[WEB SITE] Rutgers VR spinoff moves to NJEDA incubator

New Jersey Economic Development Authority
The New Jersey Economic Development Authority’s Commercialization Center for Innovative Technologies in North Brunswick.

Virtual reality is mostly known as a platform for gamers — allowing its users to escape from the real world by commanding the Enterprise, rescuing their child from a post-apocalyptic wasteland or being transported smack-dab into the middle of a murder mystery.

However, there’s another angle at play.

It can also help alleviate symptoms and improve the health of people who’ve suffered illnesses and injuries.

Patients who have suffered stroke, dementia and traumatic brain injuries are using virtual reality as part of their rehabilitation therapy, thanks to technology developed by Bright Cloud International Corp.

BCI, a Rutgers University spinoff, announced earlier this month it moved its operations into the New Jersey Economic Development Authority’s Commercialization Center for Innovative Technologies in North Brunswick. The move will expand the CCIT’s footprint in New Jersey as a life sciences incubator.

“Having spent the past 30 years here, I know the intrinsic value that New Jersey offers entrepreneurs, including its strong academic institutions and its dynamic life sciences community. I also wanted to maintain strong ties with Rutgers and to offer jobs for students and graduates. In return for the decades of support I have received from the university, I wanted to strengthen BCI while also benefitting Rutgers,” said Grigore “Greg” Burdea, BCI founder and president.

The rehabilitation system, known as BrightBrainer, is a self-contained and mobile rehabilitation medical device that has custom virtual reality therapy games.

The system, which is available for lease or purchase, targets motor skills such as motor control, speed of movement, endurance, hand-eye coordination and task sequencing. It also targets cognitive abilities, including attention, short-term visual and auditory memory, working memory, reading comprehension and dual tasking.

The virtual reality system, according to BCI, is useful in a variety of health care settings, including outpatient clinics, skilled nursing facilities and medical adult day programs.

“Our biggest success to date is the BrightBrainer rehabilitation system. I am proud that it reduces care costs, increases access to care and improves therapy outcomes,” Burdea said.

A team of researchers, engineers, physicians, therapists and game developers created the games, which adapt to each individual patient.

According to BCI, BrightBrainer has been found to benefit a patient’s motor and cognitive skills, as well as a patient’s emotional state, leading to an increased quality of life.

“We know that the brain can rewire itself to bypass non-working neurons, so our technology helps patients build that bypass to regain use of their bodies,” Burdea said. “It also puts a new and interactive spin on the monotony of occupational therapy, bringing an age-old industry into the 21st century.”

Burdea said he moved the incubator to CCIT because of its environment, access to networking and investors, and opportunities for increased visibility.

“Understanding and responding to the needs of the market is imperative to the state’s ability to retain and attract innovative companies and top talent,” EDA CEO Tim Sullivan said. “Nurturing early-stage companies is just one facet of Gov. (Phil) Murphy’s vision of a more robust and equitable economy, and CCIT offers a model of what can be achieved through collaboration between the private, public and academic sectors.”

via Rutgers VR spinoff moves to NJEDA incubator – ROI-NJ


, , , , , ,

Leave a comment

[WEB SITE] Reflexion Health Launches the Next-Generation of its Virtual Exercise Rehabilitation Assistant (VERA), Further Enhancing the Physical Therapy Experience For Patients and Clinicians

 Mar. 22, 2018, 09:00 AM

SAN DIEGOMarch 22, 2018 /PRNewswire/ — Reflexion Health, the leading virtual rehabilitation therapy company, today announced the launch of its next-generation of solutions for patients and clinicians: VERAHome and VERAClinic. These improved applications build upon the company’s category-defining, FDA-cleared Virtual Exercise Rehabilitation Assistant (VERA™) and create a platform that streamlines the performance and management of post-acute care physical therapy.


“Patients using the VERA system have dramatically increased adherence to their treatment regimen, experience fewer in-person visits to the hospital or PT clinic, and rave about how much they love the on-demand convenience that saves them time, steps, and money. Clinicians, hospital systems, and payors appreciate the unprecedented transparency into the recovery of their patients as well as the enhanced efficiency that this virtual platform affords,” said Joseph Smith, M.D., Ph.D., chief executive officer, Reflexion Health. “With this next-generation set of additions to our platform, VERAHome and VERAClinic, we have taken advantage of every opportunity to use patient-specific data and user feedback to offer an entirely fresh, engaging, convenient, efficient, and effective experience for patients and treating clinicians.”

While the company’s first-generation product was designed to improve patient adherence to home therapy exercises, the new VERAHome and VERAClinic feature significant additions in education, information management and workflow to allow for more comprehensive episode management. The enhancements also include a much smaller and lighter home-based technology kit that can be shipped anywhere throughout the U.S.

For patients, VERAHome offers enhanced educational tools to help prepare them before, during, and after surgery. It also allows for self-reported check-ins to report any unusual or unanticipated questions or concerns. The addition of multi-language capability, starting with Spanish in this release, broadens its reach and application to more consumers.

For clinicians, VERAClinic provides greater data-based insights so they can quickly review the progress of their patients on predicted trajectories of recovery, and more easily identify and triage those few patients who may need additional intervention, including seamlessly incorporate telemedicine visits or even in-person evaluation in the clinic.

Reflexion Health provides an at-home and virtual physical therapy experience through technology that helps patients and clinicians more efficiently manage physical therapy from pre-habilitation through to post-acute care. VERA, the company’s proprietary digital platform, is currently in use at academic medical centers, ambulatory surgical centers, home health organizations, senior living communities, and individual patient homes across the U.S. Initial data supports that VERA is a patient-centered, data-driven, and value-based solution for post-acute care rehabilitiation.

For more information on VERAHome and VERAClinic or to sign up for a virtual demo, please visit www.reflexionhealth.com.

About Reflexion Health

Reflexion Health is a virtual rehabilitation therapy company dedicated to bringing patients evidence-based technology that helps them recover at home. VERA™, Reflexion Health’s flagship product, is an FDA-cleared Virtual Exercise Rehabilitation Assistant that is able to support and remotely monitor physical therapy exercises in real-time. VERA brings the guidance of a physical therapist into the home to coach, motivate and assess adherence to prescribed physical therapy recovery exercises. Reflexion Health is owned by Digital Health Corp, a diversified digital healthcare company. For more information visit www.reflexionhealth.com.

View original content with multimedia:http://www.prnewswire.com/news-releases/reflexion-health-launches-the-next-generation-of-its-virtual-exercise-rehabilitation-assistant-vera-further-enhancing-the-physical-therapy-experience-for-patients-and-clinicians-300617936.html

SOURCE Reflexion Health


via Reflexion Health Launches the Next-Generation of its Virtual Exercise Rehabilitation Assistant (VERA), Further Enhancing the Physical Therapy Experience For Patients and Clinicians | Markets Insider

, , , , ,

Leave a comment

[Abstract] The management of epilepsy in children and adults.

The International League Against Epilepsy has recently published a new classification of epileptic seizures and epilepsies to reflect the major scientific advances in our understanding of the epilepsies since the last formal classification 28 years ago. The classification emphasises the importance of aetiology, which allows the optimisation of management. Antiepileptic drugs (AEDs) are the main approach to epilepsy treatment and achieve seizure freedom in about two-thirds of patients. More than 15 second generation AEDs have been introduced since the 1990s, expanding opportunities to tailor treatment for each patient. However, they have not substantially altered the overall seizure-free outcomes. Epilepsy surgery is the most effective treatment for drug-resistant focal epilepsy and should be considered as soon as appropriate trials of two AEDs have failed. The success of epilepsy surgery is influenced by different factors, including epilepsy syndrome, presence and type of epileptogenic lesion, and duration of post-operative follow-up. For patients who are not eligible for epilepsy surgery or for whom surgery has failed, trials of alternative AEDs or other non-pharmacological therapies, such as the ketogenic diet and neurostimulation, may improve seizure control. Ongoing research into novel antiepileptic agents, improved techniques to optimise epilepsy surgery, and other non-pharmacological therapies fuel hope to reduce the proportion of individuals with uncontrolled seizures. With the plethora of gene discoveries in the epilepsies, “precision therapies” specifically targeting the molecular underpinnings are beginning to emerge and hold great promise for future therapeutic approaches.


via The management of epilepsy in children and adults. – Abstract – Europe PMC

, , , , , ,

Leave a comment

[ARTICLE] Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction – Full Text

Functional electrical stimulation (FES) is important in gait rehabilitation for patients with dropfoot. Since there are time-varying velocities during FES-assisted walking, it is difficult to achieve a good movement performance during walking. To account for the time-varying walking velocities, seven poststroke subjects were recruited and fuzzy logic control and a linear model were applied in FES-assisted walking to enable intensity- and duration-adaptive stimulation (IDAS) for poststroke subjects with dropfoot. In this study, the performance of IDAS was evaluated using kinematic data, and was compared with the performance under no stimulation (NS), FES-assisted walking triggered by heel-off stimulation (HOS), and speed-adaptive stimulation. A larger maximum ankle dorsiflexion angle in the IDAS condition than those in other conditions was observed. The ankle plantar flexion angle in the IDAS condition was similar to that of normal walking. Improvement in the maximum ankle dorsiflexion and plantar flexion angles in the IDAS condition could be attributed to having the appropriate stimulation intensity and duration. In summary, the intensity- and duration-adaptive controller can attain better movement performance and may have great potential in future clinical applications.


Stroke is a leading cause of disability in the lower limb, such as dropfoot (1). A typical cause of dropfoot is muscle weakness, which results in a limited ability to lift the foot voluntarily and an increased risk of falls (24). Great effort is made toward the recovery of walking ability for poststroke patients with dropfoot, such as ankle–foot orthoses (5), physical therapy (6), and rehabilitation robot (7).

Functional electrical stimulation (FES) is a representative intervention to correct dropfoot and to generate foot lift during walking (89). The electrical pulses were implemented via a pair of electrodes to activate the tibialis anterior (TA) muscle and to increase the ankle dorsiflexion angle. The footswitch or manual switch was used to time the FES-assisted hemiplegic walking in previous studies, while they were only based on open-loop architectures. The output parameters of the FES required repeated manual re-setting and could not achieve an adaptive adjustment during walking (1011). Some researchers have found that the maximum ankle dorsiflexion angle by using FES with a certain stimulation intensity had individual differences due to the varying muscle tone and residual voluntary muscle activity and varied during gait cycles (1213). If the stimulation intensity was set to a constant value during the whole gait cycle, the result could be that the muscle fatigues rapidly (14). Another important problem was that the FES using fixed stimulation duration from the heel-off event to the heel-strike event would affect the ankle plantar flexion angle (1516).

Closed-loop control was an effective way to adjust the stimulation parameters automatically, and several control techniques have been proposed (1718). Negård et al. applied a PI controller to regulate the stimulation intensity and obtain the optimal ankle dorsiflexion angle during the swing phase (19). A similar controller was also used in Benedict et al.’s study, and the controller was tested in simulation experiments (20). Cho et al. used a brain–computer interface to detect a patient’s motion imagery in real time and used this information to control the output of the FES (21). Laursen et al. used the electromechanical gait trainer Lokomat combined with FES to correct the foot drop problems for patients, and there were significant improvements in the maximum ankle dorsiflexion angles compared to the pre-training evaluations (22). There were also several studies that used trajectory tracking control to regulate the output and regulate the pulse width and pulse amplitude of the stimulation (23). The module was based on an adaptive fuzzy terminal sliding mode control and fuzzy logic control (FLC) to determine the stimulation output and force the ankle joint to track the reference trajectories. In their study, FES applied to TA was triggered before the heel-off event. Because the TA activation has been proven to occur after the heel-off event and the duration of the TA activation changed with the walking speed (2425), a time interval should be implemented after the heel-off event (26). In Thomas et al.’s study, the ankle angle trajectory of the paretic foot was modulated by an iterative learning control method to achieve the desired foot pitch angles (27). The non-linear relationship between the FES settings and the ankle angle influenced the responses of the ankle motion (28). FLC represents a promising technology to handle the non-linearity and uncertainty without the need for a mathematical model of the plant, which has been widely used in robotic control (29). Ibrahim et al. used FLC to regulate the stimulation intensity of the FES (30), and the same control was used on the regulation of the stimulation duration to obtain a maximum knee extension angle in Watanabe et al.’s study (31). However, most closed-loop controls adjust only one stimulation parameter, and few FES controls considered both varying the stimulation intensity and duration while accounting for the changing walking velocities.

In the present study, an intensity- and duration-adaptive FES was established, the FLC and a linear model were used to regulate the stimulation intensity and duration, respectively. The performance of the intensity- and duration-adaptive stimulation (IDAS) was compared with those of stimulation triggered by no stimulation (NS), heel-off stimulation (HOS), and speed-adaptive stimulation (SAS) for poststroke patients walking on a treadmill. The objective of this study is to find an appropriate FES control strategy to realize a more adaptive ankle joint motion for poststroke subjects.[…]


Continue —> Frontiers | Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction | Neurology

Figure 4(A) Ankle angles during the gait cycle for one poststroke subject at free speed; (B) knee angles during the gait cycle for the same poststroke subject at free speed.

, , , , , , , ,

Leave a comment

[WEB SITE] Can MRI Brain Scans Help Us Understand Epilepsy?


A massive meta-analysis of global MRI imaging data on epilepsy patients seeks to clarify a complicated and mysterious neurological disorder.

Epilepsy is a neurological disorder characterized by seizures, which can vary from mild and almost undetectable to severe, featuring vigorous shaking. Almost 40 million people worldwide are affected by epilepsy. Epileptic seizures are caused by an abnormally high level of activity in nerve cells in the brain. A small number of cases have been tied to a genetic defect, and major trauma to the brain (such as an injury or stroke) can also induce seizures. However, for the majority of cases, the underlying cause of epilepsy is not known. In many instances, epilepsy can be treated with the use of anti-convulsant medication. Some people will experience an improvement in their symptoms to the point of no longer requiring medication, while others will not respond to medication at all. The variability of the disease with regards to physiology and progression makes it difficult to accurately diagnose.

How Does Epilepsy Affect the Brain?

There are multiple types of epilepsies, some more common than others, which affect different parts of the brain cortex. The disorder has been studied by using techniques such as magnetic resonance imaging (MRI), and analyses of brain tissue. The latter requires post-mortem collection of tissue, as biopsies are not routinely performed on living patients’ brains. A brain scan via MRI imaging can provide detail about pathological markers of epilepsy, but the massive amount of data collected worldwide by imaging has not yet been consolidated and analyzed in a robust manner. Gaining an understanding of distinct or shared disease markers for different forms of epilepsy could help clinicians identify targets for therapy and increase the personalization of treatment.

The ENIGMA Study

A recent study published in the journal BRAIN represents the largest neuroimaging analysis of epilepsy conducted to date.This study, called ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis)summarizes contributions from 24 research centers across 14 countries in Europe, North and South America, Asia, and Australia. Similar wide-ranging studies have revealed structural brain abnormalities in other neurological conditions such as schizophrenia, depression, and obsessive-compulsive disorder. The researchers had several goals in putting this meta-analysis together:

  1. To look at distinct types of epilepsy to see whether they share similar structural abnormalities of the brain.
  2. To analyze a well-known specific type of epilepsy, mesial temporal lobe epilepsy (MTLE) for differences between people afflicted with this disorder on different sides of the brain.
  3. To analyze idiopathic generalized epilepsies (IGE), which are thought to have a genetic component to their cause and aren’t often detectable via MRI.

The researchers compiled imaging data from 2,149 people with epilepsy and 1,727 healthy control subjects. The large sample size allowed them to perform high-powered statistical analysis of the data.

For analysis (1), the results showed that a diverse array of epilepsies showed common structural anomalies across several different regions of the brain. This suggested that distinct disease types share a common neuroanatomical signature.

For analysis (2), they found that people with mesial temporal lobe epilepsy on the right side of the hippocampus did not experience damage to the left side, and vice-versa. However, somewhat unexpectedly, they saw that damage extended to areas outside the hippocampus, suggesting that even a region-specific disorder like mesial temporal lobe epilepsy may be a network disease.

In analysis (3), the researchers found that contrary to many reports of a “normal” MRI for patients with idiopathic generalized epilepsy, several structural irregularities were observable over a large number of samples. These included reduced brain volume and thickness in several regions.

One Step Closer to Understanding Epilepsy

The authors noted some limitations to their study, such as the fact that all results were derived from cross-sectional data, meaning that it was not possible to determine whether certain features were the cause of severe brain damage at one point in time, or whether they were the product of progressive trauma. In addition, this study could not account for the possible contribution of other factors, such as medications, seizure type and frequency, and disease severity. However, this wide-scale meta-analysis represents an important step towards understanding how different types of epilepsies affect the brain, and hopefully can lead to more personalized and effective medical interventions.

Written by Adriano Vissa, PhD

Reference: Whelan CD, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018; 141(2):391-408


via Can MRI Brain Scans Help Us Understand Epilepsy? – Medical News Bulletin | Health News and Medical Research

, , , , , , , , , ,

Leave a comment

[VIDEO] This wearable brain scanner could transform our understanding of how neurons ‘talk’

By Michael Price Mar. 21, 2018 
Mapping the chattering of neurons is a tricky undertaking. Arguably the best tool for eavesdropping in real time—by detecting the weak magnetic fields emitted by communicating neurons—comes with a huge caveat: Participants must keep their heads absolutely still inside an enormous scanner. That makes the method, magnetoencephalography (MEG), a no-go for young children, and it nixes studying brain behavior while people are moving. Now, scientists have developed the first device to solve those problems, a masklike instrument that can transmit brain signals even when the wearer is moving.

Despite some limits on how much of the brain’s activity can be mapped at once, neuroscientists are excited. “This is remarkable,” says MEG researcher Matti Hamalainen of Massachusetts General Hospital in Boston, who wasn’t involved in the study. “MEG is moving forward conceptually into a new era.”

When neurons interact with one another, their weak electrical current generates a tiny magnetic field. To measure it with conventional MEG, scientists have people stick their heads inside a scanner like an “old-style hair dryer at a salon,” explains physicist Richard Bowtell of the University of Nottingham in the United Kingdom. Inside the scanner are superconductors, loops of ultrasensitive magnetic sensors that need to be kept extremely cold by liquid helium.

It’s an incredibly powerful technology, Bowtell says, but a person moving just 5 millimeters will ruin any attempt to read their brain activity. To study the brain during motion-related tasks, MEG researchers have devised ingenious ways to simulate movement in virtual reality.

To work around such workarounds, Bowtell’s team created a wearable 3D-printed mask that, instead of using superconductors as sensors, relies on 13 small glass cubes filled with vaporized rubidium. These optically pumped magnetometers (OPMs) get to work when a laser pulses through the vapor, lining up the atoms in its path. When neural current from the brain generates a small magnetic field, it knocks the atoms out of formation. A sensor on the other side measures fluctuations in the light from the laser to paint a map of brain activity.

Elena Boto, a physicist at the University of Nottingham, was the first to try the mask out. To compare it to a conventional scanner, she performed a series of tasks—including bending and pointing her finger, drinking from a cup, and bouncing a ball on a paddle—while using both devices. Even though her head bobbed to and fro in the mask, the brain activity recorded was practically identical to that of the fixed scanner, the researchers report today in Nature.

Some challenges remain. To counteract interference from Earth’s magnetic field, researchers had to set up two large panels with magnetic coils on either side of the mask, limiting Boto’s range of motion. Expanding the range of motion to allow for something like walking is a technically difficult chore.

But the biggest hurdle is cost. The OPM sensors, designed and manufactured by QuSpin of Louisville, Colorado, are expensive, each costing about $7000. The 13 sensors in the current mask could target only one region of the brain at a time—many dozens more would be needed to give scientists full-brain coverage. The cost of doing that, nearly $1 million, would be prohibitively expensive for many researchers, Bowtell says, though he expects the price to drop as the technology matures.

But Timothy Roberts, a neuroradiologist who works with children with autism at the Children’s Hospital of Philadelphia in Pennsylvania, says MEG masks like this one would be worth it. Neuroscientists could one day use them to track early brain development or to record brain signals in adults with movement disorders like Parkinson’s disease. Or, says Roberts, to finally get a good look at the brain activity of his often fidgety patients. “Asking a child with autism to sit still is not very easy. Asking a toddler to sit still is impossible. … I think this work is transformative.”

via This wearable brain scanner could transform our understanding of how neurons ‘talk’ | Science | AAAS

, , , , , , ,

Leave a comment

[BOOK] White Book on Physical and Rehabilitation Medicine in Europe. Introductions, Executive Summary, and Methodology. – Full Text PDF

The White Book (WB) of Physical and Rehabilitation Medicine (PRM) in Europe is produced by the 4 EuropeanPRM Bodies (European Academy of Rehabilitation Medicine – EARM, European Society of PRM – ESPRM, European Union of Medical Specialists – PRM Section, European College of PRM-ECPRM served by the European Union of Medical Specialists-PRM Board) and constitutes the reference book for PRM physicians in Europe. It has now reached its third edition; the first was published in 1989 and the second in 2006/2007. The WB has multiple purposes, including providing a unifying framework for European countries, to inform decision-makers on European and national level, to offer educational material for PRM trainees and physicians and information about PRM to the medical community, other rehabilitation professionals and the public. The WB states the importance of PRM, a primary medical specialty that is present all over Europe, with a specific corpus disciplinae, a common background and history throughout Europe. PRM is internationally recognized and a partner of major international bodies, including the World Health Organization (WHO). PRM activities are strongly based on the documents of the United Nations (UN) and WHO, such as the Convention of the Rights of Persons with Disabilities (2006), the World Report on Disability (2011), the WHO Global Disability Action Plan 2014-2021 (2014) and the WHO initiative “Rehabilitation 2030: a call for action” (2017). The WB is organized in 4 sections, 11 chapters and some appendices. The WB starts with basic definitions and concepts of PRM and continues with why rehabilitation is needed by individuals and society. Rehabilitation focuses not only on health conditions but also on functioning. Accordingly, PRM is the medical specialty that strives to improve functioning of people with a health condition or experiencing disability. The fundamentals of PRM, the history of the PRM specialty, and the structure and activities of PRM organizations in Europe are presented, followed by a thorough presentation of the practice of PRM, i.e. knowledge and skills of PRM physicians, the clinical field of competence of PRM, the place of the PRM specialty in the healthcare system and society, education and continuous professional development of PRM physicians, specificities and challenges of science and research in PRM. The WB concludes with the way forward for the specialty: challenges and perspectives for the future of PRM.

via White Book on Physical and Rehabilitation Medicine in Europe. Introductions, Executive Summary,… – Abstract – Europe PMC


, , ,

Leave a comment

[White Book] White Book on Physical and Rehabilitation Medicine (PRM) in Europe. Chapter 9. Education and continuous professional development: shaping the future of PRM – Full Text PDF

In the context of the White Book of Physical and Rehabilitation Medicine (PRM), this paper deals with the education of PRM physicians in Europe. To acquire the wide field of competence needed, specialists in Physical and Rehabilitation Medicine have to undergo a well organised and appropriately structured training of adequate duration. In fact they are required to develop not only medical knowledge, but also competence in patient care, specific procedural skills, and attitudes towards interpersonal relationship and communication, profound understanding of the main principles of medical ethics and public health, ability to apply policies of care and prevention for disabled people, capacity to master strategies for reintegration of disabled people into society, apply principles of quality assurance and promote a practice-based continuous professional development. This paper provides updated detailed information about the education and training of specialists, delivers recommendations concerning the standards required at a European level, in agreement with the UEMS rules of creating a Common Training Framework, that consists of a common set of knowledge, skills and competencies for postgraduate training. The role of the European PRM Board is highlighted as a body aimed at ensuring the highest standards of medical training and health care across Europe and the harmonization of PRM physicians’ qualifications. To this scope, the theoretical knowledge necessary for the practice of PRM specialty and the core competencies (training outcomes) to be achieved at the end of training have been established and the postgraduate PRM core curriculum has been added. Undergraduate training of medical students is also focused, being considered a mandatory element for the growth of both PRM specialty and the medical community as a whole, mainly in front of the future challenges of the ageing population and the increase of disability in our continent. Finally, the problems of continuing professional development and medical education are faced in a PRM European perspective, and the role of the European Accreditation Council of Continuous Medical Education (EACCME) of UEMS is outlined.

Download Full Text PDF

via White Book on Physical and Rehabilitation Medicine (PRM) in Europe. Chapter 9. Education and continuous professional development: shaping the future of PRM – European Journal of Physical and Rehabilitation Medicine 2018 April;54(2):279-86 – Minerva Medica – Journals

, , , , , , , ,

Leave a comment

[Article in Press] Home exercise programs made effortless using the PhysioTherapy eXercises patient app – Full Text

PhysioTherapy eXercises website: www.physiotherapyexercises.com

PhysioTherapy eXercises is a publicly available website, created by Harvey, Messenger, Glinsky, Pattie and a collaboration of physiotherapists. It was designed as a resource for creating and distributing home exercise programs. The website has a database of images, videos and instructions for over 1000 exercises focusing on impairments (strength, balance, range of motion, and cardiovascular fitness), and activities (reaching and manipulation, sit to stand, transfers, and mobility), and is available in 13 different languages. The exercises are evidence-based and include exercises for children through to the elderly, as well as exercises targeting specific populations, such as acute and degenerative neurological conditions, and musculoskeletal conditions, including whiplash and hand injuries. The Physiotherapy Exercises App is one feature of this web-based software and is the focus of this review.

The Physiotherapy Exercises App is free and can be used on both Apple and Android tablets and phones. The app is designed for patients to use, and allows them to access their prescribed home exercise program on their devices, record their progress online, and share this information remotely with their therapist. A recent randomised, controlled trial reported that using the Physiotherapy Exercises App increased adherence to home exercise programs when compared with paper-based methods.1

The therapist designs a home exercise program by selecting relevant exercises from the database and scheduling the frequency and duration of the exercises using the PhysioTherapy eXercises website. The patient then accesses and installs the Physiotherapy Exercises App via a link embedded in an email or smart phone text message that is sent from the website. Once the app is installed, patients have direct access to their home exercise program. The app allows patients to view their program, record completion of each exercise, and provide feedback to the therapist via a ‘notes’ function. The therapist has the ability to remotely monitor the patient’s exercise adherence, review notes recorded by the patient, and adjust the program as required by logging onto the website. Therapists can also receive a notification via an email when a patient’s adherence has decreased below a set threshold, which can be adjusted by the therapist for each patient.

Ease of use

Overall, the design of the Physiotherapy Exercises App is straightforward and the basic features are easy to use. My experience suggests that patients who already use the Internet and/or mobile devices are willing to use the Physiotherapy Exercises App, and use it successfully. Patients with limited technology experience are able to use the app successfully if provided with assistance to download the app and are given a demonstration of how to use it. Once the app has been downloaded, patients have two options: view the exercises that are to be completed on that day via the home screen (Figure 1A); or touch the screen to access the illustration, aims, instructions and dosage for each exercise (Figure 1B). Similarly, recording of the completed exercises can be done by ticking the ‘done all’ box on the home screen or ticking a box on each screen for an individual exercise. Patients can record completing an exercise even if it is not scheduled for a particular day. Notes can be added on each screen that details an individual exercise.

Figure 1

Enter a caption

From the perspective of therapist use, the home exercise program is prescribed and monitored by logging directly onto the website. The website has an extensive help section to assist the therapist if required.

Strengths and limitations

The Physiotherapy Exercises App is very well designed for clinical use. One of the key strengths is that patients can only access their home exercise program once it has been prescribed to them by a therapist, which ensures that patients complete exercises appropriate for their rehabilitation. Another valuable feature is that once the Physiotherapy Exercises App has been downloaded, there is no requirement for the patient to login or remember passwords. Other strengths are that the interface is easy to understand, and patients receive detailed information about each exercise, including the aims of the exercise, illustrations, instructions on how to complete the exercise, dosage, precautions, and progressions. Furthermore, therapists have the ability to select what information the patient views on the app and/or modify the instructions and information if required. When the home exercise program is updated online, all changes occur in real time.

Limitations of the Physiotherapy Exercises App are that few patients use all the features of the app, for example the notes function. My experience using the app with people who have Parkinson’s disease is that most people primarily use the app to view and record completion of their home exercise programs. Further encouragement by the therapist is necessary to ensure regular use of the notes function, if desired. At present, patients do not receive an alert via the Physiotherapy Exercises App that their program has been updated; it simply changes on the home screen. Consequently, if the program is updated independently of a consultation, an additional form of communication may be required to inform the patient of changes made.


Overall, the Physiotherapy Exercises App is an excellent and easy to use clinical resource. Increasing the use of devices to provide home exercise programs directly to patients is highly desirable and resource-efficient. It gives patients access to their home exercise program at all times, facilitates self-management, and, importantly, increases communication between the patient and therapist. The advantages of the Physiotherapy Exercises Appare that it is freely available, has an extensive range of exercises covering both musculoskeletal and neurological conditions, and is easy to use for both therapist and patient. Combined with the ability to remotely monitor patients’ adherence to the home exercise program, the Physiotherapy Exercises App has been a valuable addition to my clinical practice and role as a clinical educator.


  1. Lambert, T. et al. J Physiother201763161–167

View in Article   Abstract   Full Text   Full Text PDF   PubMed   Scopus (1)  Google Scholar


via Home exercise programs made effortless using the PhysioTherapy eXercises patient app – Journal of Physiotherapy

, , , , , , ,

Leave a comment

[Proceeding] Mobile, Exercise-agnostic, Sensor-based Serious Games for Physical Rehabilitation at Home – Full Text PDF

Serious games can improve the physical rehabilitation of patients with different conditions. By monitoring exercises and offering feedback, serious games promote the correct execution of exercises outside the clinic. Nevertheless, existing serious games are limited to specific exercises, which reduces their practical impact. This paper describes the design of three exercise-agnostic games, that can be used for a multitude of rehabilitation scenarios. The developed games are displayed on a smartphone and are controlled by a wearable device, containing inertial and electromyography sensors. Results from a preliminary evaluation with 10 users are discussed, together with plans for future work.

Full Text PDF

via Mobile, Exercise-agnostic, Sensor-based Serious Games for Physical Rehabilitation at Home

, , , , , , ,

Leave a comment

%d bloggers like this: