Posts Tagged TBI

[WEB SITE] Experiences of patients with traumatic brain injury and their carers during transition from in-patient rehabilitation to the community – CNS

PURPOSE: To explore the experiences of individuals who have had a severe
traumatic brain injury (TBI) and their carers in the first month post-discharge
from in-patient rehabilitation into living in the community.

METHOD: Using a qualitative approach underpinned by critical realism, we explored the narratives of 10 patients and nine carers using semi-structured interviews approximately one month post-discharge. Thematic analysis was carried out independently by two researchers.

RESULTS: Firstly, perceptions of support were mixed but many patients and carers felt unsupported in the inpatient phase, during transitions between units and when preparing for discharge. Secondly, they struggled to accept a new reality of changed abilities, loss of roles and loss of autonomy. Thirdly, early experiences post-discharge exacerbated fears for the future.

CONCLUSIONS: Most patients and carers struggled to identify a cohesive plan that supported their transition to living in the community. Access to services required much persistence on the part of carers and tended to be short-term, and therefore did not meet their long-term needs. We propose the need for a case manager to be involved at an early stage of their rehabilitation and act as a key point for information and access to on-going rehabilitation and other support services. Implications for Rehabilitation Traumatic Brain Injury (TBI) is a major cause of long-term disability. It can affect all areas of daily life and significantly reduce quality of life for both patient and carer. Professionals appear to underestimate the change in abilities and impact on daily life once patients return home. Community services maintain a short-term focus, whereas patients and carers want to look further ahead – this dissonance adds to anxiety. The study’s findings on service fragmentation indicate an urgent need for better integration within health services and across health, social care and voluntary sectors. A link person/case manager who oversees the patient journey from admission onwards would help improve integrated care and ensure the patient, and
carer, are at the center of service provision.

Source: Traumatic Brain Injury Resource Guide – Research Reports – Experiences of patients with traumatic brain injury and their carers during transition from in-patient rehabilitation to the community

, ,

Leave a comment

[WEB SITE] Vision and Rehabilitation After Brain Trauma (Part 1)

Vision and Rehabilitation After Brain Trauma (Part 1)

Eric Singman, MD, PhD, Health.mil

This is part one of a three-part article published to health.mil.

Vision Problems After Brain Injury

Visual problems following brain trauma are frequent and often complex. It is probably easiest to define the problems based upon how they affect incoming visual information (i.e., the afferent visual pathways) or the outflow of information to the visual organs (i.e., efferent visual pathways). Afferent defects include reduction in visual acuity, visual field, color vision, contrast sensitivity, comfort (usually as it relates to glare), and higher level visual processing, including recording of visual memory and comprehension of visual stimuli. Efferent defects include reduction of the ability to visually pursue a target, focus the lens inside the eye, train the two eyes onto a single target, maintain gaze once a visual target is obtained, and open and close the eyelids. In this three part series, we will describe 1) damage to the afferent visual pathways, 2) damage to the efferent visual pathways, and 3) the role of the neuro-ophthalmologist in visual restoration and rehabilitation.

The Afferent Visual Pathway and How Brain Injury Can Affect It

Light enters the eye through the cornea, the clear window of the eye. The cornea provides the majority of the focusing power of the eye, and is an extremely poor refractive surface, but with a healthy tear film it becomes nearly perfect. Brain injury often causes dry eye thereby reducing visual acuity. Furthermore, brain injury patients often lose an adequate blink response or develop lagophthalmos, the inability to completely close the eye. Dry, unprotected corneas are subject to scarring and infection.

Trauma to the brain often entails injury that can also shake or directly damage the eye along with the rest of the body. Patients suffering a blast injury can experience rapid elevation of pressure in the chest, which is then transmitted by the blood vessels to the retina, the neural tissue lining the inner wall of the eye. This is the tissue which converts light rays into the electrical impulses that are sent to the brain. The retinal blood vessels can rupture from the sudden increase in pressure and cause bleeding within the retina, a condition called Purtscher’s retinopathy. The free blood inside the eye can cause significant scarring and loss of vision.

Direct head trauma can also cause the eye to move too quickly and/or too far relative to the fixed structures in the eye socket. This can cause stretching or shearing of the optic nerve, the nerve that carries visual information to the brain. This traumatic optic neuropathy often can result in permanent visual impairment. Multiple direct head traumas also are a risk factor for problems within the eye itself, such as detachment of the retina from the back of the eye, or formation of a cataract, a clouding of the natural lens.

Trauma to the head invariably is associated with some degree of trauma to the neck, a risk factor for damage to the blood vessels of the neck. Injury to the wall of an artery can cause it to bulge (i.e., form an aneurysm) or separate from its inner lining (i.e., arterial dissection). Either situation can lead to abnormal blood flow to the visual pathways of the brain. Furthermore, either condition can cause the vessels to physically compress portions of the visual pathways, such as the nerves that control the eye muscles or the nerves that bring visual information to the brain. This could result in double vision or in reduction of visual acuity and visual field, respectively.

It has been demonstrated that the world we see is formed into a map upon our brain, specifically onto an area called the visual cortex. This map is organized such that the image of the world is inverted and reversed; the left side of our brain sees what is to the right of where we look and the right side of the brain sees light from the left of where we gaze. Furthermore, visual information emanating from above our visual point of interest is transmitted to the lower portion of the visual cortex while the upper portion of the visual cortex maps the visual world below the object of regard. It is for this reason that damage to the visual cortex causes loss of peripheral vision rather than simply loss of visual clarity.

While we do not know how visual memories are created or stored in our brains, it is known that brain injury slows the acquisition and processing of visual information and impairs the formation of visual memory. Recent research has suggested that these impairments may result from stretching or shearing of nerve fiber bundles after head injury. Sadly, higher level visual processing failure is often particularly difficult for a patient to express. Neuropsychologists have proven to be critically important for the diagnosis of these problems and for guidance in directing rehabilitation efforts.

Source: Vision and Rehabilitation After Brain Trauma (Part 1)

, , ,

Leave a comment

[WEB SITE] Traumatic Brain Injury Resource Guide – Neuroplasticity

Neuroplasticity

by Lisa Kreber, Ph.D. CBIS
Senior Neuroscientist, Centre for Neuro Skills

What is Neuroplasticity?
Neuronal Firing
How Neuroplasticity Works
Mechanisms of Plasticity
Synaptogenesis
Stem Cells
Modulation of Neurotransmission
Unmasking
Forms of Neuronal Plasticity
Neuronal Remodeling
Depression and Hippocampal Plasticity
Appreciating Plasticity
Ten Principles of Neuroplasticity
Learning, Injury and Recovery

Source: Traumatic Brain Injury Resource Guide – Neuroplasticity

, , ,

Leave a comment

[Abstract] Experiences of patients with traumatic brain injury and their carers during transition from in-patient rehabilitation to the community

PURPOSE: To explore the experiences of individuals who have had a severe
traumatic brain injury (TBI) and their carers in the first month post-discharge
from in-patient rehabilitation into living in the community.

METHOD: Using a qualitative approach underpinned by critical realism, we explored the narratives of 10 patients and nine carers using semi-structured interviews approximately one month post-discharge. Thematic analysis was carried out independently by two researchers.

RESULTS: Firstly, perceptions of support were mixed but many patients and carers felt unsupported in the inpatient phase, during transitions between units and when preparing for discharge. Secondly, they struggled to accept a new reality of changed abilities, loss of roles and loss of autonomy. Thirdly, early experiences post-discharge exacerbated fears for the future.

CONCLUSIONS: Most patients and carers struggled to identify a cohesive plan that supported their transition to living in the community. Access to services required much persistence on the part of carers and tended to be short-term, and therefore did not meet their long-term needs. We propose the need for a case manager to be involved at an early stage of their rehabilitation and act as a key point for information and access to on-going rehabilitation and other support services. Implications for Rehabilitation Traumatic Brain Injury (TBI) is a major cause of long-term disability. It can affect all areas of daily life and significantly reduce quality of life for both patient and carer. Professionals appear to underestimate the change in abilities and impact on daily life once patients return home. Community services maintain a short-term focus, whereas patients and carers want to look further ahead – this dissonance adds to anxiety. The study’s findings on service fragmentation indicate an urgent need for better integration within health services and across health, social care and voluntary sectors. A link person/case manager who oversees the patient journey from admission onwards would help improve integrated care and ensure the patient, and carer, are at the center of service provision.

Source: Traumatic Brain Injury Resource Guide – Research Reports – Experiences of patients with traumatic brain injury and their carers during transition from in-patient rehabilitation to the community

, , ,

Leave a comment

[Abstract] Educational and Vocational Issues in Traumatic Brain Injury 

This article describes some of the current issues related to return to school and employment for individuals with traumatic brain injury. A strong, collaborative partnership between an individual’s health care providers and key stake holders is essential toa smooth transition back to school or work. Ways to improve current practices andensure more timely and appropriate educational and employment services and supports for individuals with traumatic brain injury are described. Some recommendations on areas for future research are also offered.

Source: Educational and Vocational Issues in Traumatic Brain Injury – Physical Medicine and Rehabilitation Clinics

, , , , ,

Leave a comment

[ARTICLE] Visual dysfunction is underestimated in patients with acquired brain injury – Full Text

Abstract

Objectives: More than 50% of human cerebral activity is related to vision. Visual impairments are therefore common after acquired brain injury, although they are often overlooked. In order to evaluate the prevalence of visual deficits in our Out-patient Brain Injury Program, a structured screening questionnaire, the Visual Interview, was administered.

Methods: A total of 170 patients with acquired brain injury, mean age 47 years, who were enrolled in the programme during 2010–12, underwent the Visual Interview. The interview consists of 18 questions concerning visual impairment and was performed on admission. The different types of visual impairment were compared with regard to sex and diagnosis.

Results: Fifty-four percent of the patients reported visual changes, mainly reading difficulties, photosensitivity, blurred vision and disorders of the visual field. Sixteen patients who did not experience visual changes also reported visual symptoms in 4–9 questions. Only slight differences were noted in the occurrence of visual symptoms when correlated with sex or diagnosis.

Conclusion: Visual impairments are common after acquired brain injury, but some patients do not define their problems as vision-related. A structured questionnaire, covering the most common visual symptoms, is helpful for the rehabilitation team to facilitate assessment of visual changes.

Introduction

The visual system is widely distributed in the brain. It is integrated in more than 50% of human cerebral activity and is fundamental for interpretation of, and interaction with, the environment (1, 2).

A pyramidal hierarchical model of visual perceptual function was presented by Warren in 1993 (3). In this model, visual cognition forms the top level, followed by, in descending order: visual memory, pattern recognition, scanning, attention and a base level holding acuity, visual fields, and ocular motor control. The model illustrates how higher visual skills evolve from integration and interaction with lower skills and how visual cognition depends on well-functioning lower levels of visual perception.

Base level disturbances, such as visual field defects (VFDs), visual acuity changes, diplopia, strabismus, photophobia and different types of binocular disorders, are common after acquired brain injury (ABI) (4, 5), and lead to chronic headache, fatigue, dizziness, reading problems, and difficulties navigating the environment (6, 7). Although a complete VFD or manifest diplopia seldom escapes notice, disturbances of ocular motor abilities and photophobia are likely to be overlooked. Examinations of convergence and accommodation are not customary in standard ophthalmological assessments. Ordinary short examinations are unable to reveal declining attention ability and fatigue. Thus, the true problems may remain hidden.

Several reports of prevalence and quality of visual deficits after ABI document visual dysfunctions in approximately 50–75% of patients (8–13). The occurrence of different visual symptoms differs between the studies, including reading disturbances, VFD, diplopia, ocular motor dysfunction and photophobia. Nevertheless, visual symptoms are often overlooked in neurorehabilitation. The observations of Sand et al. (14) are noteworthy, i.e. that 1 of 4 stroke patients with VFD, 6 months after onset of stroke, considered that their visual problems reduced quality of life and increased their disability.

Visual disturbances after ABI are common and lead to reduced quality of life. An important question is why they are so often overlooked in neurorehabilitation? A possible explanation is the difficulty for different professionals to co-operate. Vision disturbances are complex and many different professionals operate in the field. An ability to co-operate is needed for a high-quality assessment. Another explanation could be the patients’ difficulty describing their shortcomings. They experience decreased reading speed, fatigue and dizziness, but do not recognize these problems as expressions of visual deficits. A structured questionnaire at admission would help the clinician to obtain informative answers.

In 1990, Kerkhoff et al (15). compiled an “Interview Questionnaire” in order to capture visual disorders after ABI. This interview was used by Wilhelmsen 2003 (12). Jacobsson & Hamelius translated it from Norwegian to Swedish in 2010 (16). During the last 5 years we have used this questionnaire, slightly modified, termed the Vision Interview (TVI), as an aid to discover visual deficits in our Out-patient Brain Injury Program.

The aim of the present study was to examine and analyse the occurrence of self-reported visual changes in a Swedish out-patient group with medium to severe ABI, based on TVI.

Continue —> Journal of Rehabilitation Medicine – Visual dysfunction is underestimated in patients with acquired brain injury – HTML

 

, , , , , , ,

Leave a comment

[WEB SITE] Helping you find the right app after a Stroke or Brain Injury

Find the right apps to aid rehabilitation and recovery. Our NHS specialists have trialed thousands of apps and selected the best.

3 in 1

Honest feedback and ratings provided helping you make the choice that is right for you.

“Apps tell you how you’ve done …. you want to do better. Not scary.” (Stroke Patient)

“Excellent, user-friendly website ….reliable assessment, description and app reviews… would recommend” (Charles Brain Injury Therapist)

Top Rated Apps

SitFit

Free

iOS

Primary Use:

Being Active

Free Flow

Free

iOS Android

Primary Use:

Thinking

Peak

Free

iOS Android

Primary Use:

Thinking

Change4Life Be Food Smart

Free

iOS Android

Primary Use:

Eating and Drinking

Bla Bla Bla

Free

iOS

Primary Use:

Communication

Balloon Frenzy!

Free

iOS Android

Primary Use:

Arms and Fingers

Couch to 5K

Free

iOS Android

Primary Use:

Being Active

Lumosity

Free

iOS Android

Primary Use:

Thinking

Sudoku

Free

iOS Android

Primary Use:

Thinking

Color me

Free

iOS

Primary Use:

Relaxing

Language Therapy

Free

iOS Android

Primary Use:

Communication

Headspace

Free

iOS Android

Primary Use:

My Mood

What’s New

Jointly – for carers

£2.99

iOS

Primary Use:

Got questions

Alpha Topics AAC

£4.99

iOS

Primary Use:

Communication

Advanced Comprehension

£23.99

iOS

Primary Use:

Communication

Advanced Naming

£23.99

iOS

Primary Use:

Communication

Apraxia

£23.99

iOS

Primary Use:

Communication

OT Magazine

Free

iOS

Primary Use:

Got questions

Source: Helping you find the right app after a Stroke or Brain Injury – MyTherappy

, , , , , ,

Leave a comment

[WEB PAGE] 5 Tips and Tricks for TBI Caregivers

When someone you love sustains a serious traumatic brain injury often represents the beginning of a new season of life. As with any major change, it is rarely an easy journey.

Depending on the severity of the injury, you may find your loved one needs assistance with the most basic activities of daily life, such as feeding themselves, using the restroom, changing clothes and bathing.

In many cases of traumatic brain injury (TBI), the journey home comes after an extended stay in a hospital, skilled nursing or rehabilitation facility. For weeks — maybe months — life has been an emotional rollercoaster, and through it all you’ve had one goal in mind: getting your loved one home.

In the immediate aftermath of TBI, we often feel grief, fear, and concern. Family and friends flock to be by our side to lend support and assistance. This can mean picking up the kids from school, delivering meals to the house, or bringing snacks to the hospital. People want to help, and more than that they want to express their love and concern.

Unfortunately, even the dearest of friends will eventually have to shift their focus back to their own lives. It does not mean they don’t care or aren’t concerned, but life may seem a bit lonely compared to those earlier days in the hospital waiting room surrounded by people offering to help. Indeed, adjusting to life as the primary caregiver to a partner, spouse, child, parent or friend with TBI is difficult, but with these tips and tricks it isn’t impossible.

1. Stay honest

It is important to be honest with clinicians, family members, and your loved one with TBI about your own needs, fears, concerns and emotions. You may have thoughts or feelings that you’re ashamed of, and it’s important to remember that you are human and these feelings are normal. If, however, you find that these thoughts are impacting your ability to provide care to your loved one, you should seek input or guidance from someone you trust, like a therapist, close friend or relative or minister.

2. Work to understand

Understanding what your loved one with TBI is going through is almost as impossible as trying to show them what you are going through, but it is important to maintain perspective and patience. Rather than trying to understand, make a commitment to work to understand. Trying implies that you attempt and either achieve or give up, but working indicates a constant, ongoing period of growth and development.

3. Acknowledge limits

When you are staying honest you will likely find that you have to have some tough conversations about limits — your own, those held by your friends and family, and of course your loved one with TBI’s limits. Limits may not only be physical, but emotional and financial as well. These boundaries allow you and your family to adjust to and establish a new normal that works for everyone.

4. Seek input

As you adjust to the new normal of caring with someone with TBI, you will find that your circle of relationships grows rather rapidly. Remember to take advantage of these contacts and call on clinicians, your local or state Brain Injury Association, others you’ve met who have sustained a TBI, and certainly your fellow caregivers when you have a question, a concern or a need.

5. Ask for help

There is a difference between seeking input and asking for help. It is essential that you ask for help when you need it, and if you are staying honest you will know when these moments arise. Consider establishing a plan with a local respite care provider or other family members and friends so that if you find you need assistance, you have someone to call. Remember, you are the wheels keeping the bus in motion and, without you, things will come to a screeching halt.

Source: 5 Tips and Tricks for TBI Caregivers – Future of Personal Health

,

Leave a comment

[Abstract] The trajectories of overall disability in the first 5 years after moderate and severe traumatic brain injury – CNS Web Site

PRIMARY OBJECTIVES: To assess longitudinal trajectories of overall disability after moderate-to-severe traumatic brain injury (TBI) and to examine whether those trajectories could be predicted by socio-demographic and injury characteristics.

METHODS: Demographics and injury characteristics of 105 individuals with moderate-to-severe TBI were extracted from medical records. At the 1-, 2-, and 5-year follow-ups, TBI-related disability was assessed by the GOSE. A hierarchical linear model (HLM) was used to examine functional outcomes up to 5 years following injury and whether those outcomes could be predicted by: time, gender, age, relationship, education, employment pre-injury, occupation, GCS, cause of injury, length of post-traumatic amnesia (PTA), CT findings and injury severity score, as well as the interactions between each of these predictors and time.

RESULTS: Higher GOSE trajectories (lower disability) were predicted by younger age at injury and shorter PTA, as well as by the interaction terms of timePTA and timeemployment. Those who had been employed at injury decreased in disability over time, while those who had been unemployed increased in disability.

CONCLUSION: The study results support the view that individual factors generally outweigh injury-related factors as predictors of disability after TBI, except for PTA.

Source: Traumatic Brain Injury Resource Guide – Research Reports – The trajectories of overall disability in the first 5 years after moderate and severe traumatic brain injury

, , , , ,

Leave a comment

[WEB SITE] ‘Microwave helmet’ may cut time taken to evaluate head injuries – Medical News Today

Published: Friday 10 March 2017

A portable device that covers the head and uses microwave technology to examine brain tissue in prehospital settings could cut the time it takes to evaluate brain injuries. So conclude researchers after evaluating their “microwave helmet” in a small trial.

The researchers – including members from Chalmers University of Technology and Sahlgrenska University Hospital, both in Gothenburg, Sweden – report their findings in the Journal of Neurotrauma.

They suggest that the results of their small trial show that microwave technology can be used for the rapid detection of intracranial bleeding that can result from head injuries.

First author Dr. Johan Ljungqvist, a specialist in neurosurgery at the Sahlgrenska University Hospital, says: “The microwave helmet could improve the medical assessment of traumatic head injuries even before the patient arrives at the hospital.”

He notes that even though their study was small, and they only focused on one type of head injury, “the result indicates that the microwave measurements can be useful in ambulances and in other care settings.”

In their study paper, he and his colleagues note that microwave technology has already been evaluated for other medical applications – such as distinguishing between strokes caused by blood clots and strokes caused by bleeding in the brain.

TBI is a leading cause of disability and death

Traumatic brain injury (TBI) is disruption of normal brain function due to trauma that results from an injury that bumps, jolts, hits, or penetrates the head. The severity of trauma ranges from “mild” (the most common kind, also known as concussion) to “severe.”

Fast facts about TBI

  • In the U.S. between 2006 and 2010, TBI-related deaths were highest in people aged 65 and older
  • Over that period, vehicle crashes were the leading cause of TBI-related deaths for young people aged between 5 and 24
  • Among nonfatal TBI-related injuries, rates of ED visits were highest for children aged 4 and under.

Learn more about TBI

TBI can disrupt memory, thinking, movement, vision, hearing, and emotional functioning. It can also result in personality changes and depression. The effects are not confined to individuals; they can also impact families, friends, and communities.

TBI is a major cause of death and disability in the United States, where estimates from the Centers for Disease Control and Prevention (CDC) suggest that 138 people die every day from injuries that include TBI.

The majority of TBI survivors experience effects that last a few days, while others are left with enduring disabilities that can last for the rest of their lives.

In the U.S. in 2010, the amount of visits to emergency departments (EDs), admissions to hospitals, and deaths either related to TBI alone or to TBI linked with other injuries totaled around 2.5 million.

CDC figures for between 2006 and 2010 show falls as the leading cause of TBI (accounting for 40.5 percent of ED visits, hospitalizations, and deaths), followed by unintentional blunt trauma (15.5 percent), and motor vehicle crashes (14.3 percent).

Dr. Ljungqvist and colleagues note that the key to improving outcomes for people who sustain TBIs is to reduce the time it takes from when the injury occurs to deciding the right treatment.

Microwave helmet

The microwave helmet has three parts: a helmet incorporating microwave antennae that is placed on the patient’s head; a microwave signal generator; and a computer that controls the equipment, collects the data, and processes them through advanced mathematical algorithms.

The microwave generator sends signals through transmit antennae in the helmet into the patient’s brain.

Receiving antennae in the helmet pick up the signals after they have been scattered by and reflected from the brain tissue.

The advanced algorithms analyze the complex patterns in the microwave signals to deduce what they might indicate about changes in the brain.

Dr. Ljungqvist and colleagues evaluated the ability of their microwave technology to differentiate between people with brain bleeds due to injury and people without brain injury.

Microwave technology ‘shows promise in early triage of TBI’

The team tested the device on 20 patients with traumatic intracranial hematomas, 20 patients with chronic subdural hematoma, and 20 healthy volunteers. The patients were hospitalized for surgery in a Swedish hospital.

The participants also underwent traditional scanning with computerized tomography (CT). The CT scan results were then compared with the microwave helmet results.

The authors conclude that the microwave technology “shows promise as a tool to improve triage accuracy.” It detected the hematomas at 100 percent sensitivity and 75 percent specificity.

Sensitivity indicates how well a test rules out disease, and specificity indicates how well it rules it in. Thus, in this study, the microwave helmet “over-diagnosed” 25 percent of the cases (that is, 25 percent were “false positives.”)

The researchers note that plans are already in place to test the microwave helmet with more acute head injury patients in Sweden and other countries.

“Microwave technology has the potential to revolutionize medical diagnostics by enabling faster, more flexible, and more cost-effective care.”

Mikael Persson, professor of biomedical engineering, Chalmers University of Technology

Learn how a molecule discovery may lead to new drugs for brain and spinal cord injury.

Source: ‘Microwave helmet’ may cut time taken to evaluate head injuries – Medical News Today

, , , , ,

Leave a comment

%d bloggers like this: