.

Conclusions

The review demonstrates that individuals’ movements during VR-based motor training can be displayed in different ways. Future studies are necessary to fundamentally explore the nature of this VR information and its effect on motor outcome.

Background

Virtual reality (VR) in neurorehabilitation has emerged as a fairly recent approach that shows great promise to enhance the integration of virtual limbs in one`s body scheme [1] and motor learning in general [2]. Virtual Rehabilitation is a “group [of] all forms of clinical intervention (physical, occupational, cognitive, or psychological) that are based on, or augmented by, the use of Virtual Reality, augmented reality and computing technology. The term applies equally to interventions done locally, or at a distance (tele-rehabilitation)” [3]. The main objectives of intervention for facilitating motor learning within this definition are to (1) provide repetitive and customized high intensity training, (2) relay back information on patients’ performance via multimodal feedback, and (3) improve motivation [24]. VR therapies or interventions are based on real-time motion tracking and computer graphic technologies displaying the patients’ behaviour during a task in a virtual environment.

The interaction of the user and Virtual environment can be described as a perception and action loop [5]. This motor performance is displayed in the virtual environment and subsequently, the system provides multimodal feedback related to movement execution. Through external (e.g. vision) and internal (proprioception) senses the on-line sensory feedback is integrated into the patient’s mental representation. If necessary, the motor plan is corrected in order to achieve the given goal [5].

A previous Cochrane Review from Laver, George, Thomas, Deutsch, and Crotty [2] on Virtual Reality for stroke rehabilitation showed positive effects of VR intervention for motor rehabilitation in people post-stroke. However, grouped analysis from this review on recommendation for VR intervention provides inconclusive evidence. The author further comments that “[…] virtual reality interventions may vary greatly […], it is unclear what characteristics of the intervention are most important” ([2], p. 14).

Virtual rehabilitation system provides three different types of information to the patient: movement visualisation, performance feedback and context information [6]. During a motor task the patient’s movements are captured and represented in the virtual environment (movement visualisation). According to the task success, information about the accomplished goal or a required movement alteration is transmitted through one or several sensory modalities (performance feedback). Finally, these two VR features are embedded in a virtual world (context information) that can vary from a very realistic to an abstract, unrealistic or reduced, technical environment.

Performance feedback often relies on theories of motor learning and is probably the most studied information type within VR-based motor rehabilitation. Moreover, context information is primarily not designed with a therapeutic purpose. Movement observation, however, plays an important role for central sensory stimulation therapies, such as mirror therapy or mental training. The observation or imagination of body movements facilitates motor recovery [789] and provides new possibilities for cortical reorganization and enhancement of functional mobility. Thus, it appears that movement visualisation may also play an important role in motor rehabilitation [101112], although this aspect is yet to be systematically investigated [13].

The main goal of the present review is to identify various movement visualisation groups in VR-based motor interventions for lower extremities, by means of a systematic literature search. Secondarily, the included studies are further analysed for their effect on motor learning. This will help guide future research in rehabilitation using VR.

An interim analysis of the review published in 2013 showed six MV groups for upper and lower extremity training and additional two MV groups directed only towards lower extremity training. In this paper, we analysed only studies involving lower limb training, leading to a revision and expansion of the previously published MV groups findings [131415].

Continue —> Movement visualisation in virtual reality rehabilitation of the lower limb: a systematic review | BioMedical Engineering OnLine | Full Text

, , , , , , , ,

Leave a comment

[Abstract] Effects of sit-to-stand training combined with transcutaneous electrical stimulation on spasticity, muscle strength and balance ability in patients with stroke: a randomized controlled study

Highlights

  • The effect of sit-to-stand training combined with TENS was evaluated in stroke patients with spastic plantar flexor.
  • TENS followed by sit-to-stand training may improve spasticity, muscle strength and balance.
  • Clinician should consider TENS application prior to sit to stand training for stroke patients with spastic plantar flexor.

Abstract

Sit-to-stand is a fundamental movement of human being for performing mobility and independent activity. However, Stroke people symptoms experience difficulty in conducting the sit-to-stand due to paralysis and especially ankle spasticity. Recently, transcutaneous electrical- stimulation (TENS) is used to reduce pain but also to manage spasticity.

The purpose of this study was to determine

  1. whether TENS would lead to ankle spasticity reduction and (
  2. whether sit-to-stand training combined with TENS would improve spasticity, muscle strength and balance ability in stroke patients.

Forty-stroke patients were recruited and were randomly divided into two groups: TENS group (n = 20) and sham group (n = 20). All participants underwent 30-sessions of sit-to-stand training (for 15-minutes, five-times per week for 6-weeks). Prior to each training session, 30-minutes of TENS over the peroneal nerve was given in TENS group, whereas sham group received non-electrically stimulated TENS for the same amount of time. Composite-Spasticity-Score was used to assess spasticity level of ankle plantar-flexors. Isometric strength in the extensor of hip, knee and ankle were measured by handhelddynamometer. Postural-sway distance was measured using a force platform.

The spasticity score in the TENS group (2.6 ± 0.8) improved significantly greater than the sham group (0.7 ± 0.8, p < 0.05). The muscle strength of hip extensor in the TENS group (2.7 ± 1.1 kg) was significantly higher than the sham group (1.0 ± 0.8 kg, p < 0.05). Significant improvement in postural-sway was observed in the TENS group compared to the sham group (p < 0.05).

Thus, sit-to-stand training combined with TENS may be used to improve the spasticity, balance function and muscle strength in stroke patients.

Source: Effects of sit-to-stand training combined with transcutaneous electrical stimulation on spasticity, muscle strength and balance ability in patients with stroke: a randomized controlled study – Gait & Posture

, , , , , , , , ,

Leave a comment

[ARTICLE] Effects of Virtual Reality Exercise Program on Balance, Emotion and Quality of Life in Patients with Cognitive Decline

Abstract

Purpose:

In this study, we investigated the effectiveness of a 12-week virtual reality exercise program using the Nintendo Wii console (Wii) in improving balance, emotion, and quality of life among patients with cognitive decline.

Methods:

The study included 30 patients with cognitive decline (12 female, 18 male) who were randomly assigned to an experimental (n=15) and control groups (n=15). All subjects performed a traditional cognitive rehabilitation program and the experimental group performed additional three 40-minute virtual reality based video game (Wii) sessions per week for 12 weeks. The berg balance scale (BBS) was used to assess balance abilities. The short form geriatric depression scale-Korean (GDS-K) and the Korean version of quality of life-Alzheimer’s disease (KQOL-AD) scale were both used to assess life quality in patients. Statistical significance was tested within and between groups before and after treatment, using Wilcoxon signed rank and Mann-Whitney u-tests.

Results:

After 36 training sessions, there were significant beneficial effects of the virtual reality game exercise on balance (BBS), GDS-K, and KQOL-AD in the experimental group when compared to the control group. No significant difference was observed within the control group.

Conclusion:

These findings demonstrate that a virtual reality-training program could improve the outcomes in terms of balance, depression, and quality of life in patients with cognitive decline. Long-term follow-ups and further studies of more efficient virtual reality training programs are needed.

INTRODUCTION

Dementia is a degenerative disease of the nervous system, which is prevalent in the elderly population. It involves deterioration in cognitive function and ability to perform everyday activities. As the early diagnosis and treatment of dementia is delayed, its economic costs and burden on families and society are gradually increasing and becoming a social problem.1 Older people with dementia have an increased risk of falls and lower levels of everyday activities being performed due to cognitive decline and decreased muscle mass. This is a result of reduced physical activity, which further deteriorates their quality of life.2 Therapeutic interventions to improve cognitive function and to increase activities of daily living (ADL) in patients with dementia are divided into pharmacological and non-pharmacological treatments. For pharmacological treatment, acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists are the most widely used in clinical practice.3 However, because pharmacological treatment alone cannot prevent the progression of cognitive decline and ADL deterioration in patients with dementia, various non-pharmacological treatments including cognitive therapy or physical exercise are used as additional treatments.4
Recent reports have stated that regular exercise was effective in delaying cognitive impairment in people with dementia.5 In a three-year follow-up study of healthy older people, a combination of cognitive activity and physical activity was found to be effective in reducing the risk for mild cognitive impairment.6 However, physical activity was found to be more important than cognitive activity in order to further reduce the risk for cognitive decline.6 When older people with dementia performed regular physical exercise, there was an improvement in the mini-mental state examination (MMSE) score.7 Physical exercise prevented the deterioration of ADL.8 The mechanism of the benefit of physical exercise on patients with dementia is thought to be that it can facilitate neuroplasticity, promote injury recovery mechanisms at a molecular level and facilitate self-healing of the brain through its neuroprotective effect.9
However, unless individuals perform exercise in the long run, such beneficial effects of exercise may wear off, leading to impaired brain function and worsened disease.10 Therefore, patients with dementia should continue exercise under the supervision of professional physical therapists in order to stop the progression of cognitive impairment for a long time. In order to achieve this, it is required to keep patients interested in the exercise therapy allowing them to maintain adherence. However, it is difficult to execute exercise treatment continuously in patients with dementia because of space, time, and cost issues in Korea. Patients get easily bored and tired of passive and simply repetitive forms of exercise treatment. In general, 20-50% of older people who start an exercise program will stop within six months.11 Patients with dementia are expected to be more likely to discontinue exercise program due to lowered levels of patience and self-regulation abilities. Therefore, exercise programs utilizing media, including games, attempt to keep patients interested in exercise programs and to improve therapeutic effects. With recent advances in scientific technologies and computer programs, exercise and rehabilitation interventions using virtual reality are being introduced in the medical field.12 Virtual reality refers to a computer-generated environment that allows users to have experiences similar to those in the real world. It is an interactive simulation characterized by technology that provides reality through various feedbacks.13 While performing predetermined tasks such as playing a game in virtual reality, users manipulate objects as if they were real and can control their movements by giving and receiving various feedbacks via numerous senses such as sight and hearing.14
The virtual reality-enhanced exercise consisting of exercise with computer-simulated environments and interactive videogame features allows patients to enjoy performing tasks, encourages competition, and creates motivation and interest in their treatment.15 Participation in a virtual reality-enhanced exercise was reported to lead to higher exercise frequency and intensity and enhanced health outcomes when compared with traditional exercise.16
However, despite these advantages, conventional virtual reality systems could not be widely available for patients in clinical settings due to several limitations including high costs and a large size.17 Therefore, it is necessary to develop virtual reality exercise programs that are easy to follow in hospitals and at home. As an alternative, the use of computer-based individual training programmes is becoming increasingly popular due to the low cost, independence and ease of use in the home. One such system that is increasing in popularity for use in exercise training is the Nintendo Wii (Wii; Nintendo Inc., Kyoto, Japan) personal game, which became commercially available. Wii is a video gaming console with a simple method, as its virtual reality system is implemented via a television monitor. It combine physical exercise with computer-simulated environments and interactive videogame features. Because the Wii console is inexpensive and small in size, it is easy to install or move it in hospitals or at home. This gaming console is designed to be controlled using a wireless controller, allowing user to interact with his/her own avatar, which is displayed on the screen through a movement sensing system. The controller is provided with an acceleration sensor that responds to acceleration changes recognizing direction and velocity changes.18 Wii-balance board is being used when playing a Wii Fit game. It is a force plate collecting movement information in the center of pressure of the standing user, enabling reflection of movements in a virtual environment on the monitor and thus constantly resending visual feedback to the user. Through this process, the user can adjust his/her postural responses. Studies have shown that the Wii balance board can be helpful in postural control training.19 Because Wii is a typical example of virtual reality applications and is simple, inexpensive, and easily accessible, Wii is expected to create interest among patients encouraging them to put more efforts in exercise via games and thus augmenting effects of the treatment.
Domestic studies on the use of Wii have reported its effects on the upper extremity function, visual perception and sense of balance in chronic stroke patients,20 spinal cord injury patients,21 Parkinson’s disease patients,22 and multiple sclerosis patients.23 However, there have been only a few controlled research studies about the effects of Wii on patients with cognitive decline. The present study aimed to analyze effects of virtual reality exercise program on balance function, emotions, and quality of life (QOL) in patients with cognitive decline.

Continue —> Effects of Virtual Reality Exercise Program on Balance, Emotion and Quality of Life in Patients with Cognitive Decline – ScienceCentral

 

JKPT_28_355_fig_1.tif

Figure 1 The level of satisfaction about Wii game for dementia patients (Number=%).

, , , , , , , ,

Leave a comment

%d bloggers like this: