Posts Tagged TBI

[WEB SITE] Traumatic Brain Injury Rehabilitation at Florida Institute for Neurologic Rehabilitation

A Specialized Approach to NeuroRehabilitation & Traumatic Brain Injury Rehabilitation

The Florida Institute for Neurologic Rehabilitation, (FINR) has developed a comprehensive brain injury rehabilitation continuum of care offering specialized inpatient evaluation and treatment for both children and adults. Through a pre-admission evaluation and medical records review, FINR develops individualized treatment programs. As a leader in traumatic brain injury rehabilitation (TBI)neurorehabilitation, and neuropsychiatric disorders, our continuum of care delivers clinically relevant and cost effective services with unparalleled continuity of care. The distinct programs in our continuum are designed for individuals with a wide range of complex medical, neurorehabilitation, neurobehavioral, and neuropsychiatric care needs.

Potential traumatic brain injury rehabilitation clients, family members, funders, referral sources, and other concerned parties are encouraged to tour our facilities in order to make informed placement decisions. If our team of expert staff can assist in scheduling a tour or providing educational resources and information, please give us a call at 1-888-TBI-FINR (888-824-3467).



via Traumatic Brain Injury Rehabilitation at Florida Institute for Neurologic Rehabilitation


, , , , ,

Leave a comment

[BLOG] Who Am I Now? Loss of Self after TBI – Brain Injury Blog With Free TBI Information

Loss of self is one of the biggest hurdles that TBI Survivors face

March, 2018

By Bill Herrin

When a loved one dies, friends and family bear the brunt of the loss. There are rituals for their grief and mourning. As they go on with their lives, they hope and often expect that the pain will fade with time. They are often told, “Give yourself time” or “Don’t make any major decisions now” and “It will get easier.” They are expected to feel sad, upset, and even angry after a death. But they are also expected to move on with their lives, no matter how difficult or painful it is.

Everything Has Changed

But when a person has a traumatic brain injury, their family faces new and different challenges. They have lost many of the things that they knew and loved about the Survivor. Their relationship with the Survivor has changed and so have their expectations and dreams for the future. While the physical, cognitive, behavioral, social and  even financial changes may be most evident, there’s something else that’s harder to define.  That’s the loss of self that the Survivor of a TBI faces. “Who am I now?” is the critical question. “What gives meaning to my life now?” Then there is the uncertainty of whether it’s even possible to reclaim your old life when so much has changed? While most everyone tries to overcome loss of self, some succeed…some cannot.

Necessity is the Mother of Reinvention

Hilary Zayed, who survived her brain injury, knows how difficult finding your new self can be. Her story is one of a huge transition described in her book, Reinventing Oneself After Loss.  Her artwork became a vehicle as she explored who she had become since her injury and how she rebuilt her identity, mourning her loss of self, and slowly regaining her new sense of self. Everyone will have different goals and different results. It’s not necessarily finding what makes you happy (though it helps), but more importantly, it’s finding what gives your life meaning now. This is the first step toward such a huge change. Finding a catalyst that drives you forward toward your reinvention can be incredibly motivating. Think about what makes you feel fulfilled, satisfied and meaningful and consider how that could become a part of your life after TBI.

There is no set timetable or deadlines for reinventing your self. Survivor Garry Prowe’s tips on Living a Full Life after Brain Injury, admits that the initial steps to finding your new life may sound obvious – dealing with a roller coaster of emotions, feeling overwhelmed, angry, and depressed along with financial stress, unemployment, social isolation, and life style changes. But the greatest stress may be the uncertainty of the future as the path and extent of recovery is unpredictable. However, the road to reinvention has to start somewhere. It can take months and even years until you feel ready to work on reinventing your sense of self. Once you’ve been able to self-assess your strengths and capabilities, you’ll have a much better idea of your new direction as you begin the process of rebuilding. Prowe’s tip card is an inexpensive resource ($1) that outlines the many steps of recovery with contacts/resources/ideas for you. (You can sign up to receive a free catalog and tip card from Lash & Associates – and choose his tip card “Living a Full Life after Brain Injury at this link).

Different Paths for Different People

As life goes on, be encouraged by the many who have been in your shoes and traveled your journey. Jeff Sebell, also a survivor,  worked on “getting his power back” after his brain injury by focusing on regaining his self confidence, re-learning how to make decisions, and taking action steps toward living the life he wanted. Sounds simple, right? Of course it’s not at all, but Jeff shares an incredibly insightful peek into his “Modus Operandi” in this blog post, and also in his book “Learning to Live with Yourself after Brain Injury.” Jeff’s take on having a better life is based on how you choose to interpret the things that happen on a daily basis. This can make the difference between having a good day or a bad one. Just using this as a starting point can move your life in a more positive direction! We don’t have control over what happens to us, but we can interpret and judge its impact on us – and try to see the big picture. Jeff reminds us that TBI, and loss of self, doesn’t have to leave you powerless. Rather you can regain control over your life by working on positivity and determination. The results will follow. Your loss of self will soon become transforming…you’ll find that you’ve discovered your “new normal.”

There are no set rules for this rediscovery. We all have very different paths after a brain injury. Some of these paths may criss-cross and you may share common experiences and feelings with other survivors. However, navigating through the maze of traumatic brain injury requires self-determination, finding your strengths, setting some incremental goals for your life, and making the commitment to start working toward them.

Lash and Associates’ award winning blog site (on our website) offers hundreds of absolutely free blog articles by TBI experts and clinicians, TBI survivors, and family members that share insights as well. A well-rounded offering of insights from every possible angle – including more on the subject of today’s bulletin – loss of self. Lash & Associates is also a leading publisher of books, cognitive software, and more – all for the brain injury community. Just click the two award icons, or CLICK HERE to see our entire blog article collection!

via Who Am I Now? Loss of Self after TBI – Brain Injury Blog With Free TBI Information

, , , , ,

Leave a comment

[BLOG POST] Traumatic Brain Injury- Virtual Reality Technology Used For Vision Therapy

February 12, 2018

So, here is a new subject that hints at hope for traumatic brain injury (TBI) patients. I have previously discussed the role of vision therapy in helping head injury patients, especially those who are having difficulty reading.
Vision therapy is a set of vision exercises and training performed by optometrists with unique equipment in their offices.

Vision therapy certainly has a role in rehabilitation but has numerous obstacles. Number one- patients must make regular appointments for a doctor’s office visit often located some distance from home. Two, only a few optometrist’s perform vision therapy. And third, the cost of therapy is usually not covered by medical insurance.

The future may lie in VIRTUAL REALITY– futuristic-looking goggles and head sets that allow individuals to play 3-D computer games in an immersive environment. The technology keeps improving and costs are coming down.

Forward-looking technology companies are also developing programs for traumatic brain injury (TBI) patients. Only early versions are currently available but the possibility of at-home rehabilitation will soon become a medical reality. All of medicine is moving in this direction.

Reading, depth perception, contrast sensitivity, and peripheral vision disorders can all be explored in virtual reality. The brain and the eye will truly come together in a revolution of new products to aid patients with ocular disease. There are already devices to help people who are blind, but the cost of such devices is considerable. The cost of virtual reality computer goggles and headsets will be coming down in price to sell to the general public- the same techniques that are being explored to develop entertainment are being developed by health companies to treat patients.

In the next year or two, the market will present these devices and an at-home device and therapy to treat TBI victims will be available. In my blog I have explained the many ways head injury can effect eyesight, but there are almost no cures. Cures may be a long way off, but programs to help people read again, reduce double vision, and regain their ability to judge depth are already in the pipeline. I’m not currently an investor in any device, and I will not discuss specific companies, but the research and data is on the internet.

Also, there are already programs you can get on a regular computer screen for vision training and I will discuss these in future blogs. Again, ophthalmologists interested in TBI and related visual disorders can be at a frontier of a whole new branch of ophthalmology. I examine and evaluate TBI patients in my practice everyday and I will keep those who read my blog posted on new information.

Stay tuned!

Steven H. Rauchman, M.D. is an eye physician and surgeon who has been in private practice for 30 years. He has served as an Traumatic Brain Injury (TBI) medical/legal expert for the last 6 years specializing in the area of personal injury and related traumatic brain injuries.


via Traumatic Brain Injury- Virtual Reality Technology Used For Vision Therapy


, , , , , , , ,

Leave a comment

[BLOG POST] Alcohol, Seizures and Brain Injury

A drunk driving accident.  A fight at a bar after a night of drinking.  A serious tumble at home after a few too many.  Many brain injury survivors received their brain injuries while under the influence of alcohol.  In fact, studies have shown that between 35% and 81% of traumatic brain injuries occur in individuals who had been drinking at the time of their injuries.  Doctors and therapists routinely recommend that survivors abstain from alcohol after a brain injury but some survivors choose to ignore this advice. Drinking after a brain injury though carries with it fresh and frighteningly dangerous risk.  Namely, such unwise behavior invites the post-injury seizure.

In general, brain injury survivors are more prone to developing a seizure disorder than are people without brain injuries.  Depending on the severity and location of a traumatic brain injury, research shows post-traumatic brain injury seizure rates to sit somewhere between 2% and 50%.  Similarly, post-stroke seizure rates range between 5% and 20%.  Both of these are significantly higher than the seizure rate found in the general populace.

Unfortunately, alcohol can increase the likelihood and frequency of post-injury seizures.  Clinical research has consistently shown alcohol to lower the threshold above which a seizure will occur.  Alcohol also interferes with the performance of anti-seizure medication, which of course increases the risk of seizure in those who depend on its assistance.  As a seizure is at base a potentially life-threatening medical issue, anything that might raise the likelihood of seizures should be avoided.

Overall, it is smart for many reasons to avoid consuming alcohol after an injury.  The enhanced risk of seizure stands alone among these reasons though in both gravity and consequence, and as such should be granted special consideration.

Learn about brain injury treatment services at the Transitional Learning Center! Visit us at:


via Alcohol, Seizures and Brain Injury | The Transitional Learning Center’s Blog


, , , ,

Leave a comment

[ARTICLE] Classification of Traumatic Brain Injury for Targeted Therapies – Full Text


The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neurological Disorders and Stroke, with support from the Brain Injury Association of America, the Defense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid classification system for TBI that could be used to link specific patterns of brain and neurovascular injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion for inclusion in most TBI clinical trials. While the GCS is extremely useful in the clinical management and prognosis of TBI, it does not provide specific information about the pathophysiologic mechanisms which are responsible for neurological deficits and targeted by interventions. On the premise that brain injuries with similar pathoanatomic features are likely to share common pathophysiologic mechanisms, participants proposed that a new, multidimensional classification system should be developed for TBI clinical trials. It was agreed that preclinical models were vital in establishing pathophysiologic mechanisms relevant to specific pathoanatomic types of TBI and verifying that a given therapeutic approach improves outcome in these targeted TBI types. In a clinical trial, patients with the targeted pathoanatomic injury type would be selected using an initial diagnostic entry criterion, including their severity of injury. Coexisting brain injury types would be identified and multivariate prognostic modeling used for refinement of inclusion/exclusion criteria and patient stratification. Outcome assessment would utilize endpoints relevant to the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitoring, and assessment tools were discussed. Recommendations were made for enhancing the utility of available or emerging tools in order to facilitate implementation of a pathoanatomic classification approach for clinical trials.


Traumatic brain injury (TBI) remains a major cause of death and disability. Although much has been learned about the molecular and cellular mechanisms of TBI in the past 20 years, these advances have failed to translate into a successful clinical trial, and thus there has been no significant improvement in treatment. Among the numerous barriers to finding effective interventions to improve outcomes after TBI, the heterogeneity of the injury and identification and classification of patients most likely to benefit from the treatment are considered some of the most significant challenges (Doppenberg et al., 2004; Marshall, 2000; Narayan et al., 2002).

The type of classification one develops depends on the available data and the purpose of the classification system. An etiological classification describes the factors to change in order to prevent the condition. A symptom classificationdescribes the clinical manifestation of the problem to be solved. A prognostic classification describes the factors associated with outcome, and a pathoanatomic classification describes the abnormality to be targeted by the treatment. Most diseases were originally classified on the basis of the clinical picture using a symptom-based classification system. Beginning in the 18th century, autopsies became more routine, and an increasing number of disease conditions were classified by their pathoanatomic lesions. With improvement of diagnostic tools, modern disease classification in most fields of medicine uses a mixture of anatomically, physiologically, metabolically, immunologically, and genetically defined parameters.

Currently, the primary selection criterion for inclusion in a TBI clinical trial is the Glasgow Coma Scale (GCS), a clinical scale that assesses the level of consciousness after TBI. Patients are typically divided into the broad categories of mild, moderate, and severe injury. While the GCS has proved to be extremely useful in the clinical management and prognosis of TBI, it does not provide specific information about the pathophysiologic mechanisms responsible for the neurological deficits. This is clearly demonstrated in Figure 1, in which all six patients are classified as having a severe TBI. Given the heterogeneity of the pathoanatomic features depicted in these computed tomography (CT) scans, it is difficult to see how a therapy targeted simply for severe TBI could effectively treat all of these different types of injury. Many tools such as CT scans and magnetic resonance imaging (MRI) already exist to help differentiate the multiple types of brain injury and variety of host factors and other confounders that might influence the yield of clinical trials. In addition, newer advances in neuroimaging, biomarkers, and bioinformatics may increase the effectiveness of clinical trials by helping to classify patients into groups most likely to benefit from specific treatments.


An external file that holds a picture, illustration, etc.Object name is fig-1.jpg

Heterogeneity of severe traumatic brain injury (TBI). Computed tomography (CT) scans of six different patients with severe TBI, defined as a Glasgow Coma Scale score of <8, highlighting the significant heterogeneity of pathological findings. CT scans represent patients with epidural hematomas (EDH), contusions and parenchymal hematomas (Contusion/Hematoma), diffuse axonal injury (DAI), subdural hematoma (SDH), subarachnoid hemorrhage and intraventricular hemorrhage (SAH/IVH), and diffuse brain swelling (Diffuse Swelling).

Continue —>  Classification of Traumatic Brain Injury for Targeted Therapies


, , , , ,

Leave a comment

[Systematic Review] Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic review – Full Text

We systematically reviewed randomized controlled trials (RCTs) of complementary and alternative interventions for fatigue after traumatic brain injury (TBI).

We searched multiple online sources including, the Cochrane Library database, MEDLINE, CINAHL, Embase, the Web of Science, AMED, PsychINFO, Toxline, ProQuest Digital Dissertations, PEDro, PsycBite, and the World Health Organization (WHO) trial registry, in addition to hand searching of grey literature. The methodological quality of each included study was assessed using the Jadad scale, and the quality of evidence was evaluated using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. A descriptive review was performed.

Ten RCTs of interventions for post-TBI fatigue (PTBIF) that included 10 types of complementary and alternative interventions were assessed in our study. There were four types of physical interventions including aquatic physical activity, fitness-center-based exercise, Tai Chi, and aerobic training. The three types of cognitive and behavioral interventions (CBIs) were cognitive behavioral therapy (CBT), mindfulness-based stress reduction (MBSR), and computerized working-memory training. The Flexyx Neurotherapy System (FNS) and cranial electrotherapy were the two types of biofeedback therapy, and finally, one type of light therapy was included. Although the four types of intervention included aquatic physical activity, MBSR, computerized working-memory training and blue-light therapy showed unequivocally effective results, the quality of evidence was low/very low according to the GRADE system.

The present systematic review of existing RCTs suggests that aquatic physical activity, MBSR, computerized working-memory training, and blue-light therapy may be beneficial treatments for PTBIF. Due to the many flaws and limitations in these studies, further controlled trials using these interventions for PTBIF are necessary

Fatigue is a common phenomenon following traumatic brain injury (TBI), with a reported prevalence ranging from 21% to 80% [Ouellet and Morin, 2006Bushnik et al. 2007Dijkers and Bushnik, 2008Cantor et al. 2012Ponsford et al. 2012], regardless of TBI severity [Ouellet and Morin, 2006Ponsford et al. 2012]. Post-TBI fatigue (PTBIF) refers to fatigue that occurs secondary to TBI, which is generally viewed as a manifestation of ‘central fatigue’. Associated PTBIF symptoms include mental or physical exhaustion and inability to perform voluntary activities, and can be accompanied by cognitive dysfunction, sensory overstimulation, pain, and sleepiness [Cantor et al. 2013]. PTBIF appears to be persistent, affects most TBI patients daily, negatively impacts quality of life, and decreases life satisfaction [Olver et al. 1996Cantor et al.20082012Bay and De-Leon, 2010]. Given the ubiquitous presence of PTBIF, treatment or management of fatigue is important to improve the patient’s quality of life after TBI. However, the effectiveness of currently available treatments is limited.

Although pharmacological interventions such as piracetam, creatine, monoaminergic stabilizer OSU6162, and methylphenidate can alleviate fatigue, adverse effects limit their usage and further research is needed to clarify their effects [Hakkarainen and Hakamies, 1978Sakellaris et al.2008Johansson et al. 2012b2014]. Therefore, many researchers have attempted to identify complementary and alternative interventions to relieve PTBIF [Bateman et al. 2001Hodgson et al. 2005Gemmell and Leathem, 2006Hassett et al. 2009Johansson et al. 2012aBjörkdahl et al. 2013Sinclair et al. 2014]. In this study, we aimed to systematically review randomized controlled trials (RCTs) that evaluated treatment of PTBIF using complementary and alternative medicine (CAM) to provide practical recommendations for this syndrome. […]


Continue —>  Complementary and alternative interventions for fatigue management after traumatic brain injury: a systematic review – Gang-Zhu Xu, Yan-Feng Li, Mao-De Wang, Dong-Yuan Cao, 2017


, , , , , ,

Leave a comment

[ARTICLE] Adherence to Guidelines in Adult Patients with Traumatic Brain Injury: A Living Systematic Review – Full Text HTML/PDF


Guidelines aim to improve the quality of medical care and reduce treatment variation. The extent to which guidelines are adhered to in the field of traumatic brain injury (TBI) is unknown. The objectives of this systematic review were to (1) quantify adherence to guidelines in adult patients with TBI, (2) examine factors influencing adherence, and (3) study associations of adherence to clinical guidelines and outcome. We searched EMBASE, MEDLINE, Cochrane Central, PubMed, Web of Science, PsycINFO, SCOPUS, CINAHL, and grey literature in October 2014. We included studies of evidence-based (inter)national guidelines that examined the acute treatment of adult patients with TBI. Methodological quality was assessed using the Research Triangle Institute item bank and Quality in Prognostic Studies Risk of Bias Assessment Instrument. Twenty-two retrospective and prospective observational cohort studies, reported in 25 publications, were included, describing adherence to 13 guideline recommendations. Guideline adherence varied considerably between studies (range 18–100%) and was higher in guideline recommendations based on strong evidence compared with those based on lower evidence, and lower in recommendations of relatively more invasive procedures such as craniotomy. A number of patient-related factors, including age, Glasgow Coma Scale, and intracranial pathology, were associated with greater guideline adherence. Guideline adherence to Brain Trauma Foundation guidelines seemed to be associated with lower mortality. Guideline adherence in TBI is suboptimal, and wide variation exists between studies. Guideline adherence may be improved through the development of strong evidence for guidelines. Further research specifying hospital and management characteristics that explain variation in guideline adherence is warranted.



Traumatic brain injury (TBI) is a major public health concern affecting approximately 150–300 per 100,000 persons annually in Europe.1 The World Health Organization has predicted that TBI will be one of the leading causes of death and disability worldwide by the year 2020.2

The care for patients with TBI is often complex and multidisciplinary. Guidelines, protocols, and care pathways have been developed to improve quality of care, to reduce variation in practice, and to ensure that evidence-based care is optimally implemented.3

A 2013 systematic review4 found that the use of protocols in the management of severe TBI in the intensive care unit (ICU) led to improved patient outcomes. The findings, however, were based on observational studies that did not report on adherence rates. Without an understanding of adherence rates, the improved outcomes stated in the review cannot be directly attributed to the use of protocols.

Guideline adherence can be defined as the proportion of patients treated according to a guideline recommendation, which often represents evidence-based or best practice care. Previous studies have found that guideline adherence in medicine is generally low5–7 and varies widely across centers,7,8 medical condition,9 types of guideline,10,11 and time period.8,10 As a result, many patients do not receive evidence-based care, while others receive unnecessary care that may even be harmful.5 To date, no systematic review of the literature about guideline adherence in TBI has been conducted.

The aim of this systematic review was to provide a comprehensive overview of professionals’ adherence to guidelines in adult patients with TBI. The objectives were threefold:

  • 1. To quantify adherence to guidelines in adult patients with TBI.

  • 2. To explore factors influencing adherence to TBI guidelines in those studies reporting on adherence.

  • 3. To examine the association between adherence to guidelines and outcome in patients with TBI in those studies reporting on adherence.


Continue —>  Adherence to Guidelines in Adult Patients with Traumatic Brain Injury: A Living Systematic Review

FIG. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of the selection process. Reasons for exclusion full text: Study design: the study was no prospective or retrospective cohort study, randomized controlled trial, clinical trial, cross-sectional study, or time series; Guideline: the study did not describe a guideline, the guideline was local or not evidence-based, the guideline was not implemented or disseminated before the study period; Adherence: the study did not measure adherence per patient, adherence was self-reported; traumatic brain injury (TBI): the study was not about patients with TBI; Setting: the study was not conducted during the hospital and pre-hospital setting; Language: the study was not published in English; Solely about children: the study did not include adults. Adapted from: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6: e1000097.


, , , ,

Leave a comment

[WEB SITE] 8 ways augmented and virtual reality are changing medicine

Israeli companies are using futuristic technologies to simplify complex surgery, manage rehab, relieve pain, soothe autistic kids and much more.

The Realview HOLOSCOPE-i augmented reality system for cardiac surgery. Photo courtesy of Business Wire

Spine and heart surgeons will use augmented reality (AR) to simplify complex procedures. Autistic children will get relief from sensory overload with a calming virtual reality (VR) system.

These and other scenarios are made possible by Israeli innovations tapping into the tremendous potential of AR and VR for healing and wellbeing.

The methods are similar: AR superimposes static and moving images to enhance an actual environment, while VR immerses the viewer in a simulated three-dimensional environment.

“Israel is on the frontlines in some areas of this technology,” says Orit Elion, a professor of physical therapy at Israel’s Ariel University, which hosted a conference last year to strengthen cooperation between AR and VR developers and researchers for health applications.

Elion helped develop a VR-based tele-rehab service at the Gertner Institute of Chaim Sheba Medical Center in Tel Hashomer, now used across Israel to enable monitored home physical or occupational therapy sessions for patients living far from healthcare centers.

“There aren’t so many programs in the world like this — a service that has no geographic boundaries,” Elion tells ISRAEL21c.

Currently, she is investigating how VR training can help with balance and fall prevention in the elderly. “VR is a dream for that, because you can manipulate the environment with all kinds of visual input,” she says.

Here are other examples of Israeli AR and VR in the health sector.


Surgical Theater makes a portfolio of VR products based on the notion that surgeons could train for complex procedures much like the Israeli founders of the company trained for Israel Air Force missions. Neurosurgeons at major medical centers and academic institutions in the United States and elsewhere are utilizing Surgical Theater’s VR medical visualization platforms for surgical planning and navigation, patient education and engagement, and training surgical residents.

Heart surgery

In the first quarter of 2018, RealView Imaging will release its long-awaited HOLOSCOPE-i, designed to deliver live, in-air 3D holographic visualizations during interventional cardiology procedures.

Powered by the Intel RealSense SR300-Series camera based on RealView’s proprietary digital light shaping technology, HOLOSCOPE-i is the first commercial system allowing clinicians full and direct control of 3D images in real time. Surgeons can rotate, zoom, slice, mark and measure within the floating holograms.

Coming next from RealView Imaging are HOLOSCOPE-x for visualization of holograms inside the patient during interventional oncology procedures, and a holographic headset for non-medical professional applications.

Spine surgery

Augmedics develops xvision, an AR head-mounted display for spine surgery that allows surgeons to see the patient’s anatomy through skin and tissue, as if they had “x-ray vision.” The system can project the patient’s anatomy, in real time, directly onto the surgeon’s retina, with the aim of increasing safety in surgery, reducing x-ray radiation and facilitating minimally invasive procedures.

Using xvision, surgeons will be able to visually and accurately track all their surgical instruments well within their field of vision as they work. A combination of proprietary tracking algorithms, hardware, software, an image data merging unit, and specialized instruments guide the surgeon through the operating site during major and minor procedures.

The xvision system will also utilize sensors to collect surgical information, which, when connected to a big data system, will analyze and process the data, using profound learning algorithms to provide alerts and suggestions to assist the surgeon during the procedure.

Augmedics has already performed pre-clinical cadaver trials in the US and EU. The company will start clinical studies in Q2 2018 in Israel, and later this year at the Johns Hopkins Hospital in Baltimore, Maryland.

Sensory modulation

Using VR goggles, the Calma system immerses an autistic child in a simulated underwater scene filled with corals, colorful fish, bubbles and divers.

“Children on the autism spectrum typically suffer from sensory moderation disorder, traditionally treated in a ‘white room’ where various objects are gradually introduced. This is costly and not always readily available. Our initiative simulates the white room with VR,” says Dan Kohen-Vacs, a senior computer science researcher at Holon Institute of Technology (HIT), where Calma was invented by students last year.

A management console allows the therapist to add, moderate or remove stimulants (including music) in response to the reaction of the child in real time. The goal is to train the child’s sensory regulation system to better handle auditory and visual stimulants and achieve emotional balance.

“We are completing the first proof-of-concept version and testing it in the Dekalim school in Jerusalem,” Kohen-Vacs tells ISRAEL21c. HIT’s tech-transfer company will work on commercializing the system.

“The plan is to expand to other locations. It may be possible to enable parents to use the system at home. You just need a smartphone and something like Google Cardboard that enables you to put the phone in it and wear it as headset,” says Kohen-Vacs.

Amit Bar-Tov, an occupational therapist at Dekalim, told Globes that the Calma pilot met with “great enthusiasm among the students for emotional regulation and sensory regulation, an improvement in learning capabilities, and a better connection with the environment.”

Burn rehab

Prof. Josef Haik, director of Sheba Medical Center’s Burn Center, has been using VR for more than a decade as a bedside tool to ease the painful process of rehabilitation from severe burns.

“It’s all about early mobilization and rehabilitation, getting back to the tasks of everyday life,” Haik tells ISRAEL21c.

In 2004, Sheba installed a large Computer Assisted Rehabilitation Environment (CAREN) system in a pioneering move toward VR in treatment and rehab. Burn patients couldn’t be moved to the CAREN room so Haik came up with an inexpensive portable alternative using EyeToy, a digital camera device for PlayStation. Today he’s using Kinect with games devised for patients with certain disabilities.

VR gaming therapy offer several advantages, says Haik: The games distract patients and thereby lessen their pain perception; allow patients to adapt to seeing and accepting the look of the scarred area of their body onscreen; and use rewards such as points to encourage continuation of therapy. Moreover, the patient does not have to wear or touch anything, eliminating any risk of cross infection.

Haik reported on the therapy in a 2006 study and has presented his approach to the American Burn Association and other associations around the world.

Stroke and traumatic brain injury  

The SeeMe VR rehab system was developed by physiotherapists at Beit Rivka Geriatric Rehabilitation Hospital in Petah Tikva in cooperation with Brontes Processing of Poland for stroke or traumatic brain injury patients.

It has been on the market since 2009, making it the first commercial VR system of its kind.

SeeMe’s technology transmits images to the patient’s computer via a Kinect controller or standard web camera and immerses the patient in a customized computer game requiring specific exercises set by the therapist.

The clinician can use the system to evaluate strength, endurance, range of motion, postural control, reaction time, proprioception, quality of movement, perception, divided attention and memory.

Parkinson’s disease and multiple sclerosis

Studies by scientists from the Technion-Israel Institute of Technology, Tel Aviv Medical Center and Tel Aviv University over the past decade have shown that incorporating VR headsets in gait training improved the walking abilities of people with multiple sclerosis and reduced fall risk in Parkinson’s patients. The latest study, published in Neurology in September, found that VR training actually modifies brain activation patterns in Parkinson’s patients.

PT and pain relief

Caesarea-based Motorika Medical’s ReoAmbulator robotic gait-training device helps adults and children improve walking, balance, coordination, posture or stamina while focusing on accomplishing VR tasks to improve motor or cognitive function including memory and selective attention. Combining these tasks in one session is meant to add a higher degree of challenge leading to better results. On the market since 2014, ReoAmbulator is used in two countries in Asia, five in Europe and in the United States — around 30 installations so far.

VRHealth of Tel Aviv and Boston is partnering with major players including Oculus, HTC and Microsoft to launch the first cross-platform-compatible VR medical application for rehab.

“We believe we are the only medical device company using an immersive headset as certified medical software,” founder Eran Orr tells ISRAEL21c. “What makes it a medical device is how you keep the data encrypted, how you can integrate electronic medical records and whether there is a billable insurance code for physicians to use. There is quality assurance and documentation for every app we are developing.”

VRHealth’s flagship VRPhysio software applications – two for neck therapy and one for shoulder therapy – got FDA clearance and are being implemented first in Spaulding Rehabilitation Hospital and Beth Israel Deaconess Medical Center in Boston. CE approval for Europe is expected soon.

VRHealth plans to launch additional products within a year: VRCoordi, which will work with VRPhysio to improve coordination skills, initially of children with developmental coordination disorder and various levels of autism; VRCogni to improve cognitive function in stroke, Alzheimer’s, concussion, Parkinson’s and dementia patients; VRReliever to manages chronic and severe pain through distraction; VRPsyc to enhances treatment for diagnosable mental disorders including general stress, phobias and anxieties, eating disorders, and PTSD.

“I hope our company will make a difference in the entire healthcare sector — every hospital, nursing home and assisted living — because VR can make a huge difference in many fields,” says Orr.

“I think Israel has a lot of potential in this technology because of the quality of engineers and developers able to develop products at a rapid pace and to be first to market and expand from there. That’s why we maintain our R&D in Israel.”

via 8 ways augmented and virtual reality are changing medicine | ISRAEL21c


, , , , , , , ,

Leave a comment

[WEB SITE] Featured Article: Comprehending Aggressive Behavior Following A Brain Injury: An Explanatory Framework for Neurobehavior

Jeff Kupfer, Peter R. Killeen, & Randall D. Buzan

“Why is he behaving this way?” is the central question caregivers and family members of patients with Traumatic Brain Injury (TBI) pose, pointing to extreme agitation, antisocial behavior, insensitive interactions, or other manifestations of his condition. Our clinical team gives various answers from the varied perspectives and expertise of members. Accurate though these explanations are, they often don’t hang together, and often don’t satisfy the questioner. What is wrong with our explanations? Was something lost in translation of scientific jargon? Perhaps some features that could provide a complete explanation were omitted. This paper presents a framework for explanations that permits a more integrated and complete picture, and reminds practitioners of aspects that should be included in a thorough understanding of behavior after TBI.

PART ONE:  Explaining a behavioral event: “How did that lamp break?”

Consider the following family situation: a Sunday afternoon family brunch, post-meal conversation around the dining table. Suddenly we hear the laughter of children, footsteps running down the stairs and through the living room. The front door slams, followed by the sound of a lamp crashing to the floor in the foyer. Table 1 organizes the diversity of explanations by the family members for this household accident.

Table 1. Dialogue amongst family members following a behavior event.

Event is Described Focus “Cause”
Focus on the behavior
“I’ve told them not to run in the house” Running describes the form of behavior Formal
“Joey led the charge out the front door” Trigger was Joey Efficient
“They were bored in here with all the adult talk” State of the system: Arousal ready for displacement Material
“And they were eager to play with that new hoop set you got for Joey’s birthday.” Purpose, function, Final
“Well let’s not forget the sugar high from that excellent dessert” State of the system: Arousal ready for displacement Material
Focus on environment
“It’s smithereens now—no way even grandpa could fix it” Describes current status Formal
“It’s not completely their fault, Helen. That old lamp was pretty tippy: A strong wind would knock it over” Many possible ways for it to break Efficient
“It was Joey who bumped it over” The particular trigger that tripped it Efficient
“Helen! It was missing its fourth leg!!” Lack of structural integrity Material
“Joseph, I think you loosened it just to make this happen, given how you hated that old lamp!” The reason the leg was loosened and broken off Final

We see that an unexceptional event may be examined from various points of view, all which may be correct. Similarly, brain and behavior sciences provide scientific explanations of events from various points of view, but even they typically fall into several classes. These are the classes of explanation identified by Aristotle that are required before we may claim to truly understand a phenomenon (Hocutt, 1974).

Aristotle’s framework for explanations

Aristotle’s name for these classes of explanation was mistranslated as “Causes”, a proper title in modern parlance for only one type (efficient cause). This led to his schema being dismissed as confusing and even teleological. A better class name is reasons for, or becauses (Killeen, 2001). Aristotle’s framework addresses the broad range of possible explanations for any phenomenon, and coordinates these explanations to arrive at a more integrated understanding. We can utilize this model to describe behavior following a brain injury.

Formal causes (names, forms, and models) are the ways we talk about, represent and describe events. They translate the essentials of their relevant aspects into words, numbers or diagrams. Simple descriptions, such as the example above (“running resulted in the lamp breaking”) can get the formal ball rolling, but these can be extended to include models, metaphors, logical phrases, equations, schematics, blueprints, or flowcharts that help us organize, summarize, and communicate phenomena. Behavioral experts use DSM diagnoses as “formal causes” to describe and explain patient behavior, and brain injury professionals use the Glasgow Coma Scale or Ranchos Los Amigos Scale as formal descriptors of a patient’s condition. Physicists and astronomers utilize differential equations as their formal models. Behavior analysts describe behavior with three-and four-term contingencies for simple and conditional discriminations (antecedent, behavior, consequence, A-B-C).

Efficient causes (triggers) refer to the necessary and sufficient conditions to bring about a change in state (factors triggering an event). These are commonly what are meant by “causes” (Joey’s running in the house caused the lamp to fall [when he careened into it]). Efficient causes of reckless behavior identify events or people that trigger action, as well as events that can minimize or prevent its occurrences. Efficient causes are conditions sufficient to trigger the phenomenon being explained that were operative at the critical moment. There may be many possible sufficient conditions, just as there are many possible roads to Rome; functional analyses clarify which ones were operative in a particular case. Necessary causes are usually invoked to explain failures of expected outcomes: Why didn’t the car start? It needed gas (electricity, functional starter, etc.), which are necessary to get the show on the road. Explanations that rely only on efficient causes may become overly mechanistic, thereby distracting investigation from the substrates, underlying mechanisms, and functional aspects.

Material causes (machinery) refer to the substrates, the underlying mechanisms. These causes are of most interest to medical and health professionals who are trained to understand, diagnose, and treat problems with underlying machinery. For instance, high blood glucose may be due to diabetes (formal cause) that may result from insufficient production of insulin (material cause), complicated by eating Twinkies (efficient cause). Parents often turn to material causes to explain challenging behavior in children, particularly when the efficient causes and triggers are inconspicuous and difficult to pin down accurately. “Lacks motivation” is too often the ad hoc explanation by family members; “Lacks character” by neighbors. Explanations that rely exclusively on material causes can become reductionistic, omitting relevant connections to triggers and consequences.

Final causes (functions) are the purposes of an event, what has brought about or sustained a phenomenon or process. Not all phenomena have final causes, or are directly understandable in terms of them. Cerebral edema, for example, is a rescue mechanism of the brain that in extreme can have serious negative consequences. Thus, some outcomes may represent break-down or failure modes of systems, some of which may serve an important function in normal circumstances. Proximate final causes may refer to the immediate consequences of some behaviors or misbehaviors, such as ones that may sometimes occur with the syndrome of TBI: escape and avoidance of difficult situations. Ultimate final causes may involve a learning history that has resulted in current maladaptive behavior.

PART TWO:  Applying Aristotle’s framework to neurobehavioral treatment and the role of Behavior Analysis

When a person becomes aggressive following a brain injury, we quickly try to comprehend the event. We start with a description such as: “He struck the therapist during his therapy session.” This triggers communication with the family, therapists and staff, the physician and other medical professionals, the case managers, insurance adjusters, and so on. The descriptions of the incident set each on their respective paths to explain behavior in order to derive an effective intervention. Agitation has crossed the formal threshold to aggression: physical or verbal behavior directed at another person with the intention to cause harm. We want to know about the specific necessary and sufficient conditions that triggered the aggression (efficient causes), underlying mechanisms (material causes), the function or purpose it served (final causes), and best ways to talk about it, both for treatment, and for communication with family members (formal causes). We may require details about immediate (proximate) variables, as well as enduring variables from the past (personal history, family history) suggesting ultimate reasons for such aggression. In short, we need to communicate much information in a brief period of time for intervention to commence, and we need to continue dialogue throughout treatment to be sure that the stakeholders share our framework.

A Case Study

Sam is a 50-year old male who received a significant brain injury when he was struck by a motor vehicle at the age of 14. Prior to admission to our facility, Sam spent most of his adult life residing at institutional settings where he exhibited physical and verbal aggression, requiring an increased level of staff supervision, and occasional temporary placement in isolated sections of the referring facility.

Upon admission to our program, a functional assessment of problem behaviors (Questions About Behavior Function – QABF) was conducted. The results suggested that physical and verbal aggression were functionally related to attention delivered by caregivers or therapists: When caregivers’ and therapists’ attention to Sam decreased, the probability that he would engage in physical and verbal aggression resulting in attention from others (e.g., redirection, physical intervention or containment) increased. He had the staff on a schedule of negative reinforcement: their lack of attention generated an increase in the frequency of aggression that resulted in a swift staff reaction to escape or delay his aggressive behavior.

On the basis of the functional assessment, differential reinforcement of alternative behavior (DRA) was introduced to treat aggression. Under this procedure all caregivers and therapists: (1) provided little or no attention upon physical and verbal aggression by Sam; and (2) shifted the schedule of reinforcement to deliver attention contingent upon Sam’s use of more cordial, alternative attention-requesting behaviors. During the course of treatment his antipsychotic medications were tapered and discontinued as aggressive behaviors decreased.

Figure 1 summarizes the medication adjustments for Sam during treatment. Data for verbal and physical aggression were recorded according to a 30-min partial interval count for occurrence/non-occurrence of target behaviors.

Vertical dashed lines indicate medication adjustments during the course of treatment, and labels indicate the name of the medication and the adjusted dose. Down-arrows preceding medication labels indicate reductions and discontinuations; up-arrows preceding medication labels indicate increases or initiations. From the slope of the curve we may infer changes in response rates— decreases in the slope of the curve over time (negative acceleration) indicate decreases in the occurrence of aggression. In general, these data show variable but negatively accelerating trends; physical aggression rates (dashed line) were lower than those for verbal aggression (continuous line).

Reductions in trazodone and risperidone often occasioned brief bursts of verbal aggression, which gradually decreased to low or zero rates until the next medication taper. Concurrent with the discontinuation of risperidone, Sam developed bursitis in his elbow from an infection that required medical attention. This brief delivery of attention was correlated with extreme verbal and physical aggression in response to pain in his elbow. After medical treatment was administered, DRA treatment was reinstated for the remainder of the study. However, it was unclear whether this brief delivery of medical attention inadvertently produced and sustained the higher rates of aggression that lasted for approximately five weeks, until risperidone was reinstated, producing a gradual reduction in the frequencies of target behaviors. When these target behaviors approached zero rates, clozapine was introduced and substituted for risperidone, producing brief but decreasing bursts of target behaviors. Subsequently, risperidone was discontinued without any increase in aggression, as was clozapine.

In this example the search for efficient causes (decrease in level of staff attention) and final causes (attention received) resulted in an intervention to change the triggers and consequences. Aggression gradually decreased as a function of shifting the contingencies of reinforcement. This functional relation was confirmed inadvertently when the brief, but intense complaints of pain by Sam produced an unavoidable medical attention to treat bursitis. Additionally, a material explanation (chemistry potentially more responsive to clozapine than to risperidone) produced an intervention based on a review of the current medications and a gradual taper to determine therapeutic effectiveness, and eventual substitution of medications that was either more effective or had fewer agitating side effects. This case history constitutes one more example of attempts at efficient and material explanations, inquiries that expose a range of variables with the potential to contribute to understanding complex behaviors ranging from ADHD (Killeen, Tannock,  & Sagvolden, 2012), to hypnosis (Killeen & Nash, 2003). 

Further benefits from analyses of efficient causes

Closer examination of subtle environmental triggers and contingencies reveals interesting and unexpected efficient causes for behavior that can inform neurobehavior treatment. Recent research, (Mace, McComas, Mauro, Progar, Taylor, Ervin, & Zangrillo, 2010), for example has suggested that DRA procedures may actually prolong extinction effects (causing “extinction bursts”) due to behavioral momentum, thereby prolonging the persistence of target behaviors. Conducting a DRA procedure in a separate context from which learning the target behavior occurred can, however, decrease resistance of the problematic behavior to extinction. Similarly, there are situations in which the extinction component of the DRA procedure cannot be implemented— combative behavior may be too intense to stop or directed toward others in ways that cannot be ignored. In a series of experiments Athens and Vollmer (2010) demonstrated that behavior treatment plans that involve manipulating reinforcer duration, quality, delay, or a combination of these in ways that favors appropriate behavior rather than problem behavior can still produce more appropriate responses, even though problem behavior received occasional (albeit, lower) reinforcement. In both of these cases, the procedures have some risks consequent on implementation (increases in target behavior), but these can be minimized with refinement of the consequences (final causes) thereby averting the need to use medications (material necessary causes) to address the problem.

Behavior analysis techniques can yield benefits in addition to merely addressing problem behaviors as in the above example. An analysis of triggers and consequences can produce more robust effects when teaching adaptive living skills. Decades of research in applied behavior analysis has generated instructional methods for teaching in homes and classrooms, as well as vocational and rehabilitation settings, such as errorless learning (Chandonnet & Kupfer, 2014; Sidman, 2012), fluency and precision teaching (Binder, 1996), and stimulus equivalence training (Sidman, 1994). Research suggests that efficient and final explanations are primarily useful when there is a problem behavior to reduce or eliminate, but other formal explanations (e.g., TBI patients often lack social competence) help clarify potential deficiencies in appropriate responding that may be the result of environmental contingencies that sustain inappropriate behaviors. Thus, if the individual with brain injury could acquire skills in PT, OT, SPL, and so on more quickly and effectively by changing teaching methods, problem behaviors might be less likely to occur. Teaching methods derived from ABA (efficient and final causes) thereby complement those methods used to increase brain, body, and sensory health (material causes).

A thorough bibliography of evidence-based teaching methods for persons with brain injury is located on the Brain Injury Webpage for the Cambridge Center for Behavioral Studies:

Pursuing interrelationship between efficient and material causes

            What are the interactions between efficient causes and material causes? In the example of the broken lamp, one family member focused on reckless behavior in the home, but another alluded to the causes involving the environment—a wobbly lamp, an accident waiting to happen. In neurobehavioral treatment, proximate (temporally immediate, relevant and conspicuous) influences over behavior are revealed during initial assessments and ongoing progress reviews, but access to past environmental events or historical influences (medical records, psycho-social histories, interviews, and verbal reports) are relevant as well. Expanding the causal time frame, an examination of family history may reveal generational patterns that implicate ultimate genetic influence. Neurobehavioral approaches do not simply treat a person with a brain injury; they provide treatment within a context of immediate and historical influences.

Figure 2 represents the broader influences of both ultimate variables (across large timeframes) and proximate variables (most recent or conspicuously present) in the Aristotle’s framework to explain the causes of ADHD (Killeen et al, 2012). In this figure, the inner set are proximate (molecular) causes and the outer set ultimate (molar) causes. Triggers of symptoms (states) are proximate efficient causes; triggers of the phenotype (traits) are ultimate efficient causes. Material causes comprise the hardware underlying the behavior (proximate, neurophysiology) and the syndrome it instances (ultimate, structural, or genetic). Recursive arrows show outcomes can modify the system to change the sensitivity to correlated stimuli and responses through shifts in attention, learning, and reframing of the situation.

Isolating interactions between efficient and material causes of behavior is often difficult; however, the topic is of paramount importance in behavior analysis, particularly in relation to interactions between: genes and environment (Suomi, 2002), consequences, genes and brain development (Schneider, 2012), unique conditioning histories and drug effects (Branch, 2006; Terrace, 1963), and behavioral and biological systems (Thompson, 2007). Accordingly, the language of the behavior analysis community continues shifting to accommodate the expansion of efficient and material explanations (Hineline, 1980; Hineline & Groeling, 2011). Skinner (1989) had pointed us in this direction:

“There are two unavoidable gaps in any behavioral account: one between the stimulating action of the environment and the response of the organism, and one between consequences and the resulting change in behavior. Only brain science can fill those gaps. In doing so it completes the account; it does not give a different account of the same thing. Human behavior will eventually be explained (as it can only be explained) by the cooperative action of ethology [which we place as ultimate mechanism, an evolved organism in its niche], brain science [proximate machinery], and behavior analysis [formal, efficient and final causes].” (p.18)


When caregivers and family members seek explanations about behavior changes observed in patients with brain injuries, there is a distinction between “what” is happening, “why” it is happening and “how” it is happening. Addressing the “what” question requires careful analyses to ensure that behavior is not mischaracterized—that it is not, for instance, within the normal range of human responses. If the behavior is categorizable, it is essential that all plausible categories of explanation have been considered. Inferences to material and final causes should be avoided in first-level formal descriptions. These actions all address formal causes. A reference to “why” may lead to consideration of “what was gained by it”, a question about goals and reinforcers. But it may also refer to instigating factors. Thus “why” questions are cues to discuss both the triggers for behavior (efficient causes) and sustaining reinforcers (final causes) It may also reveal a concern over “structure and under lying mechanisms” that govern the behavior (material causes).

Neurobehavioral treatment should attempt to address all of these perspectives. Addressing all four causes (Formal, Efficient, Material, and Final) at relevant levels—molar and molecular—can lead to more comprehensive and inclusive strategies, and a more convincing understanding of behavior for patients, their families, and clinicians.


Athens, E.S., Vollmer, T.R. An investigation of differential reinforcement of alternative behavior without extinction. J Appl Beh Analy 2010;43:569-589.

Binder, C. Behavioral fluency: Evolution of a new paradigm. Beh. Analy 1996;19:163-197.

Branch, M. How research in behavioral pharmacology informs behavioral science. J Exp Analy Beh 2006;85:407-423.

Chandonnet, N., Kupfer, J. Errorless learning in therapy. Poster presented at Brain Injury Summit: A Meeting of the Minds, 2015, January, Vail CO.

Hineline, P.H., Groeling, S.M. Behavior-analytic language and interventions for autism. In E.A. Mayville & J.A. Mulick (Eds.), Behavioral foundations of effective autism treatment. NY: Sloan Publishing, 2011.

Hineline, P.H. The language of behavior analysis: Its community, its function, and its limitations. Behaviorism1980;8:67-87.

Hocutt, M. Aristotle’s four becauses. Philosophy 1974;49:385-399.

Killeen, P.R. The four causes of behavior. Cur Directions in Psych Sci 2001;10:136-140.

Killeen, P.R., Nash, M. The four causes of hypnosis. Int J of Clinic and Exp Hypnosis 2003;51:195-231.

Killeen, P.R., Tannock, R., Sagvolden, T. The four causes of ADHD: A framework. 2012;In S.C. Stanford & R. Tannock (Eds.), Behavioral neuroscience of attention deficit disorder and its treatment. 2012;9:391-425, Berlin, Germany: Springer-Verlag.

Kupfer, J., Eastridge, D., Buzan, R.D., Castro, J. Using cumulative graphs to evaluate the effects of medication adjustments combined with extinction procedures to decrease aggression. Symposium entitled: Welcome Back, MY LOVELY! Cumulative graphs in the analysis of behavior. Presented at the 38thannual meeting of the Association for Behavior Analysis, 2012, May, Seattle, WA.

Mace, F.C., McComas, J.J., Mauro, B.C., Progar, P.R., Taylor, B., Ervin, R., Zangrillo, A.N. Differential reinforcement of alternative behavior increases resistance to extinction: Clinical demonstration, animal modeling, and clinical test of one solution. J Exp Analy Beh 2010; 93:349-367.

Schneider, S.M. The science of consequences: How they affect genes, change the brain, and impact our world. NY: Prometheus Books, 2012.

Sidman, M. Equivalence relations and behavior: A research story. Boston: Authors Cooperative, Inc., 1994.

Sidman, M. Errorless learning and programmed instruction: The myth of the learning curve. Euro J of Beh Analy.2010;11:167-180.

Skinner, B.F. The origin of cognitive thought, Am Psych1989;44:13-18.

Suomi, S.J. How gene-environment interactions can shape the development of socioemotional regulation in Rhesus monkeys. In B.S. Zuckerman, A.F. Zuckerman, & N.A. Fox (Eds.), Emotional regulation and developmental health: Infancy and early childhood. NJ: Johnson and Johnson Pediatric Institute, 2002.

Terrace, H. Errorless discrimination learning in the pigeon: Effects of Chlorpromazine and Imipramine. Science.1963;140:318-319.

Thompson, T. Relations among functional systems in behavior analysis. J Exp Analy Beh.2007;87:423-440.

Post navigation


via Featured Article: Comprehending Aggressive Behavior Following A Brain Injury: An Explanatory Framework for Neurobehavior | Brain Injury Professional


, , , ,

Leave a comment

[BLOG POST] Sleep Disorders After Brain Injury, PTSD, TBI

Why Do So Many Survivors Have Sleep Disorders After Brain Injury?

January 2018,  Written by Bill Herrin

Click Here to sign up to receive a BULLETIN monthly!!!

January’s Brain Injury Journey Bulletin dives into the new year with a topic that often keeps people up at night…sleep disorders after TBI.

Sleep. It can be elusive, and one of the most frustrating things to accomplish after brain injury – especially on a consistent basis. Quite often, sleep disorders can take hold after brain injury – and cause everything from anxiousness to feeling depressed, tired, irritable, and more. In this issue of the Brain Injury Journey Bulletin, we’re going to take a look at all the things that sleep can affect, and some ways to conquer a sleep disorder after TBI.

Tossing and Turning

When your quality of life is being affected by lack of sleep, the desperation of wanting to rest can actually hinder you from getting the rest you need. Here are some changes in sleep patterns after TBI that are quite common:

  • difficulty falling asleep easily
  • trouble staying asleep throughout the night
  • waking up very early in the morning and not falling back to sleep
  • falling asleep and awakening far later than desired
  • purposely staying up late at night to get things done

Examples are:

  • You get into bed around 10 but it takes you several hours to fall asleep.
  • You wake up frequently during the night for no major reason.
  • You wake up at 4 in the morning and cannot fall back to sleep.
  • You’re up late every night working on the computer and your partner keeps asking
    you to come to bed.

Sleep Disorders and Other Factors

There are lots of different sleep disorders, and they can involve many different parts of the brain. Here are some of the more well-known sleep disorders that people encounter: Insomnia, extreme drowsiness, altered sleep patterns and Narcolepsy. Other disorders that can directly contribute to lack of sleep are Restless Leg Syndrome, teeth grinding or clenching, involuntary movements of your arms/legs during sleep, sleepwalking, sleep apnea, etc. Other factors that can deprive you from sleep are pain, alcohol, caffeine and nicotine, depression…and naps. A poorly timed nap (late in the day) obviously can end up backfiring on you later that night! It’s best to limit the length of naps so they help you get through the day, but don’t keep you up at night.

When PTSD is involved, especially in military veterans, sleep disorders can disturb sleep to the point of a person dreading bedtime, and efforts to quiet the symptoms with drugs or alcohol can make symptoms worse in the long run. Hyper-alertness, flashbacks, or nightmares can play a big part in keeping PTSD survivors up at night.

Research has found that sleep disorders are 3 times more common in persons with TBI than the general population, that about 60% of TBI survivors have ongoing problems with sleeping, that women are more affected than men…and that aging increases the likelihood of sleep problems.

This group has been researching how people sleep, and they have collected some great information about how drug addiction and recovery can affect a person’s ability to have healthy, restorative sleep….along with addressing other sleep disorders. You can read the full guide at this link.

Better sleep?

Sleep, when achieved regularly, brings a bevy of positive side-effects, and is an essential component of mental and physical well-being. It can affect healing of the brain and body, improve short-term memory and attention, improvement of your mood, and it can even reduce physical pain. The main thing that sleep obviously provides is that you feel rested and more alert!

How You Sleep Also Matters

Being uncomfortable can affect your sleep more than you realize, too. Here’s a link to an article on that covers different sleep positions, and how they can help (or hinder) sleep, or even cause pain in your back, neck, etc.  Here’s the link.

Talk It Over With Your Doctor

There are plenty of over-the-counter and off-the-shelf medications specifically made to help you “catch some ZZZZZ’s” – but it’s very important that persons with brain injury talk to their doctor about the side effects of sleep medications before using any of them.

Brain injury presents a variety of issues that can cause stress, and the stress can easily parlay itself into loss of sleep. If loss of sleep is wearing you down, or slowing your recovery after TBI, you should speak with a physician right away. Once you seek medical advice, the doctor can help you discover the causes and effects of your sleep issues, and discuss all possibilities of easing the loss of sleep. From sleep labs to prescription medications, to discussing techniques for easing your mind before bedtime, your doctor will hopefully help you resolve the sleep deprivation to some degree.

Suggested Reading

The person you are with little or no sleep, versus the one you are when well rested can be like the difference in…well, like night and day! Tips for managing your sleep schedule, and how to improve it, are available in this easy-to-read tip card – available on our website. It’s titled “Sleep after brain injury”, and if you go to this link, you can get a free tip card and catalog.  Here’s the link. for the catalog & tip card. Here’s more info on the SLEEP tip card.

New Year, New Sleep Habits?

With a new year started, you can reference any issues imaginable that relate to PTSD, TBI, ABI, brain injury, concussion, and more, on Lash & Associates’ blog page. Specifically relating to the new year, realistic resolutions after TBI, here is a blog article by Donna O’Donnell Figurski that talks all about it. Here’s the link.

Knowing that stress and anxiety (after TBI) can take its toll, this blog post by Marilyn Lash and Taryn Stejskal, discusses managing stress, and the symptoms of stress that become evident when they’re taking their toll on your health and well-being. Here’s the link.

Blog Posts Galore On A Wide Range of TBI Issues

Feel free to keyword search our entire collection of blog posts, many written by well-known experts, clinicians in the field of brain injury, and also people who have survived brain injury, had family members that have a TBI, and much more. It’s a treasure trove of information that is available for FREE, 24/7/365. It’s all for you at this link!

Resolution of sleeping issues is a “2018 Resolution” for the new year that many have added to their lists to  achieve. We hope that you have a great new year, and that you rest assured…and sleep well!





via Sleep Disorders After Brain Injury, PTSD, TBI


, , ,

Leave a comment

%d bloggers like this: