[BLOG POST] Miscommunication …Straight From the Horse’s Mouth

By Bill Herrin

Communication is the lifeline of any relationship!

 

Work to take frustration out of communication

When a TBI happens, the survivor is the primary person left with the biggest life changes of all. However, family and friends are also impacted in a huge way. For survivors of a TBI, finding ways to communicate about worries, frustrations, physical issues and emotions – as well as conveying all of these things to loved ones is not only tiring – sometimes it just doesn’t come out in a way that’s easy to understand. That’s miscommunication. Your grasp of your life after TBI is going to depend on several key factors: acceptance, progression, facing denial, and finding the inner strength to move on with your “new normal.”

That’s an easy thing to tell someone, but living it out is a challenge that every person will handle differently – as varied as each brain injury (and its effects) can be. Your mental and emotional connections to others are going to be different. Responses to how you communicate can be different as well…all leading to miscommunication on both ends of any conversation. That can lead to frustration, anger, hurt feelings, and a host of other things. We’re going to take a look at how to soften the blow of harsh words, misunderstandings, missed points, and overall miscommunications.

Saying how you feel

One of the key things to consider as a survivor of TBI is this: No matter how you feel, try to consider how the people all around you are feeling as well. They may be feeling bad for you, or they may be feeling time constraints from caregiving, or possibly just feeling overwhelmed or concerned that you’ve changed since your TBI. Communication of thoughts between the two of you (or between you and all of them) is critical to your successful recuperation, to your emotions, and your relationships. This also goes for your family and friends – they should strive to understand that you are affected by their attitude and communication with you. It’s always a two-way street, and it even was before TBI came into the picture – but, now it’s even more critically important. Miscommunication can create even more stress.

They’ve noticed change

Empathy makes things better for everyone involved

Friends come and go, many last a lifetime, but family is forever. Keep in mind, family members can be your best advocate – or your worst critic. The point is this: it’s best to surround yourself (to the best of your ability) with people who understand how you’ve changed and they embrace the change. Empathy is one of the strongest healers – having an understanding of what someone else is experiencing, and “putting yourself in their shoes” can make the worst situation more bearable for everyone involved. This goes for the survivor, family, friends, and co-workers, etc. Seeing how everyone deals with the your TBI can bring a team together, instead of having miscommunication and strife. Strife is going to happen, because nobody is perfect, but remember that we need each other!

Trying to read people

When we talk with each other, half of our expression comes from….well…our expressions. Our facial expressions and body language say a lot, and can be subtle or direct. Survivors of TBI may lose their ability to take expressions or body language into account, or even misread what it being intended. This is also miscommunication. For family and friends, a natural rapport and emotional (as well as physical) healing will usually improve with time. Remembering that is key to maintaining a friendship with the TBI survivor in your life. They’re working toward their new normal, and their frustrations are going to be running high as well. Work toward better communication together!

Expression and tone of voice

Try not to get discouraged

Voice, diction, and clarity of speech can often be affected after a TBI. As a survivor of TBI, strive to work on your speech patterns – with a clinician if possible, or with a caregiver or friend…and even on your own if possible. Enunciation is only going to improve with practice – kind of like playing a musical instrument. Practice, practice, practice! You’ll never get further without having the will to improve. It’s that simple – nobody can make you want to improve, but they can encourage you to do it. One of the bigger parts of miscommunication, beside changed behaviors and expressions is the simple fact that clarity of speech makes a huge difference. Some may never be able to achieve their previous language skills, but communicating what you feel, need, think, want, etc., as clearly as possible is going to be the reward for all your hard work.

Changes in relationships

Whether a TBI survivor is married, single, a child or teen, man, woman, or anything else – relationships are the fuel that keep most people pushing ahead. Since relationships require effort from all parties involved, be aware that brain injury is going to “throw a wrench” into the mix. Many people want to solve problems – they’re “fixers,” full of suggestions and comments, and sometimes criticism. This can bring a lot of tension into a relationship. If you can work to remember one thing about relationships, it’s this: True friends love you for who you are, and they’ll meet you wherever you’re at. Despite being different after TBI doesn’t mean you’re a completely different person, but it does mean that parts of your personality, likes, dislikes, and other things have changed. If someone points out to you that you’re not the same person any longer, consider telling them this: “Think of me as a house. I’ve made some new additions, I’ve changed some things around, I’ve gotten rid of some things, and maybe I don’t seem quite the same. But I’m still the same house…just a remodeled one, now.” Maybe that simple analogy will explain that you’re always going to be you, but changes do happen!

The bottom line

Frustration can make your day seem long

This particular blog is purposely not referencing clinical books, studies, findings, or scientific facts. The goal here is to help families and TBI survivors see themselves in a different light, as a team – as co-conspirators in a battle against TBI, that they both are fighting together. A TBI survivor needs you. You need and love them. Don’t let miscommunications become a wedge between you, because they’ve changed. Overlooking an outburst of frustration of a TBI survivor could make the rest of their day much better. For a survivor of TBI, letting go of a snide comment about them by a loved one who is frustrated or tired, could mean the difference in their day. Communicate with each other as clearly as you can, and always work toward better communication. It’s the key to progress. I hope that you can find contentment in life if you’ve experienced a TBI. I also hope that you will find it as a caregiver, family member, or friend of a TBI survivor. The words of a very well-known college basketball coach come to mind – Coach Jim Valvano, from North Carolina State University was battling terminal cancer, and in one of his last speeches to his adoring public he said “Don’t give up. Don’t ever give up.” Those are words to live by.

via Miscommunication …Straight From the Horse’s Mouth – Brain Injury Blog With Free TBI Information

Advertisements

, , , , , ,

Leave a comment

[WEB SITE] Post-Stroke Rehabilitation – National Institute of Neurological Disorders and Stroke

Post-Stroke Rehabilitation

In the United States more than 700,000 people suffer a stroke each year, and approximately two-thirds of these individuals survive and require rehabilitation. The goals of rehabilitation are to help survivors become as independent as possible and to attain the best possible quality of life. Even though rehabilitation does not “cure” the effects of stroke in that it does not reverse brain damage, rehabilitation can substantially help people achieve the best possible long-term outcome.

What is post-stroke rehabilitation?

Rehabilitation helps stroke survivors relearn skills that are lost when part of the brain is damaged. For example, these skills can include coordinating leg movements in order to walk or carrying out the steps involved in any complex activity. Rehabilitation also teaches survivors new ways of performing tasks to circumvent or compensate for any residual disabilities. Individuals may need to learn how to bathe and dress using only one hand, or how to communicate effectively when their ability to use language has been compromised. There is a strong consensus among rehabilitation experts that the most important element in any rehabilitation program is carefully directed,well-focused, repetitive practice—the same kind of practice used by all people when they learn a new skill, such as playing the piano or pitching a baseball.

Rehabilitative therapy begins in the acute-care hospital after the person’s overall condition has been stabilized, often within 24 to 48 hours after the stroke. The first steps involve promoting independent movement because many individuals are paralyzed or seriously weakened. Patients are prompted to change positions frequently while lying in bed and to engage in passive or active range of motion exercises to strengthen their stroke-impaired limbs. (“Passive” range-of-motion exercises are those in which the therapist actively helps the patient move a limb repeatedly, whereas “active” exercises are performed by the patient with no physical assistance from the therapist.) Depending on many factors—including the extent of the initial injury—patients may progress from sitting up and being moved between the bed and a chair to standing, bearing their own weight, and walking, with or without assistance. Rehabilitation nurses and therapists help patients who are able to perform progressively more complex and demanding tasks, such as bathing, dressing, and using a toilet, and they encourage patients to begin using their stroke-impaired limbs while engaging in those tasks. Beginning to reacquire the ability to carry out these basic activities of daily living represents the first stage in a stroke survivor’s return to independence.

For some stroke survivors, rehabilitation will be an ongoing process to maintain and refine skills and could involve working with specialists for months or years after the stroke.

What disabilities can result from a stroke?

The types and degrees of disability that follow a stroke depend upon which area of the brain is damaged. Generally, stroke can cause five types of disabilities: paralysis or problems controlling movement; sensory disturbances including pain; problems using or understanding language; problems with thinking and memory; and emotional disturbances.

Paralysis or problems controlling movement (motor control)

Paralysis is one of the most common disabilities resulting from stroke. The paralysis is usually on the side of the body opposite the side of the brain damaged by stroke, and may affect the face, an arm, a leg, or the entire side of the body. This one-sided paralysis is called hemiplegia (one-sided weakness is called hemiparesis). Stroke patients with hemiparesis or hemiplegia may have difficulty with everyday activities such as walking or grasping objects. Some stroke patients have problems with swallowing, called dysphagia, due to damage to the part of the brain that controls the muscles for swallowing. Damage to a lower part of the brain, the cerebellum, can affect the body’s ability to coordinate movement, a disability called ataxia, leading to problems with body posture, walking, and balance.

Sensory disturbances including pain

Stroke patients may lose the ability to feel touch, pain, temperature, or position. Sensory deficits also may hinder the ability to recognize objects that patients are holding and can even be severe enough to cause loss of recognition of one’s own limb. Some stroke patients experience pain, numbness or odd sensations of tingling or prickling in paralyzed or weakened limbs, a symptom known as paresthesias.

The loss of urinary continence is fairly common immediately after a stroke and often results from a combination of sensory and motor deficits. Stroke survivors may lose the ability to sense the need to urinate or the ability to control bladder muscles. Some may lack enough mobility to reach a toilet in time. Loss of bowel control or constipation also may occur. Permanent incontinence after a stroke is uncommon, but even a temporary loss of bowel or bladder control can be emotionally difficult for stroke survivors.

Stroke survivors frequently have a variety of chronic pain syndromes resulting from stroke-induced damage to the nervous system (neuropathic pain). In some stroke patients, pathways for sensation in the brain are damaged, causing the transmission of false signals that result in the sensation of pain in a limb or side of the body that has the sensory deficit. The most common of these pain syndromes is called “thalamic pain syndrome” (caused by a stroke to the thalamus, which processes sensory information from the body to the brain), which can be difficult to treat even with medications. Finally, some pain that occurs after stroke is not due to nervous system damage, but rather to mechanical problems caused by the weakness from the stroke.  Patients who have a seriously weakened or paralyzed arm commonly experience moderate to severe pain that radiates outward from the shoulder. Most often, the pain results from lack of movement in a joint that has been immobilized for a prolonged period of time (such as having your arm or shoulder in a cast for weeks) and the tendons and ligaments around the joint become fixed in one position. This is commonly called a “frozen” joint; “passive” movement (the joint is gently moved or flexed by a therapist or caregiver rather than by the individual) at the joint in a paralyzed limb is essential to prevent painful “freezing” and to allow easy movement if and when voluntary motor strength returns.

Problems using or understanding language (aphasia)

At least one-fourth of all stroke survivors experience language impairments, involving the ability to speak, write, and understand spoken and written language. A stroke-induced injury to any of the brain’s language-control centers can severely impair verbal communication. The dominant centers for language are in the left side of the brain for right-handed individuals and many left-handers as well. Damage to a language center located on the dominant side of the brain, known as Broca’s area, causes expressive aphasia. People with this type of aphasia have difficulty conveying their thoughts through words or writing. They lose the ability to speak the words they are thinking and to put words together in coherent, grammatically correct sentences. In contrast, damage to a language center located in a rear portion of the brain, called Wernicke’s area, results in receptive aphasia. People with this condition have difficulty understanding spoken or written language and often have incoherent speech. Although they can form grammatically correct sentences, their utterances are often devoid of meaning. The most severe form of aphasia, global aphasia, is caused by extensive damage to several areas of the brain involved in language function. People with global aphasia lose nearly all their linguistic abilities; they cannot understand language or use it to convey thought.

Problems with thinking and memory

Stroke can cause damage to parts of the brain responsible for memory, learning, and awareness. Stroke survivors may have dramatically shortened attention spans or may experience deficits in short-term memory. Individuals also may lose their ability to make plans, comprehend meaning, learn new tasks, or engage in other complex mental activities. Two fairly common deficits resulting from stroke are anosognosia, an inability to acknowledge the reality of the physical impairments resulting from stroke, and neglect, the loss of the ability to respond to objects or sensory stimuli located on the stroke-impaired side. Stroke survivors who develop apraxia (loss of ability to carry out a learned purposeful movement) cannot plan the steps involved in a complex task and act on them in the proper sequence. Stroke survivors with apraxia also may have problems following a set of instructions. Apraxia appears to be caused by a disruption of the subtle connections that exist between thought and action.

Emotional disturbances

Many people who survive a stroke feel fear, anxiety, frustration, anger, sadness, and a sense of grief for their physical and mental losses. These feelings are a natural response to the psychological trauma of stroke. Some emotional disturbances and personality changes are caused by the physical effects of brain damage. Clinical depression, which is a sense of hopelessness that disrupts an individual’s ability to function, appears to be the emotional disorder most commonly experienced by stroke survivors. Signs of clinical depression include sleep disturbances, a radical change in eating patterns that may lead to sudden weight loss or gain, lethargy, social withdrawal, irritability, fatigue, self-loathing, and suicidal thoughts. Post-stroke depression can be treated with antidepressant medications and psychological counseling.

What medical professionals specialize in post-stroke rehabilitation?

Post-stroke rehabilitation involves physicians; rehabilitation nurses; physical, occupational, recreational, speech-language, and vocational therapists; and mental health professionals.

Physicians

Physicians have the primary responsibility for managing and coordinating the long-term care of stroke survivors, including recommending which rehabilitation programs will best address individual needs. Physicians also are responsible for caring for the stroke survivor’s general health and providing guidance aimed at preventing a second stroke, such as controlling high blood pressure or diabetes and eliminating risk factors such as cigarette smoking, excessive weight, a high-cholesterol diet, and high alcohol consumption.

Neurologists usually lead acute-care stroke teams and direct patient care during hospitalization. They sometimes participate on the long-term rehabilitation team. Other subspecialists often lead the rehabilitation stage of care, especially physiatrists, who specialize in physical medicine and rehabilitation.

Rehabilitation nurses

Nurses specializing in rehabilitation help survivors relearn how to carry out the basic activities of daily living. They also educate survivors about routine health care, such as how to follow a medication schedule, how to care for the skin, how to move out of a bed and into a wheelchair, and special needs for people with diabetes. Rehabilitation nurses also work with survivors to reduce risk factors that may lead to a second stroke, and provide training for caregivers.

Nurses are closely involved in helping stroke survivors manage personal care issues, such as bathing and controlling incontinence. Most stroke survivors regain their ability to maintain continence, often with the help of strategies learned during rehabilitation. These strategies include strengthening pelvic muscles through special exercises and following a timed voiding schedule. If problems with incontinence continue, nurses can help caregivers learn to insert and manage catheters and to take special hygienic measures to prevent other incontinence-related health problems from developing.

Physical therapists

Physical therapists specialize in treating disabilities related to motor and sensory impairments. They are trained in all aspects of anatomy and physiology related to normal function, with an emphasis on movement. They assess the stroke survivor’s strength, endurance, range of motion, gait abnormalities, and sensory deficits to design individualized rehabilitation programs aimed at regaining control over motor functions.

Physical therapists help survivors regain the use of stroke-impaired limbs, teach compensatory strategies to reduce the effect of remaining deficits, and establish ongoing exercise programs to help people retain their newly learned skills. Disabled people tend to avoid using impaired limbs, a behavior called learned non-use. However, the repetitive use of impaired limbs encourages brain plasticity and helps reduce disabilities.

Strategies used by physical therapists to encourage the use of impaired limbs include selective sensory stimulation such as tapping or stroking, active and passive range-of-motion exercises, and temporary restraint of healthy limbs while practicing motor tasks.

In general, physical therapy emphasizes practicing isolated movements, repeatedly changing from one kind of movement to another, and rehearsing complex movements that require a great deal of coordination and balance, such as walking up or down stairs or moving safely between obstacles. People too weak to bear their own weight can still practice repetitive movements during hydrotherapy (in which water provides sensory stimulation as well as weight support) or while being partially supported by a harness. A recent trend in physical therapy emphasizes the effectiveness of engaging in goal-directed activities, such as playing games, to promote coordination. Physical therapists frequently employ selective sensory stimulation to encourage use of impaired limbs and to help survivors with neglect regain awareness of stimuli on the neglected side of the body.

Occupational and recreational therapists

Like physical therapists, occupational therapists are concerned with improving motor and sensory abilities, and ensuring patient safety in the post-stroke period. They help survivors relearn skills needed for performing self-directed activities (also called occupations) such as personal grooming, preparing meals, and housecleaning. Therapists can teach some survivors how to adapt to driving and provide on-road training. They often teach people to divide a complex activity into its component parts, practice each part, and then perform the whole sequence of actions. This strategy can improve coordination and may help people with apraxia relearn how to carry out planned actions.

Occupational therapists also teach people how to develop compensatory strategies and change elements of their environment that limit activities of daily living. For example, people with the use of only one hand can substitute hook and loop fasteners (such as Velcro) for buttons on clothing. Occupational therapists also help people make changes in their homes to increase safety, remove barriers, and facilitate physical functioning, such as installing grab bars in bathrooms.

Recreational therapists help people with a variety of disabilities to develop and use their leisure time to enhance their health, independence, and quality of life.

Speech-language pathologists

Speech-language pathologists help stroke survivors with aphasia relearn how to use language or develop alternative means of communication. They also help people improve their ability to swallow, and they work with patients to develop problem-solving and social skills needed to cope with the after-effects of a stroke.

Many specialized therapeutic techniques have been developed to assist people with aphasia. Some forms of short-term therapy can improve comprehension rapidly. Intensive exercises such as repeating the therapist’s words, practicing following directions, and doing reading or writing exercises form the cornerstone of language rehabilitation. Conversational coaching and rehearsal, as well as the development of prompts or cues to help people remember specific words, are sometimes beneficial. Speech-language pathologists also help stroke survivors develop strategies for circumventing language disabilities. These strategies can include the use of symbol boards or sign language. Recent advances in computer technology have spurred the development of new types of equipment to enhance communication.

Speech-language pathologists use special types of imaging techniques to study swallowing patterns of stroke survivors and identify the exact source of their impairment. Difficulties with swallowing have many possible causes, including a delayed swallowing reflex, an inability to manipulate food with the tongue, or an inability to detect food remaining lodged in the cheeks after swallowing. When the cause has been pinpointed, speech-language pathologists work with the individual to devise strategies to overcome or minimize the deficit. Sometimes, simply changing body position and improving posture during eating can bring about improvement. The texture of foods can be modified to make swallowing easier; for example, thin liquids, which often cause choking, can be thickened. Changing eating habits by taking small bites and chewing slowly can also help alleviate dysphagia.

Vocational therapists

Approximately one-fourth of all strokes occur in people between the ages of 45 and 65. For most people in this age group, returning to work is a major concern. Vocational therapists perform many of the same functions that ordinary career counselors do. They can help people with residual disabilities identify vocational strengths and develop résumés that highlight those strengths. They also can help identify potential employers, assist in specific job searches, and provide referrals to stroke vocational rehabilitation agencies.

Most important, vocational therapists educate disabled individuals about their rights and protections as defined by the Americans with Disabilities Act of 1990. This law requires employers to make “reasonable accommodations” for disabled employees. Vocational therapists frequently act as mediators between employers and employees to negotiate the provision of reasonable accommodations in the workplace.

When can a stroke patient begin rehabilitation?

Rehabilitation should begin as soon as a stroke patient is stable, sometimes within 24 to 48 hours after a stroke. This first stage of rehabilitation can occur within an acute-care hospital; however, it is very dependent on the unique circumstances of the individual patient.

Recently, in the largest stroke rehabilitation study in the United States, researchers compared two common techniques to help stroke patients improve their walking.  Both methods—training on a body-weight supported treadmill or working on strength and balance exercises at home with a physical therapist—resulted in equal improvements in the individual’s ability to walk by the end of one year. Researchers found that functional improvements could be seen as late as one year after the stroke, which goes against the conventional wisdom that most recovery is complete by 6 months. The trial showed that 52 percent of the participants made significant improvements in walking, everyday function and quality of life, regardless of how severe their impairment was, or whether they started the training at 2 or 6 months after the stroke.

Where can a stroke patient get rehabilitation?

At the time of discharge from the hospital, the stroke patient and family coordinate with hospital social workers to locate a suitable living arrangement. Many stroke survivors return home, but some move into some type of medical facility.

Inpatient rehabilitation units

Inpatient facilities may be freestanding or part of larger hospital complexes. Patients stay in the facility, usually for 2 to 3 weeks, and engage in a coordinated, intensive program of rehabilitation. Such programs often involve at least 3 hours of active therapy a day, 5 or 6 days a week. Inpatient facilities offer a comprehensive range of medical services, including full-time physician supervision and access to the full range of therapists specializing in post-stroke rehabilitation.

Outpatient units

Outpatient facilities are often part of a larger hospital complex and provide access to physicians and the full range of therapists specializing in stroke rehabilitation. Patients typically spend several hours, often 3 days each week, at the facility taking part in coordinated therapy sessions and return home at night. Comprehensive outpatient facilities frequently offer treatment programs as intense as those of inpatient facilities, but they also can offer less demanding regimens, depending on the patient’s physical capacity.

Nursing facilities

Rehabilitative services available at nursing facilities are more variable than are those at inpatient and outpatient units. Skilled nursing facilities usually place a greater emphasis on rehabilitation, whereas traditional nursing homes emphasize residential care. In addition, fewer hours of therapy are offered compared to outpatient and inpatient rehabilitation units.

Home-based rehabilitation programs

Home rehabilitation allows for great flexibility so that patients can tailor their program of rehabilitation and follow individual schedules. Stroke survivors may participate in an intensive level of therapy several hours per week or follow a less demanding regimen. These arrangements are often best suited for people who require treatment by only one type of rehabilitation therapist. Patients dependent on Medicare coverage for their rehabilitation must meet Medicare’s “homebound” requirements to qualify for such services; at this time lack of transportation is not a valid reason for home therapy. The major disadvantage of home-based rehabilitation programs is the lack of specialized equipment. However, undergoing treatment at home gives people the advantage of practicing skills and developing compensatory strategies in the context of their own living environment. In the recent stroke rehabilitation trial, intensive balance and strength rehabilitation in the home was equivalent to treadmill training at a rehabilitation facility in improving walking.

What research is being done?

The National Institute of Neurological Disorders and Stroke (NINDS), a component of the U.S. National Institutes of Health (NIH), has primary responsibility for sponsoring research on disorders of the brain and nervous system, including the acute phase of stroke and the restoration of function after stroke.  The NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development, through its National Center for Medical Rehabilitation Research, funds work on mechanisms of restoration and repair after stroke, as well as development of new approaches to rehabilitation and evaluation of outcomes.  Most of the NIH-funded work on diagnosis and treatment of dysphagia is through the National Institute on Deafness and Other Communication Disorders.  The National Institute of Biomedical Imaging and Bioengineering collaborates with NINDS and NICHD in developing new instrumentation for stroke treatment and rehabilitation.  The National Eye Institute funds work directed at restoration of vision and rehabilitation for individuals with impaired or low vision that may be due to vascular disease or stroke.

The NINDS supports research on ways to enhance repair and regeneration of the central nervous system. Scientists funded by the NINDS are studying how the brain responds to experience or adapts to injury by reorganizing its functions (plasticity)—using noninvasive imaging technologies to map patterns of biological activity inside the brain. Other NINDS-sponsored scientists are looking at brain reorganization after stroke and determining whether specific rehabilitative techniques, such as constraint-induced movement therapy and transcranial magnetic stimulation, can stimulate brain plasticity, thereby improving motor function and decreasing disability. Other scientists are experimenting with implantation of neural stem cells, to see if these cells may be able to replace the cells that died as a result of a stroke.

*An ischemic stroke or “brain attack” occurs when brain cells die because of inadequate blood flow. When blood flow is interrupted, brain cells are robbed of vital supplies of oxygen and nutrients. About 80 percent of strokes are caused by the blockage of an artery in the neck or brain. A hemorrhagic stroke is caused by a burst blood vessel in the brain that causes bleeding into or around the brain.

**Functions compromised when a specific region of the brain is damaged by stroke can sometimes be taken over by other parts of the brain. This ability to adapt and change is known as neuroplasticity.

NIH Publication No. 14 1846
September 2014

via NINDS | Post-Stroke Rehabilitation

, , ,

Leave a comment

[WEB SITE] Rates of Pregnancy, Live Births Similar Among Women With and Without Epilepsy

Sexual activity and rates of ovulation were also similar among women with epilepsy and those without the disorder.

Sexual activity and rates of ovulation were also similar among women with epilepsy and those without the disorder.

Women with epilepsy who are seeking to become pregnant and have no known infertility or related disorders have a similar probability of achieving pregnancy, time to pregnancy, and live birth rates as do women without epilepsy, according to the results of the observational Women With Epilepsy Pregnancy Outcomes and Deliveries prospective cohort study (ClinicalTrials.gov identifier: NCT01259310), which was published in JAMA Neurology.

The investigators sought to examine whether women with epilepsy with no prior diagnosis of infertility or a related disorder were as likely to become pregnant within 12 months as their peers without epilepsy. A cohort of women with epilepsy and healthy controls who were seeking pregnancy were enrolled at 4 academic medical centers in the United States and were followed for up to 21 months. Participants between 18 and 40 years of age who were seeking pregnancy were enrolled within 6 months of having discontinued contraception. Data were evaluated from November 2015 to June 2017.

The primary study outcome was the proportion of women who attained pregnancy within 12 months after enrollment. Secondary outcomes included time to pregnancy, pregnancy outcomes, sexual activity, rates of ovulation, and analysis of disease-related factors in women with epilepsy.

A total of 197 women were included in the study — 89 with epilepsy and 108 controls. Overall, 72.1% of the participants were white. The mean age of the women was 31.9±3.5 years in those with epilepsy and 31.1±4.2 years in the controls. Among the women with epilepsy, 60.7% (54 of 89) achieved pregnancy compared with 60.2% (65 of 108) of those without epilepsy. The median time to attaining pregnancy did not differ significantly between the groups (women with epilepsy: 6.0 months; 95% CI, 3.8-10.1; controls: 9.0 months; 95% CI, 6.5-11.2; =.30).

Sexual activity and rates of ovulation were also similar among women with epilepsy and those without the disorder. Overall, 81.5% (44 of 54) of pregnancies in women with epilepsy and 81.5% (53 of 65) of pregnancies in women without epilepsy resulted in live births.

The investigators concluded that the results of this study should help reassure and encourage women with epilepsy without a prior diagnosis of infertility or an associated disorder, as well as their clinicians, when planning to become pregnant, based on the similar times to achieving pregnancy and similar pregnancy outcomes reported.

Reference

Pennell PB, French JA, Harden CL, et al. Fertility and birth outcomes in women with epilepsy seeking pregnancy [published online April 30, 2018]. JAMA Neurol. doi: 10.1001/jamaneurol.2018.0646

via Rates of Pregnancy, Live Births Similar Among Women With and Without Epilepsy

, , ,

Leave a comment

[WEB SITE] Kessler Foundation partners with Motek to develop new rehabilitation treatments

Researchers will investigate virtual reality-based interventions to improve cognitive and motor deficits in individuals with disabilities

KESSLER FOUNDATION

IMAGE

IMAGE: PARTICIPANT WALKING ON C-MILL WITH RESEARCH SCIENTIST AT KESSLER FOUNDATION.

Kessler Foundation, a major nonprofit organization in the field of disability, has partnered with Motek, a leader in virtual reality (VR) rehabilitation technologies, to develop new treatments to improve cognitive and motor impairments in individuals with disabilities.

Mobility deficits due to disease, trauma, or aging, adversely affect a person’s quality of life. Specifically, the inability to adjust one’s gait to one’s environment – such as to maneuver a doorstep, puddle of water or other obstacles – leads to increased risk of falling. Using a VR-based device called C-Mill, investigators at Kessler Foundation are exploring interventions to improve disabling deficits in individuals with multiple sclerosis, spinal cord injury, and stroke. The C-Mill is a state-of-the-art treadmill that trains the user in obstacle avoidance and influences gait pattern by projecting virtual cues on a safe walking surface.

“The flexibility of the C-Mill allows researchers to program for specific environments, enabling better training and evaluation of gait pattern and gait adaptability,” said Guang Yue, PhD, director of Human Performance and Engineering Research at Kessler Foundation. “New technologies such as C-Mill enable researchers to develop universal standards for measuring and improving mobility. This exciting collaboration advances our mission to improve mobility, independence and quality of life for individuals with disabilities caused by a range of neurological conditions.”

Investigators will use advanced brain imaging technology at the Rocco Ortenzio Neuroimaging Center at Kessler Foundation to examine the neurofunctional changes underlying cognitive and motor improvements in individuals in studies testing the C-Mill. The findings of these studies may help reduce loss of independence and improve daily functioning in people with disabilities by providing critical biomarkers for post-intervention changes in learning and memory, fatigue, gait and balance.

“Motek gives clinicians and researchers the tools they need to provide dynamic, high-quality technology solutions that can be customized to meet the patient’s needs,” said Frans Steenbrink, PhD, Head of Clinical Applications & Research at Motek. “With this strategic partnership, Motek and Kessler Foundation aim to facilitate both the integration of our technology in clinical settings and the accommodation of different patient populations. Together, we will create a strong scientific network that will push evidence-based clinical research into the underlying mechanisms of impaired gait and balance control. Furthermore, we hope to extend this strategic partnership with Kessler Foundation to the entire DIH Group, laying the groundwork for numerous future innovations.”

###

For more information, or to enroll in a Kessler Foundation study, contact our Research Recruitment Specialist: researchstudies@kesslerfoundation.org.

About Motek

Motek is the global leader in virtual reality and robotics research and rehabilitation, combining almost 20 years of experience in high-level technologies. We excel in building the most versatile devices, integrating latest VR, motion capture and multiple sensory technologies and ensuring real-time feedback, data quality and synchronization. Our treadmill- and balance platform-based systems, arm movement tools or body weight supports are easily interconnected through our in-house software platform. From global knowledge exchange to unique research set-ups: with our all-round support package, we are the perfect partner for every stage of your research on human movement. Motek is a proud partner of DIH International and Hocoma and is part of the DIH Rehabilitation Division.

About Human Performance & Engineering Research at Kessler Foundation

Under the leadership of Guang Yue, PhD, six areas of specialized research are headed by experts in biomechanics, bioengineering, movement analysis, robotics, neurophysiology and neuroimaging. All areas of specialized research contribute to the common goal to improve mobility and motor function so individuals with disabilities can participate fully in school, work, and community activities. Their efforts fuel innovative approaches to address disabling conditions, including brain injury, spinal cord injury, multiple sclerosis, cerebral palsy, arthritis and cancer.

Research is funded by the National Institute on Disability, Independent Living & Rehabilitation Research, National Institutes of Health, Department of Defense, Reeve Foundation, New Jersey Commission on Spinal Cord Injury Research, Craig H. Neilsen Foundation, and Children’s Specialized Hospital.

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities.

Learn more by visiting http://www.KesslerFoundation.org.Stay Connected

Twitter | http://www.twitter.com/KesslerFdn
Facebook | http://www.facebook.com/KesslerFoundation
YouTube | http://www.youtube.com/user/KesslerFoundation
Instagram | http://www.instagram.com/kesslerfdn
iTunes & SoundCloud | http://www.soundcloud.com/kesslerfoundation

 

via Kessler Foundation partners with Motek to develop new rehabilitation treatments | EurekAlert! Science News

, , , , , ,

Leave a comment

[ARTICLE] Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges – Full Text

Abstract

A better understanding of the neural substrates that underlie motor recovery after stroke has led to the development of innovative rehabilitation strategies and tools that incorporate key elements of motor skill relearning, that is, intensive motor training involving goal-oriented repeated movements. Robotic devices for the upper limb are increasingly used in rehabilitation. Studies have demonstrated the effectiveness of these devices in reducing motor impairments, but less so for the improvement of upper limb function. Other studies have begun to investigate the benefits of combined approaches that target muscle function (functional electrical stimulation and botulinum toxin injections), modulate neural activity (noninvasive brain stimulation), and enhance motivation (virtual reality) in an attempt to potentialize the benefits of robot-mediated training. The aim of this paper is to overview the current status of such combined treatments and to analyze the rationale behind them.

1. Introduction

Significant advances have been made in the management of stroke (including prevention, acute management, and rehabilitation); however cerebrovascular diseases remain the third most common cause of death and the first cause of disability worldwide [16]. Stroke causes brain damage, leading to loss of motor function. Upper limb (UL) function is particularly reduced, resulting in disability. Many rehabilitation techniques have been developed over the last decades to facilitate motor recovery of the UL in order to improve functional ability and quality of life [710]. They are commonly based on principles of motor skill learning to promote plasticity of motor neural networks. These principles include intensive, repetitive, task-oriented movement-based training [1119]. A better understanding of the neural substrates of motor relearning has led to the development of innovative strategies and tools to deliver exercise that meets these requirements. Treatments mostly target the neurological impairment (paresis, spasticity, etc.) through the activation of neural circuits or by acting on peripheral effectors. Robotic devices provide exercises that incorporate key elements of motor learning. Advanced robotic systems can offer highly repetitive, reproducible, interactive forms of training for the paretic limb, which are quantifiable. Robotic devices also enable easy and objective assessment of motor performance in standardized conditions by the recording of biomechanical data (i.e., speed, forces) [2022]. This data can be used to analyze and assess motor recovery in stroke patients [2326]. Since the 1990s, many other technology-based approaches and innovative pharmaceutical treatments have also been developed for rehabilitation, including virtual reality- (VR-) based systems, botulinum neurotoxin (BoNT) injections, and noninvasive brain stimulation (NIBS) (Direct Current Stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS)). There is currently no high-quality evidence to support any of these innovative interventions, despite the fact that some are used in routine practice [27]. By their respective mechanisms of action, each of these treatments could potentiate the effects of robotic therapy, leading to greater improvements in motor capacity. The aim of this paper is to review studies of combined treatments based on robotic rehabilitation and to analyze the rationale behind such approaches.[…]

 

Continue —> Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges

, , , , , , , , , , , ,

Leave a comment

[WEB SITE] List of Seizures (Convulsions) Medications (60 Compared) – Drugs.com

Medications for Seizures (Convulsions)

Other names: Absence Seizure; Complex Partial Seizure; Fits

About Seizures:  A seizure or convulsion can be a sudden, violent, uncontrollable contraction of a group of muscles. A seizure can also be more subtle, consisting of only a brief “loss of contact” or a few moments of what appears to be daydreaming.

 

Drugs Used to Treat Seizures

The following list of medications are in some way related to, or used in the treatment of this condition.[…]

For the list of medications, Visit Site —> List of Seizures (Convulsions) Medications (60 Compared) – Drugs.com

, , , , ,

Leave a comment

[WEB SITE] Myoelectric Arm Orthosis Designed for Adolescents

Published on 

MyProadolescent

 

Myomo Inc announces that its MyoPro myoelectric arm orthosis is now available to adolescents to help restore upper limb functionality in paralyzed or weakened arms.

In order to facilitate MyoPro fittings and delivery to adolescent patients, Myomo has partnered with Easterseals DuPage & Fox Valley (Chicago area), and is exploring partnerships with additional youth institutions and children’s hospitals, according to a media release from Cambridge, Mass-based Myomo Inc.

Paul R. Gudonis, chairman and CEO of Myomo, says in the release that, “For adolescents who suffer from a neuromuscular condition like cerebral palsy or BPI, and whose options for treatment and care have been limited, MyoPro represents new hope. We can now provide these teens with a chance to help restore function in their arms and, as a result, improve their quality of life.”

Kathy Schrock, vice president of clinical services, Easterseals DuPage & Fox Valley, Illinois, adds that, “Our partnership provides Easterseals DuPage & Fox Valley with cutting-edge technology for our therapists and clients. MyoPro will help develop arm control for adolescent clients with neurological disorders, giving them greater independence.”

Based on patented technology developed at MIT, MyoPro is designed to sense a patient’s own EMG signals through noninvasive sensors and restore function to the paralyzed or weakened arm. This allows MyoPro users to perform activities of daily living including feeding themselves, carrying objects, and doing household tasks.

[Source(s): Myomo Inc, Business Wire]

 

via Myoelectric Arm Orthosis Designed for Adolescents – Rehab Managment

, , , , , , ,

Leave a comment

[VIDEO] tutorial tDCS Soterix – YouTube

via (2) tutorial tDCS Soterix – YouTube

, , ,

Leave a comment

[WEB SITE] What is clonus? Everything you need to know

Clonus is a neurological condition that occurs when nerve cells that control the muscles are damaged. This damage causes involuntary muscle contractions or spasms.

Clonus spasms often occur in a rhythmic pattern. Symptoms are common in a few different muscles, especially in the extremities. These include the:

  • ankles
  • knees
  • calves
  • wrists
  • jaw
  • biceps

Damaged nerves can cause muscles to misfire, leading to involuntary contractions, muscle tightness, and pain.

Clonus can cause a muscle to pulse for an extended period. This pulsing can lead to muscle fatigue, which may make it difficult for a person to use the muscle later.

Clonus can make everyday activities strenuous and can even be debilitating. In this article, learn more about the causes and treatment.

Causes

Nerve cells in muscles causing clonus

Damaged nerve cells cause clonus.

While researchers do not understand the exact cause of clonus, it appears to be due to damaged nerve passageways in the brain.

A number of chronic conditions are associated with clonus. As these conditions require specialized treatment, the outcome may vary in each case.

Conditions associated with clonus include:

Multiple sclerosis (MS) is an autoimmune disorder that attacks the protective sheath around the nerves. The resulting damage disrupts the nerve signals in the brain.

A stroke starves a part of the brain of oxygen, usually due to a blood clot. A stroke may cause clonus if it damages the area in the brain that controls movement.

Infections, such as meningitis or encephalitis, can damage brain cells or nerves if they become severe.

Major injuries, such as head trauma from a major accident, may also damage the nerves in the brain or spinal cord.

Serotonin syndrome is a potentially dangerous reaction that occurs if too much serotonin builds up in the body. This buildup could be due to drug abuse, but it may also be caused by taking high doses of medications or mixing certain medical drugs.

A brain tumor that pushes against the motor neurons in the brain or causes these areas to swell may lead to clonus.

Other causes of clonus include anything that has the potential to affect the nerves or brain cells, including:

  • cerebral palsy
  • Lou Gehrig’s disease
  • anoxic brain injury
  • hereditary spastic paraparesis
  • kidney or liver failure
  • overdoses of drugs such as Tramadol, which is a strong painkiller

Clonus tests

Clonus may be diagnosed using an MRI scan.

An MRI scan may be used to diagnose clonus.

To diagnose clonus, doctors may first physically examine the area that is most affected. If a muscle contracts while a person is in the doctor’s office, they may monitor the contraction to see how fast the muscle is pulsing and how many times it contracts before stopping.

Doctors will then order a specific series of tests to help them confirm the diagnosis. They may use magnetic resonance imaging (MRI) to check for damage to the cells or nerves.

Blood tests may also help identify markers for various conditions associated with clonus.

A physical test may also help doctors identify clonus. During this test, they will ask the person to quickly flex their foot, so their toes are pointing upward and then hold the muscle there.

This may cause a sustained pulsing in the ankle. A series of these pulses may indicate clonus. Doctors do not rely on this test to diagnose clonus, but it can help point them in the right direction during the diagnostic process.

Treatment

Treatment for clonus varies depending on the underlying cause. Doctors may try many different treatment methods before finding the one that works best for each person.

Medications

Sedative medications and muscle relaxers help reduce clonus symptoms. Doctors often recommend these drugs in the first instance for people experiencing clonus.

Medications that may help with clonus contractions include:

  • baclofen (Lioresal)
  • dantrolene (Dantrium)
  • tizanidine (Zanaflex)
  • gabapentin (Neurotonin)
  • diazepam (Valium)
  • clonazepam (Klonopin)

Sedatives and anti-spasticity medications can cause drowsiness or sleepiness. People taking these medications should not drive a car or operate heavy machinery.

Other side effects may include mental confusion, lightheadedness, or even trouble walking. A person should discuss these side effects with a doctor, especially if they are likely to disrupt a person’s work or everyday activities.

Other treatments

Clonus may be treated with physical therapy.

Physical therapy may help treat clonus.

Other than medication, treatments that may help reduce clonus include:

Physical therapy

Working with a physical therapist to stretch or exercise the muscles may help increase the range of motion in the damaged area. Some therapists may recommend wrist or ankle splints for some people as they can provide structure and improve stability, reducing the risk of accidents.

Botox injections

Some people with clonus respond well to Botox injections. Botox therapy involves injecting specific toxins to paralyze muscles in the area. The effects of Botox injections wear off over time so a person will require repeat injections on a regular basis.

Surgery

Surgery is often the last resort. During a procedure to treat clonus, surgeons will cut away parts of the nerve that are causing abnormal muscle movements, which should relieve symptoms.

Home remedies

While medical treatments for clonus are important, home remedies can be valuable in supporting these efforts.

Using heat packs or taking warm baths may relieve pain, while applying cold packs may help reduce muscle aches. Stretching and yoga may help promote an increased range of motion.

Some people may also find a magnesium supplement or magnesium salt bath helps relax the muscles. People should speak to a doctor before trying magnesium, as it may interact with other medications.

Outlook

The outlook for clonus may vary according to the underlying cause. Where a sudden injury or illness causes clonus and muscle spasms, the symptoms will likely go away over time or respond well to physical therapy.

Chronic conditions such as multiple sclerosis, meningitis, or a stroke may require long-term treatments for symptom management.

Clonus may sometimes get worse if the underlying condition progresses. Many people find they can manage symptoms by working closely with a doctor and physical therapist.

via Clonus: Definition, causes, tests, and treatment

, , , , , , ,

Leave a comment

[WEB SITE] Tele-Epilepsy and Remote Seizure Monitoring – Case Study

Case Study

Tele-Epilepsy and Remote Seizure Monitoring using Shimmer Sensors

Introduction

Shimmer offers a wireless sensor platform along with low power connections and host software to enable researchers, whether clinical, applied or academic, to use wearable sensing technologies in many different applications.

Research Objective

The World Health Organization calls epilepsy a chronic noncommunicable disorder of the brain. It is known to affect more than 50 million people all over the world.

Researchers from the Netherlands are currently studying the role of Tele-Epilepsy and Remote Seizure Monitoring, using the Shimmer platform. The research is a joint project between UMC Utrecht, Kempaenhaeghe-Heeze, and SEIN-Zwolle. The aims of the study are:

Detection and alarm triggering when a major nocturnal epileptic seizure occurs: this is done using an integrated Multi-Sensor Detection Instrument (MSDI) which uses a combination of electrocardiography (ECG) and 3-D accelerometry data. This data is collected with the help of Shimmer sensors, with linkage to audio and automated video frame analysis.

Research Method

The objective of this project is to bring out a new device that uses multiple modes of sensing to detect the occurrence of nocturnal epileptic seizures as well as to set off an alarm so as to alert caregivers in this case. The system uses an MSDI which uses Shimmer sensors, audio signals and video streams, yielding both ECG and 3-D accelerometry data.

A diagnostic trial was first conducted to arrive at the best combinations of patient factors and sensory modalities from among the four used in the MSDI, which could reliably detect a seizure. The groups targeted by the study included children under 16 who were staying at home, adolescents who were mentally challenged, and adults living under care, either at home or in another care environment.

Two Shimmer sensors were used per patient, with the accelerometer worn on the right upper arm and the accelerometer-ECG combination on the left upper arm. The data arriving from the sensors was fed to a PC which integrated the input and sent an alarm if the resulting output went beyond the set threshold. Real-time video and audio streams were set up between the PC and a monitoring device.

Data-Driven Results

The Shimmer sensors were preferred in this study because they were easily adaptable as well as being capable of being set to required configurations. The researchers were able to take advantage of the open platform and its easy interfacing with developer tools such as MATLAB, which was not easily available with other providers at the time of the research at a price which was competitive.

The images below show the MSDI as well as the algorithms that the team developed to analyze the four signal modalities with some examples of acquired data. This was taken from recordings of two patients, the one on the left showing a tonic seizure and that on the right a tonic-clonic seizure.

Concept to Delivery – 90% Efficiency

The choice of the Shimmer platform was based upon the CE certification, among other reasons. This hardware was already classified as a medical device, which made it possible to integrate it into a model used for research on human patients, unlike other research projects.

The MSDI using Shimmer sensors has now been tested in more than 50 patients who were in hospital, in four different centers, comparing the yield against the gold-standard for EEG-video monitoring which is the established method to monitor patients who may potentially develop seizures. This reliance upon EEG-video monitoring is because of the reliability of neural feedback in this type of event.

However, this research was favorably assessed in the hospital setting before being tested on patients who were at home. The latest study also showed excellent results with 90% efficacy in detecting nocturnal seizures as compared to the EEG monitoring technology. More work remains to be done, including refining the software which runs real-time analysis of the data, integrating the sensor data and validating the results in this domestic situation.

Shimmer Research – Sensing Solved

While many solutions compete for place in this niche, Shimmer boasts of advanced technology, supporting software and specialized applications which help to control the type of data that is acquired.

This in turn helps researchers look into how to interpret the data collected by the Shimmer platform, as well as to develop new algorithms to make sense of the kinematic and physiological data that pours in with these tools.

In summary, the benefits of using Shimmer technology include:

  • Shimmer suits most research applications because of its ability to help arrive at the meaning of the raw data, and apply this meaning for the benefit of patients and their caregivers
  • Shimmer solutions reduce the time taken for development of an application and its cost by 80%
  • Shimmer technology yields data that is high-quality, robust and accurate
  • The solution is easy to customize to specific applications
  • It gives the researcher full control over what data is captured, as well as over its interpretation and analysis
  • Shimmer solutions can be leveraged with the range of vital support tools available
  • Shimmer solutions are used by a wide range of researchers, both independent, as well as in collaboration with academic and research institutes

About ShimmerShimmer

Since the Shimmer technology was originally conceived in 2006, to when the company was founded in 2008, we have been pioneering wearable sensor technology and solutions, and currently ship to over 80 countries worldwide.

Overview

Shimmer is an ‘end-to-end’ wearable technologies services and sensor manufacture company, that constantly provides best-in-class wearable sensing technology, combined with leading experience and expertise to our customers right across the globe. Our solutions and services range from customization services and volume manufacture to complete wearable sensing solutions of any complexity.

Our Services Include

Shimmer offers full customization of our wearable sensor technology to meet your specific application and end user requirement, with low cost, quick-turn development builds

Consultancy & Systems Integration

Expertise in evaluating, rationalizing and integrating wearable sensing solutions, effectively from initial concept to successful integration with wider systems

Application Development

Our experienced applications Engineers meet the most ambitious and complex requirement from embedded programming, firmware development data processing and display

Custom Design & Manufacture

Hardware evaluation, design and volume manufacture to meet your requirements. Incorporating virtual prototyping and interactive feedback from our ISO accredited production line

Engagement and Development Framework: We offer a range of engagement and pricing models to meet our clients’ diverse needs and stage of business growth. All projects are based upon an agreed and detailed specification of work to ensure the requirements are effectively communicated at all stages of the development cycle.


Sponsored Content Policy: News-Medical.net publishes articles and related content that may be derived from sources where we have existing commercial relationships, provided such content adds value to the core editorial ethos of News-Medical.Net which is to educate and inform site visitors interested in medical research, science, medical devices and treatments.

Last updated: Jun 7, 2018 at 8:07 AM

via Tele-Epilepsy and Remote Seizure Monitoring

, , , ,

Leave a comment

%d bloggers like this: