[Abstract] Midicine: Using MIDI (Musical Instrument Digital Interface) in Medicine for Treating Patients who experienced a Stroke.

MIDI (Musical Instrument Digital Interface) is a connectivity standard that musicians use to hook together musical instruments (such as keyboards and synthesizers) and computer equipment. By applying MIDI-technology the experience induced by different types of software can create an inner motivation for stroke patients to go on the successful healing process.

The aim of writing the review is to determine the relevance and importance of applying MIDI applications in treatment of stroke patients. The research questions were: 1. What kind of interventions can be accomplished by using MIDI applications in treatment of strokes patients? 2. What are the outcome and result of applying MIDI instruments during the treatment of stroke patients? 3. What type of MIDI applications proved to be effective in the treatment of stroke patients?

Three databases (PubMed, Scopus, Web of Science) were systematically searched for relevant data. The papers were selected by focusing on key words: midi, musical instrument digital interface, stroke, cerebral accident, seizure.

Finally ten articles were selected and represented by focusing mainly on the type of intervention, treatment duration, outcomes and instruments used with a total of N = 219 treatment and N = 147 control patients.

The conclusion is that the range of possible improvements provided by proper application of MIDI instruments is rather wide: from hand rehabilitation through limb and gait movement optimization till improving overall quality of life of patients. MIDI technology can be suggested because of two main reasons: 1. adjustability and flexibility of instruments, 2. it can improve the motivation of patients by gamifying the treatments. Further research is needed to discover more possibilities by applying the opportunities offered by the wide range of MIDI applications. The suggested name for such intervention is Midicine.


via Midicine: Using MIDI (Musical Instrument Digital Interface) in Medicine for Treating Patients who experienced a Stroke – Review article | Mentálhigiéné és Pszichoszomatika


, , ,

Leave a comment

[Abstract] MaLT – Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.



The functional connectivity and structural proximity of elements of the language and motor systems result in frequent co-morbidity post brain injury. Although rehabilitation services are becoming increasingly multidisciplinary and “integrated”, treatment for language and motor functions often occurs in isolation. Thus, behavioural therapies which promote neural reorganisation do not reflect the high intersystem connectivity of the neurologically intact brain. As such, there is a pressing need for rehabilitation tools which better reflect and target the impaired cognitive networks.


The objective of this research is to develop a combined high dosage therapy tool for language and motor rehabilitation. The rehabilitation therapy tool developed, MaLT (Motor and Language Therapy), comprises a suite of computer games targeting both language and motor therapy that use the Kinect sensor as an interaction device. The games developed are intended for use in the home environment over prolonged periods of time. In order to track patients’ engagement with the games and their rehabilitation progress, the game records patient performance data for the therapist to interrogate.


MaLT incorporates Kinect-based games, a database of objects and language parameters, and a reporting tool for therapists. Games have been developed that target four major language therapy tasks involving single word comprehension, initial phoneme identification, rhyme identification and a naming task. These tasks have 8 levels each increasing in difficulty. A database of 750 objects is used to programmatically generate appropriate questions for the game, providing both targeted therapy and unique gameplay every time. The design of the games has been informed by therapists and by discussions with a Public Patient Involvement (PPI) group.


Pilot MaLT trials have been conducted with three stroke survivors for the duration of 6 to 8 weeks. Patients’ performance is monitored through MaLT’s reporting facility presented as graphs plotted from patient game data. Performance indicators include reaction time, accuracy, number of incorrect responses and hand use. The resultant games have also been tested by the PPI with a positive response and further suggestions for future modifications made.


MaLT provides a tool that innovatively combines motor and language therapy for high dosage rehabilitation in the home. It has demonstrated that motion sensor technology can be successfully combined with a language therapy task to target both upper limb and linguistic impairment in patients following brain injury. The initial studies on stroke survivors have demonstrated that the combined therapy approach is viable and the outputs of this study will inform planned larger scale future trials.



via MaLT – Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect. – PubMed – NCBI

, , , , , , , , , , , , ,

Leave a comment

[ARTICLE] Application of P300 Event-Related Potential in Brain-Computer Interface – Full Text


The primary purpose of this chapter is to demonstrate one of the applications of P300 event-related potential (ERP), i.e., brain-computer interface (BCI). Researchers and students will find the chapter appealing with a preliminary description of P300 ERP. This chapter also appreciates the importance and advantages of noninvasive ERP technique. In noninvasive BCI, the P300 ERPs are extracted from brain electrical activities [electroencephalogram (EEG)] as a signature of the underlying electrophysiological mechanism of brain responses to the external or internal changes and events. As the chapter proceeds, topics are covered on more relevant scholarly works about challenges and new directions in P300 BCI. Along with these, articles with the references on the advancement of this technique will be presented to ensure that the scholarly reviews are accessible to people who are new to this field. To enhance fundamental understanding, stimulation as well as signal processing methods will be discussed from some novel works with a comparison of the associated results. This chapter will meet the need for a concise and practical description of basic, as well as advanced P300 ERP techniques, which is suitable for a broad range of researchers extending from today’s novice to an experienced cognitive researcher.

1. Introduction

Human brain is the most complex organ of the body and it is at the center of the driving block of human nervous system. In fact, more than 100 billion nerve cells are interconnected to build the functionality of human brain. Such a complicated architecture allows the brain to control the body as well as carry out the executive functions, such as making reasons, processing thoughts, and planning for next tasks. Interestingly, electrophysiology and hemodynamic response are the two techniques that have been used to study this complex organ to understand the mechanism the brain applies to finish works. Typically, electrophysiological measurements are performed by placing electrodes or sensors on the biological tissue [12]. In neuroscience and neuro-engineering, the electrophysiological techniques are used for studying electrical properties by measuring the electrical activities of neurons in the form of electroencephalogram (EEG). EEG may be measured by two different approaches: invasive and noninvasive. Invasive procedures need a surgery to place the EEG sensor deep under the scalp. In comparison, noninvasive procedure places the electrodes on the scalp. One of the ways to study the brain is to stimulate it by presenting a paradigm.

The event-related potential (ERP) was first reported by Sutton [3]. An ERP is an electrophysiological response or electrocortical potentials triggered by a stimulation and firing of neurons. A specific psychological event or a sensor can be employed to generate the stimulation. In general, visual, auditory, and tactile are three major sources of ERP stimulation. For instance, ERP can be elicited by a surprise appearance of a character on a visual screen, or a “novel” tone presented over earphones, or by sudden pressing of a button by the subject, including myriad of other events. Presented stimulus generates a detectable but time-delayed electrical wave in EEG. EEG is recorded starting from the time of presenting the stimulus to the time when EEG settles down. Depending on the necessity, simple detection method such as ensemble averaging or advanced processes such as linear discriminant analysis or support vector machine algorithms are applied on EEG to measure the ERP. This chapter discusses the application of ERP in brain-computer interface (BCI) where P300 wave is of particular interest. ERP is time-locked to an event and appears as a series of positive and negative voltage fluctuation in the EEG that is referred to as P300 components.

2. P300 waveform

P300 is a form of visually evoked potential (VEP) and P300 ERP is embedded within the EEG signal recordable from the scalp of human brain. Depending on the components appearance following the eliciting event, the P300 can be divided into exogenous and endogenous. Early (exogenous) components are distributed over first 150 ms, whereas longer latency (endogenous) components elicit after 150 ms. Although the P300 positive deflection occurs in the EEG about 300 ms after an eliciting stimulus is delivered (which is the major reason it is termed as P300), latency can be within the range from 250 to 750 ms.

Although the actual origin of the P300 is still unclear, it is suggested that P300 is elicited by the decision making or learning that a rare event has occurred, and some things appear to be learned if and only if they are surprising [4]. The variable latency is associated with the difficulty of the decision making. In addition, the largest P300 responses are obtained over parietal zone of human head while it is attenuated with the electrodes that are gradually placed farther from this area.

To generate the P300 ERP, three different types of paradigms are being used: (1) single-stimulus, (2) oddball, and (3) three-stimulus paradigm. In each case, the subject is instructed to follow the occurrence of the target by pressing a button or mentally counting [5]. Figure 1 presents these paradigms [56]. The single-stimulus paradigm irregularly presents just one type of stimuli or target with zero occurrence of any other type of target. A typical oddball paradigm can be presented to the subject with a computer screen, a group of light-emitting diodes (LEDs), or other medium to generate a sequence of events that can be categorized into two classes: frequently presented standard (nontarget or irrelevant) and rarely presented target stimuli [7]. In an oddball paradigm, two events are presented with different probabilities in a random order, but only the irregular and rare event (the oddball event) embosses the P300 peak into the EEG about 300 ms after the stimulus onset. The three-stimulus paradigm is a modified oddball task which includes nontarget distractor (infrequent nontarget) stimuli in addition to target and standard stimuli. The distractor elicits P3a which is large over the frontal/central area [8]. In contrast, target elicits a P3b (P300), which is maximum over the parietal electrode sites. Though P3a and P3b are subcomponents of P300, P3a is dominant in the frontal/central lobe with a shorter latency and habituates faster [9].


Schematic account of three paradigms: single-stimulus (top), oddball (middle), and three-stimulus (bottom). Elicited ERP is presented at right (adapted from Ref. [5]).


Continue —>  Application of P300 Event-Related Potential in Brain-Computer Interface | InTechOpen

, , , , , ,

Leave a comment

[ARTICLE] Study of Repetitive Movements Induced Oscillatory Activities in Healthy Subjects and Chronic Stroke Patients – Full Text


Repetitive movements at a constant rate require the integration of internal time counting and motor neural networks. Previous studies have proved that humans can follow short durations automatically (automatic timing) but require more cognitive efforts to track or estimate long durations. In this study, we studied sensorimotor oscillatory activities in healthy subjects and chronic stroke patients when subjects were performing repetitive finger movements. We found the movement-modulated changes in alpha and beta oscillatory activities were decreased with the increase of movement rates in finger lifting of healthy subjects and the non-paretic hands in stroke patients, whereas no difference was found in the paretic-hand movements at different movement rates in stroke patients. The significant difference in oscillatory activities between movements of non-paretic hands and paretic hands could imply the requirement of higher cognitive efforts to perform fast repetitive movements in paretic hands. The sensorimotor oscillatory response in fast repetitive movements could be a possible indicator to probe the recovery of motor function in stroke patients.


Timing in the brain has its important role in many aspects, such as speech perception, speech production, reading, attention, memory, cognitive processing, decision-making, and motor coordination1. Especially, internal time counting is crucial for motor control in our daily life activities. The processing of time estimation for movements has been studied in many literatures2. Morillon et al. postulated the time estimation in human motor system as a dual system, which can track a short duration automatically (automatic timing) but requires more cognitive demands to track a long duration by a so-called default mode network (DMN)3. Poppel E. studied the capability of time estimation in a stimulus reproduction task from 0.5 s to 7 s, and found movements become temporally irregular for inter-movement interval (IMI) above 3 s which indicated precisely control of movements with IMIs longer than 3 s is not possible4. Though these literatures have shown great difference between movements in short and long durations in healthy subjects, nevertheless, the study of brain responses induced by rapid movements in patients with motor neurological disorder was seldom reported.

Several imaging modalities have been developed to quantify motor response in human brain, including EEG, MEG, fMRI, TMS, etc.5,6. The EEG, which is the tool used most widely, has the advantages of low-cost, easy preparation, and its superiority of high temporal resolution to measure fast changes of neural oscillatory activities. Neural oscillatory activities in human brain can be either phase-locked or non-phase-locked reactive to external or internal stimuli. These oscillatory activities usually exist in specific frequency bands and spatial locations. Event-related non-phase-locked neural activities represent power changes, either enhanced or suppressed relative to baseline activities. The power changes in event-related activities can be caused by the decrease or increase in synchrony of the underlying activated neuronal populations. Pfurtscheller et al.7 studied the Mu-rhythm changes in discrete voluntary finger movements, and found oscillatory activities were suppressed, started about 1.5 s preceding movement onsets, followed by post-movement power rebound, occurred around 0.7 s~1 s after movement offsets7. The power suppression was referred to as event-related desynchronization (ERD), reflecting the motor planning and preparation of initialization a movement, whereas the post-movement power rebound was referred to as event-related synchronization (ERS), indicating the motor inhibition or idling of motor neural network. Other EEG techniques, such as temporal-spectral evolution (TSE)8, amplitude modulation (AM)9, autoregression model method (AR)10, etc., were also developed to quantify task-specific brain oscillatory activity. These signal processing tools enable researchers to quantify the neural activities under different experimental manipulations and provide evidences for diagnosing clinical neurological diseases11,12,13.

The difference of brain oscillatory activities between healthy and stroke patients has been investigated in some studies. Rossiter et al. studied the movement-related beta desynchronization (MRBD) in healthy and middle cerebral artery (MCA) stroke patients14. They found reduced MRBD when patients were performing visually-cued grip task with their affected hand, compared to the MRBD obtained from healthy subjects. Giaquinto et al. followed up the changes of resting EEG in different frequency bands over six months in MCA stroke patients15, and they observed the amplitudes of movement-related Mu – rhythm improved significantly in the first three months and reached stable states in six months after stroke. Tecchio et al. studied the rhythmic brain activity at resting states in mono-hemispheric MCA stoke patients16. They found both the values of spectral power in affected and unaffected hemispheres were increased over Rolandic areas. Stepien et al. studied alpha ERD in stroke patients with cortical and subcortical lesions in performing a visually-cued button press task17. They found suppressed ERD in affected hemisphere when moving paretic hand, while no suppression in alpha ERD was found in the affected hemisphere when moving non-paretic hand. These studies measured oscillatory activities of sensorimotor Mu rhythm in visual selection task or slow self-paced voluntary movement (IMI ≥ 7 s). Oscillatory activity induced by fast repetitive movement in stroke patient was not studied. Since fast simple movement has been reported to have strong coupled connections among motor-related cortices18, study of cortical oscillatory activity in rapid simple movements could be crucial for the understanding of motor function in stroke patients.

Fast repetitive movement with short IMI recruits several motor-related areas in human brain, including primary motor cortex (M1), premotor cortex, supplementary motor cortex, cingulate cortex, basal ganglia, and thalamus19. Studies in healthy subjects have shown clear difference between the oscillatory activities induced by slow and fast repetitive movements. Wu et al. recorded the post-movement beta rebound (PMBD) in healthy subjects and observed that the PMBD was suppressed with the decrease of IMI in repetitive finger-lifting movements19. Erbil and Ungan19 investigated EEG alpha and beta oscillatory activities in repetitive extension-flexion finger movements over rolandic regions. Sustained suppression in Mu rhythm was observed during continuous movements which indicated that continuous movements are conducted through neural processing distinct from discrete movements. Bortoletto and Cunnington measured the fMRI responses of repetitive movements, and compared the results with another two finger movements with highly cognitive demands, one was a complicated sequencing task and the other was a timing task20. They found neural activities in lateral prefrontal regions were participated differently in the three tasks, owing to the different levels of cognitive efforts involved in the three tasks. In this study, we aimed to study the oscillatory activities induced by simple repetitive movements in healthy subjects and chronic stroke patients. The difference of oscillatory activities between stroke patients and healthy subjects might be a potential feature to evaluate the recovery of motor function in stroke patients.[…]

Continue —> Study of Repetitive Movements Induced Oscillatory Activities in Healthy Subjects and Chronic Stroke Patients | Scientific Reports

Figure 1

Figure 1: Demonstration of signal processing for quantifying event-related oscillatory response in subject H1.

, , , , ,

Leave a comment

[WEB SITE] O&P’s Virtual Present and Future.


Virtual reality is a potentially important tool in patient rehabilitation and training, as well as prosthetic design.

O&P News, December 2017

Despite technological advances in prosthetics, a major problem within the O&P profession remains that a large percentage of amputees still abandon or reject their prosthesis due to lack or training or knowledge of their device, according to Ashley D. Knight, PhD.

A biomedical engineer research associate at the Center for Assistive, Rehabilitation and Robotics Technologies at the University of South Florida, Knight told O&P Newsthat untrained amputees will adjust their bodies in awkward or compensatory motions rather than reposition a joint position while performing a task with a prosthetic device. This causes misuse and improper function, which has been shown to lead to significant injuries.


However, according to Knight, one possible way to address this is by incorporating virtual reality into rehabilitation and prosthesis training.

“A successful training and rehabilitation program would allow amputees to improve their ability to perform with optimal motion and use all prosthetic control capabilities,” Knight said. “Using virtual reality for training and rehabilitation could allow for a successful controlled, individualized, progressive regime, while providing expertise care to patients both in a clinic and at home.”

Jeff Erenstone, CPO, founder and CEO of Create O&P, uses modification software in virtual reality to make digital plaster models.

Jeff Erenstone, CPO, founder and CEO of Create O&P, uses modification software in virtual reality to make digital plaster models.
Source: Gary Ziele/Create O&P.

Advanced stick figures

According to Knight, whose dissertation, “The Development of a Platform Interface with the Use of Virtual Reality to Enhance,” investigated the use of virtual reality in prosthetic training, the advantage of using virtual reality in O&P is that it allows for instant visual feedback, expertise training and motivational, immersive applications.

Knight’s dissertation, which was published in 2017 by ProQuest LLC, described the development of a “stick figure” model of the user’s motion in real-time and a character avatar animating certain motions that the patient can follow while performing rehabilitative and training tasks. Among the five participants who were unilateral transradial amputees using their own prosthetic devices, all showed improved positing, movement symmetry, joint range of motion, motivation and overall improved performance after using the virtual reality program.

“Virtual reality could allow patients to be immersed into a virtual environment while provided real-time visual feedback of their instantaneous motion, alongside an individualized predictive optimal goal motion to follow,” Knight said.

Virtually ‘endless’ advantages

Michael Wininger, PhD

Michael Wininger

According to Michael Wininger, PhD, an assistant professor of prosthetics and orthotics at the University of Hartford department of rehabilitation sciences, the potential advantages of virtual reality are endless.

“In virtual reality, you can create any setting, any environment and customize it to the patient,” he told O&P News. “You can have it be really sensitive to their specific needs, and the program can run anytime, day or night. You don’t have to feed it, and you don’t have to pay it. It’s always ready to be turned on, and it doesn’t have bad days.

Virtual reality, as well as augmented reality, has become more popular in teaching and clinical settings in the last 15 years, Wininger said. He added that researchers have found that rehabilitation and training with virtual reality can result in improved outcomes for patients compared to the current training and rehabilitation paradigm.

This has been recognized in the past with regard to stroke rehabilitation. However, it has more recently been implemented in O&P settings, he said.


“If you have someone who has a stroke and they can’t use their affected limb well and you present them with a conventional clinical test, it’s up to the clinician to get as much as they can from the patient,” he said. “However, with virtual reality, the clinician can encourage the patient to engage with the virtual environment — they want to grab a ball or score a point, and it becomes more satisfying. People are inherently interested in playing games and getting the high score.”

An amputee performs a rehabilitative training task on the Computer Assisted Rehabilitation Environment system at the Center for Assistive Rehabilitation and Robotics Technology Lab at the University of South Florida, with the optimal model shown on the right as the character avatar and the real-time model shown on the left as the white stick figure.
Source: Ashley D. Knight/Center for Assistive Rehabilitation and Robotics Technology Lab, University of South Florida.


Using virtual reality, patients can see themselves in a brand-new space, with the room transformed around them into something exotic or engaging, Wininger said. Such immersive environments can in turn help the patient become more interested in training. According to Wininger, if clinicians can convince patients to complete a task when they are inside the clinic or when they are in a virtual training environment, they are more likely to be able to accomplish that same task once they have left the clinic or that training environment.

“The old adage is, ‘If you don’t use it, you lose it,’” Wininger said. “It’s about developing skills in a setting that they can translate into actual activities in their daily living. If they don’t practice it, then they are never going to use it in the real world.”


Virtual reality can also make rehabilitation more accessible for patients.

As an example, Wininger pointed to the Nintendo video game Pokémon Go, which uses augmented reality to allow players to “catch” monsters that appear to populate the real world. According to Wininger, the game shows that children, teens and young adults are open to such virtual or augmented experiences, and could be more willing to use similar technologies in rehabilitation and prosthetic training.

“Kids know this stuff and they want this stuff,” he said. “It also makes it more accessible because they can just bring it home. You don’t have to schlep all this equipment to the clinic on a snowy day. You can just turn on your virtual reality system and do it at home — and they should, because research shows that regular exposure to your training program improves your outcomes. Doing it multiple times a week is not effective, but multiple times a day will improve outcomes.”

Clinicians and their young patients stand to gain tremendously if they can find a way to incorporate virtual gaming into their prosthetic rehabilitation program, Wininger added, as it could boost participation.


“Suddenly you have people who could not play games, playing games,” he said. “It could make an inroad for them.”

Virtual design, digital fabrication

In June 2017, 3-D printer supplier Create O&P, announced the development of a new software platform that uses virtual reality and 3-D printing to allow clinicians to design, print and test fit a prosthesis in less than 3 hours.

Clinicians who use the system are able to scan a patient and upload the image to a smartphone. Then, using a virtual reality headset, they can modify a digital mold by hand in the virtual world, the company said. The clinician can design a test socket around the digital mold and send it to a 3-D printer for fabrication.

Jeff Erenstone

According to Jeff Erenstone, CPO, founder and CEO of Create O&P, the company uses the Google Daydream, a virtual reality headset that interfaces with the user’s smartphone. The headset can cost as little as $60. Unlike other virtual reality systems that require large amounts of computing power, the Daydream uses a smartphone, which has the additional benefit of increasing mobility, Erenstone said.

“It’s used for the modifications on the amputee’s limb, making digital plaster models,” he said. “Usually in O&P, you would take a cast, make a plaster model from that, modify the shape to get the right clinical set to make the socket and get the right prosthetic leg or arms. In our office, we are doing, from start to finish, check sockets in 3 hours consistently, and that involves 15 minutes on a computer, the printer prints it in about 2.5 hours, and then there is 10 minutes of post processing. Aside from that 15 minutes on the computer, it’s a completely hands-free process, so no technician is running around to get that done.”

According to Erenstone, that represents a huge gain in man-power efficiency, both in terms of the practitioner and the technician. The technician can then focus on more complex things “instead of just pouring plaster,” he added.

However, even with its advantages, the transition to virtual reality can be awkward for technicians who are used to working with solid objects. For that reason, Erenstone, who is also the owner and head clinician of Mountain Orthotics and Prosthetics, said his companies use touch screens along with the virtual reality technology, to simulate a certain degree of “pushback.”


“It’s weird — you don’t get the haptic feedback,” he said. “That’s why we’ve been using the touch screen technology, so you can feel your fingers pushing back on something. Meanwhile, with virtual reality, you are sort of just waving your hands in the air. Adding haptic feedback would be huge, so you could actually push back against something.”

According to Erenstone, the hardest part of convincing clinicians and technicians to use the software is the idea of no longer working with one’s hands and performing the physical manipulation of a plaster model.

“So, we’ve been working on intuitive ways to transfer the skillset they already have and have them be able to, without a big paradigm shift, use this digital technology,” he added.

Current limits

Despite its promise, virtual reality, as the technology currently stands, is not without drawbacks.

According to Erenstone, the lack of a haptic response is one of them.

“There is still kind of a software lag, where it’s not as efficient as we need to be yet, but that is just the virtual reality aspect of it,” Erenstone said. “However, in 6 months that issue may be resolved, based on the way technology moves. In the past, you would need an $800 virtual reality system and need to plug it into something with serious computing power to access these systems. Now, it can be cellphone based, and browser based and now they are writing programs that can build on that.”

According to Knight, there is limited knowledge of virtual reality currently in O&P, which could result in insufficient training.

“There are a limited number of specialists and expertise in the field, especially when considering upperextremity prostheses, resulting in amputees not having sufficient training with their device,” Knight said.

Another issue with the current state of virtual reality technology is that it is not known exactly how to design and interface with the program with the highest efficiency. According to Wininger, the best virtual reality systems available today still require supervision by humans, even as it adapts to the patient’s needs.

“The problem is that the intelligence for these software packages is not where we need it to be yet, so it still requires a lot of management,” Wininger said. “And if you present something to a patient that is suboptimal, they may get discouraged and throw it away and decide not to use it. That way, you have lost on your investment, and virtual reality is currently not cheap.”

According to Wininger, the most significant issue with virtual reality is that developers still do not yet know exactly how to design or harness virtual reality for maximum efficacy.


“Therefore, there are less opportunities to improve our game there,” he said. “I would say that, in 10 years, the statisticians will have caught up to software designers to address this issue, but we’re not there yet.”

Future, fun and games

According to Wininger, the true driver of virtual reality technology is currently the gaming market, due to its deep pockets and active development scene. However, he foresees O&P “catching up to gaming” in the coming years.

“In the short-term, we will eventually see a situation in which innovations in virtual reality that come out in the gaming world will soon after become available for use in O&P,” Wininger said. “After that, anything that the gaming folks come up with, we in O&P can then use, and then we can work in lockstep with them. We’re almost there now.”

In rare instances, Wininger said O&P could develop technologies that could eventually be appropriated by the gaming industry.

“Prosthetics is all about controlling one thing with something else,” he said. “I can see some applications where gamers may be interested in taking prosthetic systems and even using them in a game.”

According to Knight, the future of virtual reality in O&P should include small-scale, adaptable options for rehabilitation practitioners. She added that widespread at-home use could successfully provide effective training and rehabilitative care to patients.

Virtual reality technology also has the potential to affect the future of the developing world, according to Erenstone. The continued development of mobile-based virtual reality will help residents and researchers in developing countries to more easily take advantage of the technology, he added.

“In the United States, we can buy a laptop with a touchscreen, but in the developing world, that is a specialty device and another piece of hardware they have to buy,” he said. “Meanwhile, everyone has a cellphone. I’ve been to Haiti, Nepal and India, and everyone has a cellphone, partly because they don’t have the infrastructure for landlines. We would be using the technology that they already have.” – by Jason Laday

Disclosures: Erenstone reports employment with Create O&P and Mountain Orthotics and Prosthetics. Knight and Wininger report no relevant financial disclosures

Από <https://www.healio.com/orthotics-prosthetics/prosthetics/news/print/o-and-p-news/%7B8bd5f5da-5fe4-4ee2-95b5-74e76c9282fc%7D/ops-virtual-present-and-future?page=5>


via O&P’s Virtual Present and Future


, , ,

Leave a comment

[ARTICLE] Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients – Full Text



Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).


Chronic conditions such as stroke are becoming more prevalent as the world’s population ages (Christensen et al., 2009). Although the number of fatalities caused by stroke has fallen in most countries, stroke is still a leading cause of acquired adult hemiparesis (Langhorne et al., 2009; Liu and Duan, 2017). Up to 85% of patients who survive a stroke experience hemiparesis, resulting in impaired movement of an arm and hand (Nakayama et al., 1994). Among them, a large proportion (46% to 95%) remain symptomatic six months after experiencing an ischemic stroke (Kong et al., 2011). The loss of upper limb function adversely affects the quality of life and impedes the normal use of other body parts. The motor function recovery of the upper limbs is more difficult than that of the lower extremities (Kwakkel et al., 1996; Nichols-Larsen et al., 2005; Día and Gutiérrez, 2013). Functional motor recovery in the affected upper extremities in patients with hemiparesis is the primary goal of physical therapists (Page et al., 2001). Evidence suggests that repetitive, task-oriented training of the paretic upper extremity is beneficial (Barreca et al., 2003; Wolf et al., 2006). Rehabilitation intervention is a critical part of the recovery and studies have reported that intensive repeated practice is likely necessary to modify the neural organization and favor the recovery of the functional upper limb motor skills of stroke survivors (Brunnstrom, 1966; Kopp et al., 1999; Taub et al., 1999; Wolf et al., 2006; Nudo, 2011). Meta-analyses of clinical trials have indicated that longer sessions of practice promote better outcomes in the case of impairments, thus improving the daily activities of people after a stroke (Nudo, 2011; Veerbeek et al., 2014; Sehatzadeh, 2015; French et al., 2016). However, the execution of these conventional rehabilitation techniques is tedious, resource-intensive, and often requires the transportation of patients to specialized facilities (Jutai and Teasell, 2003; Teasell et al., 2009).

Virtual reality training is becoming a promising technology that can promote motor recovery by providing high-intensity, repetitive, and task-orientated training with computer programs simulating three-dimensional situations in which patients play by moving their body parts (Saposnik et al., 2010, 2011; Kim et al., 2011; Laver et al., 2015; Tsoupikova et al., 2015). The gaming industry has developed a variety of virtual reality systems for both home and clinical applications (Saposnik et al., 2010; Bao et al., 2013; Orihuela-Espina et al., 2013; Gatica-Rojas and Méndez-Rebolledo, 2014). The most difficult task related to hemiparesis rehabilitation after a stroke is the functional recovery of the affected hand (Carey et al., 2002). To facilitate the functional recovery of a paretic hand along with that of the proximal upper extremity, an ideal virtual reality system should be able to track hand position and motion, which is not a feature of most existing virtual reality systems (Jang et al., 2005; Merians et al., 2009). The leap motion controller developed by Leap Motion (https://www.leapmotion.com) provides a means of capturing and tracking the fine movements of the hand and fingers, while controlling a virtual environment requiring hand-arm coordination as part of the practicing of virtual tasks (Iosa et al., 2015; Smeragliuolo et al., 2016).

Most virtual reality studies have often only involved patients who have experienced chronic stroke (Piron et al., 2003; Yavuzer et al., 2008; Saposnik et al., 2010; da Silva Cameirao et al., 2011). For patients in the chronic stage, who had missed the window of opportunity present at the acute and subacute stages (in which the brain plasticity peaks), rehabilitation-therapy-induced neuroplasticity can only be effective within a relatively narrow range (Chen et al., 2002). No motor function recovery of the hands, six months after the onset of a stroke, indicates a poor prognosis for hand function (Duncan et al., 1992).

We hypothesized that Leap Motion-based virtual reality training would facilitate motor functional recovery of the affected upper limb, as well as neural reorganization in subacute stroke patients. Functional magnetic resonance imaging (fMRI), also called blood oxygenation level-dependent fMRI (BOLD-fMRI), is widely used as a non-invasive, convenient, and economical method to examine cerebral function (Ogawa et al., 1990; Iosa et al., 2015; Yu et al., 2016). In the present study, we evaluated the brain function reorganization by fMRI, as well as the motor function recovery of the affected upper limb in patients with subacute stroke using Leap Motion-based virtual reality training.[…]

Continue —>  Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients Wang Zr, Wang P, Xing L, Mei Lp, Zhao J, Zhang T – Neural Regen Res

Figure 1: Leap Motion-based virtual reality system and training games.
(A, B) Leap Motion-based virtual reality system; (C) petal-picking game; (D) piano-playing game; (E) robot-assembling game; (F) object-catching with balance board game; (G) firefly game; (H) bee-batting game.



, , , , , , , , ,

Leave a comment

[ARTICLE] Active rehabilitation training system for upper limb based on virtual reality – Full Text


In this article, an active rehabilitation training system based on the virtual reality technology is designed for patients with the upper-limb hemiparesis. The six-axis inertial measurement unit sensors are used to acquire the range of motion of both shoulder and elbow joints. In order to enhance the effect of rehabilitation training, several virtual rehabilitation training games based on the Unity3D engine are designed to complete different tasks from simple level to complicated level. The purpose is to increase the patients’ interest during the rehabilitation training. The basic functions of the virtual rehabilitation task scenes are tested and verified through the single-joint training and the multi-joint compounding training experiments. The experimental results show that the ranges of motion of both shoulder and elbow joints can reach the required ranges of a normal human in the rehabilitation training games. Therefore, the system which is easy to wear, low cost, wireless communication, real-time data acquisition, and interesting virtual rehabilitation task games can provide an effective rehabilitation training process for the upper-limb hemiparesis at home.

The upper limb has many degrees of freedom, and it is also a complex part of the human body by which people can accomplish fine movements during their activities in daily life. With the intensification of the aging problem in the world, the amount of stroke hemiparesis has shown a growing trend, especially in China, which has an enormous population.1 Approximately 30%–50% of these stroke survivors will suffer from chronic hemiparesis, especially involving their hands. In addition, spinal cord injury (SCI) and traffic accident survivors may also find limb movements’ disorder. Injury within the cervical region of the cord leads to tetraplegia, which leads to impairment of all four limbs. An estimated result shows that 55% of new cases will result in tetraplegia, while the other 45% will experience paraplegia due to injury below the cervical level.2Limb hemiparesis which is caused by stroke, SCI, or traffic accidents not only gives the patient’s daily life a great deal of inconvenience and even more makes the patient suffer from great mental pain but also brings a heavy stress and medical burden for the patient’s family and society. Technology has been developed in an effort to facilitate rehabilitation for the patient. Upper-limb rehabilitation is one of the fastest growing areas in modern neurorehabilitation. Quality of life can be improved with efficient therapy.3 At present, rehabilitation therapy of upper limb with traditional rehabilitation therapy is commonly used, that is, rehabilitation therapists perform rehabilitation trainings on individuals. Now with the development of robot technology, the rehabilitation of robot-assisted training is also rising up. The MIT-Manus4 is an example of end-effector-based and arm-rehabilitation robotic device, while the ARMin device5 is an example of arm-rehabilitation exoskeletons which also allows pronation/supination of the lower arm and wrist flexion/extension. It could be operated in three modes: passive mobilization, active game-supported arm therapy, and active training of activities of daily living (ADLs). The end-effector-based robots have practical advantages (usability, simplicity, and cost-effectiveness), and exoskeleton robots have biomechanical advantages (better guidance). Currently, the automatic rehabilitation devices on market as mentioned above are mostly complex and expensive, which are often used in the hospitals and clinics are not affordable to ordinary patients. Therefore, one of the research objectives aims to develop the upper-limb rehabilitation training system with minimal structure and low cost and can be used in patient’s home. But in China, it can be seen that patients with upper-limb orthosis in home is only for fixing the arm and just move autonomously according to the setting angle. The researches on intelligent domestic rehabilitation device just begins, most of which are in the experimental stage and not yet market oriented.6,7

Another problem is that the patients are treated with low initiative and dull training process which does not motivate them, while the treatment effect is not obvious.8,9 Computer games based on virtual reality (VR) are a good way to mobilize the patients’ initiative in the training, so the rehabilitation effect on a particular movement task will be greatly improved.10 VR environments provide an excellent method to manipulate task conditions in training. The effects and the intensity of training can be enhanced and designed more challenging, since the implementation of VR can build a channel both visual and haptic communication can be involved in. The research on VR system which is applied to rehabilitation training was initiated a few years ago. Mazzone et al.11 made a study on the effect of rehabilitation training for patients with shoulder joints training using VR technology. This study aimed to determine whether performance of shoulder exercises in virtual reality gaming (VRG) results in similar muscle activation as non-VRG exercise. The conclusion was drawn that exercise with VRG should be effective to reduce shoulder pain caused by spinal injury. Fischer et al.12 conducted a preliminary study claim that stroke patients could assist themselves in training their hands in the virtual environment. The purpose of this pilot study was to investigate the impact of assisted motor training in a virtual environment on hand function for the stroke survivors. Participants had 6 weeks of training in reach-to-grasp of both virtual and actual objects. After the training period, participants in all three groups demonstrated a decrease in time to perform some of the functional tasks. These designs based on VR have achieved some success and then the second research objective is to add the VR technology to the intelligent domestic rehabilitation device. These studies are mainly designed for the single joint of the upper-limb rehabilitation training. Therefore, it is necessary to carry out the research on multi-joint combined training device for patients who can just stay home by training with VR tasks of adjustable game levels.

Another important element which needs to be considered as an ultimate success using at home is its ease of use. Therefore, simple active rehabilitation device should be developed. The setup time of such device should be fast, besides measurement, treatment approaches, and incorporating gaming, and should provide intuitive interfaces that can be directly utilized by the individuals. This study will introduce an active rehabilitation training system for upper limb based on VR technology, which has some advantages such as simple structure, easy to manipulate, and portable for household. It also mobilizes patients’ initiative with adjustable difficulty level of VR tasks so that the individuals’ rehabilitation effect of the upper limb is obviously improved.

The active rehabilitation training system for upper limb based on VR is designed for the pronation/supination and flexion movement trainings of the elbow joint and the extension/flexion and abduction exercises of the shoulder joint. By adding the games in training processes, the patients may actively participate in rehabilitation trainings, while the efficiency will be greatly improved. The portable and easy-to-use design of this system can effectively reduce the problem of the medical resources shortage in the rehabilitation field.

Overall scheme of the system

The system is composed of two parts: the upper-limb posture detection system and the virtual rehabilitation training task scene, as shown in Figure 1.


Figure 1. Schematic diagram of an active rehabilitation training system for upper limb based on VR.


Continue —> Active rehabilitation training system for upper limb based on virtual realityAdvances in Mechanical Engineering – Jianhai Han, Shujun Lian, Bingjing Guo, Xiangpan Li, Aimin You, 2017

, , , , , , , ,

Leave a comment

[Abstract] Improving Cognitive Function in Patients with Stroke: Can Computerized Training Be the Future?


Cognitive impairment after stroke is common and can cause disability with a high impact on quality of life and independence. Cognitive rehabilitation is a therapeutic approach designed to improve cognitive functioning after central nervous system’s injuries. Computerized cognitive rehabilitation (CCR) uses multimedia and informatics resources to optimize cognitive compromised performances. The aim of this study is to evaluate the effects of pc cognitive training with Erica software in patients with stroke.


We studied 35 subjects (randomly divided into 2 groups), affected by either ischemic or hemorrhagic stroke, having attended from January 2013 to May 2015 the Laboratory of Robotic and Cognitive Rehabilitation of Istituto di Ricerca e Cura a Carattere Scientifico Neurolesi in Messina. Cognitive dysfunctions were investigated through a complete neuropsychological battery, administered before (T0) and after (T1) each different training.


At T0, all the patients showed language and cognitive deficits, especially in attention process and memory abilities, with mood alterations. After the rehabilitation program (T1), we noted a global cognitive improvement in both groups, but a more significant increase in the scores of the different clinical scales we administered was found after CCR.


Our data suggest that cognitive pc training by using the Erica software may be a useful methodology to increase the post-stroke cognitive recovery.


via Improving Cognitive Function in Patients with Stroke: Can Computerized Training Be the Future?

, , , ,

Leave a comment

[ARTICLE] Mapping upper-limb motor performance after stroke – a novel method with utility for individualized motor training – Full Text



Chronic upper limb motor impairment is a common outcome of stroke. Therapeutic training can reduce motor impairment. Recently, a growing interest in evaluating motor training provided by robotic assistive devices has emerged. Robot-assisted therapy is attractive because it provides a means of increasing practice intensity without increasing the workload of physical therapists. However, movements practised through robotic assistive devices are commonly pre-defined and fixed across individuals. More optimal training may result from individualizing the selection of the trained movements based on the individual’s impairment profile. This requires quantitative assessment of the degree of the motor impairment prior to training, in relevant movement tasks. However, standard clinical measures for profiling motor impairment after stroke are often subjective and lack precision. We have developed a novel robot-mediated method for systematic and fine-grained mapping (or profiling) of individual performance across a wide range of planar arm reaching movements. Here we describe and demonstrate this mapping method and its utilization for individualized training. We also present a novel principle for the individualized selection of training movements based on the performance maps.

Methods and Results

To demonstrate the utility of our method we present examples of 2D performance maps produced from the kinetic and kinematics data of two individuals with stroke-related upper limb hemiparesis. The maps outline distinct regions of high motor impairment. The procedure of map-based selection of training movements and the change in motor performance following training is demonstrated for one participant.


The performance mapping method is feasible to produce (online or offline). The 2D maps are easy to interpret and to be utilized for selecting individual performance-based training. Different performance maps can be easily compared within and between individuals, which potentially has diagnostic utility.


Impaired upper-limb (UL) function is one of the most common consequences of stroke [123], which can severely hamper activities of daily living and reduce quality of life. Certain intervention methods can promote some recovery of UL motor function though their outcome shows high variability and depends on the intensity (repetition) of the intervention [456789].

Robotic assistive technologies can be beneficial for improving clinical scores of UL motor impairment [910], by allowing intensive training [911121314]. However, currently there is no consistent evidence for the effectiveness of robot-assisted UL therapy for improving daily living activity [15]. One possibility is that the tasks performed with robotic assistance do not generalise to everyday tasks. Another possibility is that the tasks are not optimised for the trained individuals. Currently, in robot-assisted therapy the set of practiced movements are usually pre-determined, with limited regard to the motor profile of the individual (e.g. ‘centre-out’ point-to-point reaches, or forearm pronation/supination, wrist extension/flexion [161718]). However, the effectiveness of training for motor recovery is likely to depend on the difficulty to perform the task due to motor impairment [19]. For example, training focused on unimpaired movements or on tasks that are either too easy or too difficult is likely to contribute relatively little to motor learning and recovery [192021]. An advantage of the robot-mediated approach is that it allows the collection of various accurate and real-time data about motor performance that would be potentially useful for individualized adjustments of the therapy; e.g. selection of training tasks based on the profile of motor performance. Yet, prescribing training conditions based on a motor performance profile requires characterising motor performance across a range of movement conditions for each individual. Here we present a novel computerised method for systematically mapping individuals’ UL motor performance (or impairment) across a wide range of robot-mediated reaching movements. The map can then serve as a basis for individualised and performance-based selection of training movements.

For optimal utilization of a motor performance map, the mapped metrics should reflect basic components of sensorimotor control, so that the map can be directly linked to processes underlying the movements (e.g. muscle activity and movement representation). Continuous metrics, allowing smoothing and interpolation from tested movements to neighbouring untested regions are also valuable. Accordingly, our mapping of reaching performance is done across the two dimensions of target location (in angular coordinates relative to a central position) and of prescribed starting location (again in angular coordinates relative to the selected target, which indicates the dictated movement direction). The range of target and start locations tests both postural and movement-related aspects of motor control, respectively. Importantly, muscle activation patterns and population neural activity in the motor-related cortices show tuning to one or both task dimensions [22232425], and behavioural studies support the essential underlying role of these parameters in planning of reaching movements [2627].

Of course, the usefulness of a motor performance map for prescribing performance-based training also depends on an appropriate principle for the selection of movements to be practiced. Here we demonstrate the utility of our mapping method for individualized task selection based on a principle which we term “steepest gradients” (SG), although the motor performance map can be the basis for alternative task selection principles. The SG principle is founded on the idea that training with tasks performed with an intermediate range of difficulty would allow more improvement and learning-induced plasticity, compared to training with very difficult or easy tasks [1928] .

Here we report the details of the mapping methods, and show its efficacy in portraying relevant motor impairment patterns for individual subjects. We also briefly demonstrate its utility for individually-tailored selection of practiced movement using the SG principle. However, our evidence for the utility and benefit of the mapping method for individualizing UL robot-mediated rehabilitation after stroke will be reported in subsequent publications.[…]


Continue —> Mapping upper-limb motor performance after stroke – a novel method with utility for individualized motor training | Journal of NeuroEngineering and Rehabilitation | Full Text

Fig. 1Schematic description of the experimental setting (top view). a The participant held the handle of a robotic manipulandum (indicated onscreen by a red disc; not shown), which allowed planar reaching movements from a start position (white onscreen disc (here gray) to a target position (blue onscreen disc; here black) and provided assisting and guiding forces as needed. Hand’s grip was maintained via a special glove and the forearm was supported against gravity (not shown). The participant leaned his/her head against a headrest, maintaining upright seating posture (ensured using a harness). The horizontal display occluded the hand and the manipulandum from vision. The start-to-target axis (y) and its perpendicular axis (x) correspond to the axes of the assisting and guiding forces, respectively, which were provided during the arm movement as needed by the robot. Adapted from Howard et al. (2009). b The reaching workspace used for mapping performance. The locations of the 8 targets, used in the mapping sessions, are indicated by small open circles. An example of the arm posture when the hand located at the 90o target is shown. Participants were tested with 5cm reaches to each target from 8 start locations (indicated, for the example target, by small black dots). The dashed circle indicates the extent of the mapped workspace. The drawing reflects the actual relationship of target and start locations and arm posture, based on a photograph taken with a healthy participant

, , , , , , , , ,

Leave a comment

[WEB SITE] Hospital wins patent in VR treatment for cognitive disorders.

A local hospital is drawing attention by winning a patent in cognitive rehabilitation treatment using a 3D virtual reality (VR) technology.

The Gil Medical Center and Gachon University’s industry-university cooperation foundation said on Monday they registered the patent in “a method and system using 3D virtual reality for the treatment of cognitive impairment.” Professor Lee Ju-kang of Gachon University Gil Medical Center’s physical medicine and rehabilitation department had developed the system.

The invention allows doctors to treat a wide range of cognitive disorders, including dementia, with all the different kinds of virtual space. Physicians expect better treatment results with the new technology, which offers virtual areas such as homes that are more familiar to patients than hospital’s treatment rooms.

To build 3D background information, the user of the program should visit the patient’s home and scan it first. Then, the user can save it as a database.

“Existing dementia treatments are quite limited, as most of them focus on prevention of further progress rather than on cure. Thus, it is becoming more important to use rehabilitation treatment to prevent dementia-derived adjustment disorders or accidents in daily life,” the medical center stated in the patent explanation.

“Existing treatments include cognitive rehabilitation offered in a limited environment such as hospital’s treatment room and cognitive training through a few computer programs, which are far from real life,” it went on to say. “By generating 3D virtual reality, we have developed a system to give patients easier access to necessary environment and targets and treat their cognitive impairment.”

Earlier, the hospital unveiled a plan to open a “VR Life Center” next January to treat patients with post-traumatic stress disorder and panic disorder.

“If we combine VR technology with medical treatment software, we can reenact an environment, which is difficult to visit in reality and expect better treatment results,” the hospital said. “VR treatments have already been used as a psychological treatment for a phobia and an addiction and have proven effective.”

via Hospital wins patent in VR treatment for cognitive disorders – Korea Biomedical Review

, , ,

Leave a comment

%d bloggers like this: