Posts Tagged Game

[WEB SITE] Virtual personal trainer helps seniors get more exercise at home

U of A researcher developing personalized program that brings the appeal of electronic gaming to physical therapy for older adults.

By BEV BETKOWSKI

 

A high-tech University of Alberta research project is letting seniors hit a computerized gym especially designed for their needs.

VirtualGym, an electronic game that combines the entertainment of gaming with prescribed exercises, is being put through its paces in a Calgary seniors’ residence to test its user-friendliness and appeal.

Once perfected, it will deliver at-home therapeutic exercises for seniors with chronic health issues, mobility problems or dementia, at the click of a button.

“It’s a concept of bringing rehabilitation home,” said PhD candidate Noelannah Neubauer, who helped design the program. “We already have telehealth being used by doctors, why not rehabilitation too?”

The joint research project is teaming computing scientist Eleni Stroulia and other researchers from the faculties of science and rehabilitation medicine, with support from AGE-WELL, Canada’s Technology and Aging Network.

Designed to work through Kinect, a motion sensor system originally designed for Xbox video game consoles, VirtualGym works by giving users personalized feedback as they exercise along with an onscreen avatar using a “Simon Says” theme.

“It’s designed so the exercises are completely customizable from a personal trainer or physical therapist and their progress can be monitored,” Neubauer said. By recording users’ movements through VirtualGym, therapists can remotely watch for progressions and adjust exercises accordingly.

Stroulia and her team thought their original version of VirtualGym, developed in 2015, would be a good fit for seniors, but it was a flop with their test group, who found the game too busy.

“They didn’t like it at all,” said Victor Fernandez-Cervantes, a post-doctoral researcher in computing science, who took it back to the drawing board.

Using feedback from Edmonton senior Stuart Embleton and other volunteers from the Cardiac Athletic Society of Edmonton who tried the system, Fernandez-Cervantes made VirtualGym more user-friendly.

“We wanted to design it from their point of view.”

He dialled down the noise with a less distracting and cartoonish version of the game. The screen scenery evolved from its original version—an instructional avatar exercising on snowy ground in front of a brick building—to a soothing blank-walled room with a potted plant at either side. The avatar’s build was also adjusted to reflect a more typical body shape for older adults. As well, he programmed its movements with simple but specific instructions on how to do an exercise properly, complete with correctional tools like arrows and colours that pop up if needed.

Fernandez-Cervantes is continuing to tweak VirtualGym to create a 3-D version. Right now the exercises are only partially viewable, which is a problem for seniors, Embleton believes. “If the program wants you to lift your leg and kick your foot up, you should be able to see that action from a suitable perspective,” he explained.

Other planned improvements include adding simple games to measure cognitive awareness for users. “Over time, perhaps changes in scores could reflect varying levels of cognitive impairment,” Neubauer said.

The eventual plan is to market VirtualGym widely through a spinoff company, Stroulia said.

Embleton, 77, believes seniors would use VirtualGym if it were available to them.

“Most seniors nowadays have computers and TV sets, and that, plus an optical input, is all you need to use the system. It’s going to be more and more useful as it’s further developed. It’s called a game, but it’s really a useful therapeutic process. If I had a broken hip or was frail or couldn’t drive, and needed some physical therapy, I could use a virtual gym at home,” he said.

That’s especially valuable for rural or shut-in seniors who can’t go to real-life gym classes or make regular visits to physiotherapy clinics, said Neubauer.

“We want seniors to be able to exercise more, and this provides another option for them.”

Their work on VirtualGym also offers insight and a set of guidelines for other game designers wanting to develop exercise technology for seniors, said Fernandez-Cervantes.

“When designing products, seniors need to be involved. Soon enough, everyone will be a senior.”

 

via Virtual personal trainer helps seniors get more exercise at home

, , , , , , , ,

Leave a comment

[WEB SITE] Tampa students develop virtual reality games to increase physical therapy’s effectiveness

VIDEO —> VR could increase physical therapy effectiveness

http://www.fox13news.com/health/tampa-students-develop-virtual-reality-games-to-increase-physical-therapy-s-effectiveness

 – Anyone who’s gone through physical therapy knows it can be an arduous and time-consuming process, but what if physical therapy was more like playing a really fun video game?

Some students at the University of Tampa are changing the game for injury recovery, using virtual reality to ease the mental burden of rehabilitation.

Student Jonathan Truong is part of the team of UT students developing PT VR. As a child, he contracted meningitis and, as a complication of the disease, suffered a stroke.

Since then, he’s gone through eight rounds of physical therapy. His history of pain and rehab is the driving force behind his desire to improve the field.

“It’s aggravating,” Truong said. “Physical therapy is boring. It’s very repetitive for me.”

The University of Tampa senior is majoring in entrepreneurship, meanwhile, keeping an eye on advancements in virtual reality.

So he launched Verapy. It allows patients to do physical therapy using a virtual reality headset connected to sensors on a patient’s hands and feet.

“We are allowing these patients to feel empowered,” he said. “They are doing their physical therapy without thinking about it.”

But the game isn’t just a game. Verapy games sent data that can help physical therapists understand a patient’s improvement, both for pain level and range of motion.

“The therapist doesn’t have to watch them constantly,” he said. “So it saves them time.”

There are a number of games that allow for work on different body parts. It’s still in beta testing in three physical therapist’s offices in the Bay Area.

A problem doctors and therapists face is patients quitting before they are fully rehabilitated. They hope Verapy will help them keep more patients.

It’s music to Jonathan’s ears, after what he’s been through.

“It [makes] me feel great,” he said, adding that Verapy has gotten 16 letters of intent from local therapists to test the product.

via Tampa students develop virtual reality games to increase physical therapy’s effectiveness

, , ,

Leave a comment

[Abstract + References] Project Star Catcher: A Novel Immersive Virtual Reality Experience for Upper Limb Rehabilitation

Abstract

Modern immersive virtual reality experiences have the unique potential to motivate patients undergoing physical therapy for performing intensive repetitive task-based treatment and can be utilized to collect real-time user data to track adherence and compliance rates. This article reports the design and evaluation of an immersive virtual reality game using the HTC Vive for upper limb rehabilitation, titled “Project Star Catcher” (PSC), aimed at users with hemiparesis. The game mechanics were adapted from modified Constraint Induced Therapy (mCIT), an established therapy method where users are asked to use the weaker arm by physically binding the stronger arm. Our adaptation changes the physical to psychological binding by providing various types of immersive stimulation to influence the use of the weaker arm. PSC was evaluated by users with combined developmental and physical impairments as well as stroke survivors. The results suggest that we were successful in providing a motivating experience for performing mCIT as well as a cost-effective solution for real-time data capture during therapy. We conclude the article with a set of considerations for immersive virtual reality therapy game design.

References

1
Gilda Aparecida de Assis, Ana Grasielle Dionísio Corrêa, Maria Bernardete Rodrigues Martins, Wendel Goes Pedrozo, and Roseli de Deus Lopes. 2016. An augmented reality system for upper-limb post-stroke motor rehabilitation: A feasibility study. Disabil. Rehabil. Assist. Technol. 11, 6 (2016), 521–528.
2
Alejandro Baldominos, Yago Saez, and Cristina García del Pozo. 2015. An approach to physical rehabilitation using state-of-the-art virtual reality and motion tracking technologies. Proced. Comput. Sci. 64 (2015), 10–16.
3
Stacy J. Morris Bamberg, Ari Y. Benbasat, Donna Moxley Scarborough, David E. Krebs, and Joseph A. Paradiso. 2008. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12, 4 (2008), 413–423.
4
Rosa María Baños, Cristina Botella, Mariano Alcañiz, Víctor Liaño, Belén Guerrero, and Beatriz Rey. 2004. Immersion and emotion: Their impact on the sense of presence. CyberPsychol. Behav. 7, 6 (2004), 734–741.
5
Corey J. Bohil, Bradly Alicea, and Frank A. Biocca. 2011. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 12 (2011), 752–762.
6
Nancy N. Byl, Gary M. Abrams, Erica Pitsch, Irina Fedulow, Hyunchul Kim, Matt Simkins, Srikantan Nagarajan, and Jacob Rosen. 2013. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J. Hand Ther. 26, 4 (2013), 343–352.
7
Mónica S. Cameirão, S. Bermúdez, and P. F. M. J. Verschure. 2008. Virtual reality based upper extremity rehabilitation following stroke: A review. J. CyberTher. Rehabil. 1, 1 (2008), 63–74.
8
R. Campbell, M. Evans, M. Tucker, B. Quilty, P. Dieppe, and J. L. Donovan. 2001. Why don’t patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee. J. Epidemiol. Commun. Health 55, 2 (2001), 132–138.
9
Stephanie K. Carter and John A. Rizzo. 2007. Use of outpatient physical therapy services by people with musculoskeletal conditions. Phys. Ther. 87, 5 (2007), 497.
10
Derwin K. Chan, Chris Lonsdale, Po Y. Ho, Patrick S. Yung, and Kai M. Chan. 2009. Patient motivation and adherence to postsurgery rehabilitation exercise recommendations: The influence of physiotherapists’ autonomy-supportive behaviors. Arch. Phys. Med. Rehabil. 90, 12 (2009), 1977–1982.
11
Luca Chittaro, Riccardo Sioni, Cristiano Crescentini, and Franco Fabbro. 2017. Mortality salience in virtual reality experiences and its effects on users attitudes towards risk. Int. J. Hum.-Comput. Stud. 101 (2017), 10–22.
12
Davide Corbetta, Federico Imeri, and Roberto Gatti. 2015. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 61, 3 (2015), 117–124.
13
GSV Capital Corp. 2013. GSV Capital Corp. The Pioneer Building. Retrieved from http://gsvcap.com/wp/market-commentary/project-runway/.
14
Patrick J. Costello. 1997. Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature. Advisory Group on Computer Graphics.
15
J. H. Crosbie, S. Lennon, J. R. Basford, and S. M. McDonough. 2007. Virtual reality in stroke rehabilitation: Still more virtual than real. Disabil. Rehabil. 29, 14 (2007), 1139–1146.
16
Mónica da Silva Cameirão, Sergi Bermúdez i Badia, Esther Duarte, and Paul F. M. J. Verschure. 2011. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor. Neurol. Neurosci. 29, 5 (2011), 287–298.
17
Julieta Dascal, Mark Reid, Waguih William IsHak, Brennan Spiegel, Jennifer Recacho, Bradley Rosen, and Itai Danovitch. 2017. Virtual reality and medical inpatients: A systematic review of randomized, controlled trials. Inn. Clin. Neurosci. 14, 1–2 (2017), 14.
18
Judith E. Deutsch, Jeffrey A. Lewis, and Grigore Burdea. 2007. Technical and patient performance using a virtual reality-integrated telerehabilitation system: Preliminary finding. IEEE Trans. Neur. Syst. Rehabil. Eng. 15, 1 (2007), 30–35.
19
Julia Diemer, Georg W. Alpers, Henrik M. Peperkorn, Youssef Shiban, and Andreas Mühlberger. 2015. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 6, Article 26 (2015), 1–9.
20
Sheryl Flynn, Phyllis Palma, and Anneke Bender. 2007. Feasibility of using the sony playstation 2 gaming platform for an individual poststroke: A case report. J. Neurol. Phys. Therapy 31, 4 (2007), 180–189.
21
AMP New Ventures Follow. 2016. Virtual Reality (VR) Continuum—AMP New Ventures. Retrieved from https://www.slideshare.net/ampnewventures/virtual-reality-vr-continuum-amp-new-ventures.
22
Centers for Medicare and Medicaid Services. 2016. U.S. Department of Health and Human Services Centers for Medicare 8 Medicaid Services (CMS). Report to the Congress: Medicare Payment Policy. Technical Report, 2016. Retrieved February 7, 2016 from http://www.medpac.gov/docs/default-source/reports/march-2016-report-to-the-congress-medicare-payment-policy.pdf?sfvrsn=0.
23
Helena Grillon, Françoise Riquier, Bruno Herbelin, and Daniel Thalmann. 2006. Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. Int. J. Disabil. Hum. Dev. 5, 3 (2006), 243–250.
24
Diane Gromala, Xin Tong, Amber Choo, Mehdi Karamnejad, and Chris D. Shaw. 2015. The virtual meditative walk: Virtual reality therapy for chronic pain management. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 521–524.
25
Sophie Heins, Stéphanie Dehem, Vincenza Montedoro, Franz Rocca, Pierre-Henri de Deken, Martin Edwards, Bruno Dehez, Matei Mancas, Gaëtan Stoquart, Thierry Lejeune, et al. 2017. Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation. In Proceedings of the 5th IEEE Conference on Serious Games and Applications for Health.
26
Hunter G. Hoffman, Gloria T. Chambers, Walter J. Meyer, Lisa L. Arceneaux, William J. Russell, Eric J. Seibel, Todd L. Richards, Sam R. Sharar, and David R. Patterson. 2011. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann. Behav. Med. 41, 2 (2011), 183–191.
27
Jerome Iruthayarajah, Amanda McIntyre, Andreea Cotoi, Steven Macaluso, and Robert Teasell. 2017. The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Top. Stroke Rehabil. 24, 1 (2017), 68–79.
28
Kirsten Jack, Sionnadh Mairi McLean, Jennifer Klaber Moffett, and Eric Gardiner. 2010. Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy 15, 3 (2010), 220–228.
29
Eun-Kyu Ji and Sang-Heon Lee. 2016. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: A preliminary study. J. Phys. Ther. Sci. 28, 11 (2016), 3168–3172.
30
Dahlia Kairy, Michel Tousignant, Nancy Leclerc, Anne-Marie Côté, Mélanie Levasseur, et al. 2013. The patients perspective of in-home telerehabilitation physiotherapy services following total knee arthroplasty. Int. J. Environ. Res. Publ. Health 10, 9 (2013), 3998–4011.
31
Michelle R. Kandalaft, Nyaz Didehbani, Daniel C. Krawczyk, Tandra T. Allen, and Sandra B. Chapman. 2013. Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 43, 1 (2013), 34–44.
32
Oliver Kreylos. 2016. Lighthouse tracking examined. Retrieved from http://doc-ok.org/?p=1478.
33
Danielle E. Levac, Stephanie M. N. Glegg, Heidi Sveistrup, Heather Colquhoun, Patricia Miller, Hillel Finestone, Vincent DePaul, Jocelyn E. Harris, and Diana Velikonja. 2016. Promoting therapists use of motor learning strategies within virtual reality-based stroke rehabilitation. PloS One 11, 12 (2016), e0168311.
34
Mindy F. Levin, Osnat Snir, Dario G. Liebermann, Harold Weingarden, and Patrice L. Weiss. 2012. Virtual reality versus conventional treatment of reaching ability in chronic stroke: Clinical feasibility study. Neurol. Ther. 1, 1 (2012), 3.
35
Robert W. Lindeman, Yasuyuki Yanagida, Kenichi Hosaka, and Shinji Abe. 2006. The tactapack: A wireless sensor/actuator package for physical therapy applications. In Proceedings of the 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 337–341.
36
Roberto Lloréns, Enrique Noé, Carolina Colomer, and Mariano Alcañiz. 2015. Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 96, 3 (2015), 418–425.
37
Keith R. Lohse, Courtney G. E. Hilderman, Katharine L. Cheung, Sandy Tatla, and H. F. Machiel Van der Loos. 2014. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One 9, 3 (2014), e93318.
38
Peter S. Lum, Gitendra Uswatte, Edward Taub, Phillip Hardin, and Victor W. Mark. 2006. A telerehabilitation approach to delivery of constraint-induced movement therapy. J. Rehabil. Res. Dev. 43, 3 (2006), 391.
39
Victor W. Mark and Edward Taub. 2004. Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restor. Neurol. Neurosci. 22, 3–5 (2004), 317–336.
40
Gary Marshall. 2016. Best VR controller: HTC Vive vs Oculus Rift vs PlayStation VR vs Gear VR. Retrieved April 30, 2017 from http://www.techradar.com/news/gaming/best-vr-controller-htc-vive-vs-oculus-rift-vs-.
41
R. R. Mellecker and A. M. McManus. 2014. Active video games and physical activity recommendations: A comparison of the Gamercize Stepper, XBOX Kinect and XaviX J-Mat. J. Sci. Med. Sport 17, 3 (2014), 288–292.
42
Nexhmedin Morina, Hiske Ijntema, Katharina Meyerbröker, and Paul M. G. Emmelkamp. 2015. Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav. Res. Ther. 74 (2015), 18–24.
43
Hossein Mousavi Hondori and Maryam Khademi. 2014. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014 (2014).
44
Maria V. Nararro-Haro, Hunter G. Hoffman, Azucena Garcia-Palacios, Mariana Sampaio, Wadee Alhalabi, Karyn Hall, and Marsha Linehan. 2016. The use of virtual reality to facilitate mindfulness skills training in dialectical behavioral therapy for borderline personality disorder: A case study. Front. Psychol. 7, Article 1573 (2016), 1–9.
45
Diederick C. Niehorster, Li Li, and Markus Lappe. 2017. The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception 8, 3 (2017), 2041669517708205.
46
NINDS. 2014. Post-Stroke Rehabilitation. NIH Publication No. 14 1846. Retrieved April 30, 2017 from https://stroke.nih.gov/materials/rehabilitation.html.
47
Stephen J. Page, Peter Levine, Sueann Sisto, Quin Bond, and Mark V. Johnston. 2002. Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clin. Rehabil. 16, 1 (2002), 55–60.
48
Marco Pasch, Nadia Berthouze, Betsy Dijk, and Anton Nijholt. 2008. Motivations, strategies, and movement patterns of video gamers playing Nintendo Wii boxing. In Proceedings of the Facial and Bodily Expressions for Control and Adaptation of Games Workshop.
49
Lamberto Piron, Andrea Turolla, Michela Agostini, Carla Zucconi, Feliciana Cortese, Mauro Zampolini, Mara Zannini, Mauro Dam, Laura Ventura, Michela Battauz, et al. 2009. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41, 12 (2009), 1016–1020.
50
Barbara Olasov Rothbaum, Matthew Price, Tanja Jovanovic, Seth D. Norrholm, Maryrose Gerardi, Boadie Dunlop, Michael Davis, Bekh Bradley, Erica J. Duncan, Albert Rizzo, et al. 2014. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiat. 171, 6 (2014), 640–648.
51
Anil K. Roy, Yash Soni, and Sonali Dubey. 2013. Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS’13). IEEE, 298–304.
52
Mar Rus-Calafell, José Gutiérrez-Maldonado, and Joan Ribas-Sabaté. 2014. A virtual reality-integrated program for improving social skills in patients with schizophrenia: A pilot study. J. Behav. Ther. Exp. Psychiat. 45, 1 (2014), 81–89.
53
Yasser Salem, Stacy Jaffee Gropack, Dale Coffin, and Ellen M. Godwin. 2012. Effectiveness of a low-cost virtual reality system for children with developmental delay: A preliminary randomised single-blind controlled trial. Physiotherapy 98, 3 (2012), 189–195.
54
Gustavo Saposnik, Mindy Levin, Stroke Outcome Research Canada (SORCan) Working Group, et al. 2011. Virtual reality in stroke rehabilitation. Stroke 42, 5 (2011), 1380–1386.
55
Gustavo Saposnik, Robert Teasell, Muhammad Mamdani, Judith Hall, William McIlroy, Donna Cheung, Kevin E. Thorpe, Leonardo G. Cohen, Mark Bayley, et al. 2010. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke 41, 7 (2010), 1477–1484.
56
Dante D’Orazio Savov and Vlad. 2015. Valve’s VR headset is called the Vive and it’s made by HTC. Retrieved from https://www.theverge.com/2015/3/1/8127445/htc-vive-valve-vr-headset.
57
Yue X. Shi, Jin H. Tian, Ke H. Yang, and Yue Zhao. 2011. Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 92, 6 (2011), 972–982.
58
Youssef Shiban, Iris Schelhorn, Paul Pauli, and Andreas Mühlberger. 2015. Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behav. Res. Ther. 71 (2015), 45–53.
59
Fabian Soffel, Markus Zank, and Andreas Kunz. 2016. Postural stability analysis in virtual reality using the HTC vive. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. ACM, 351–352.
60
Digital Trends Staff. 2017. Oculus Rift vs. HTC Vive. Retrieved from https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/.
61
Sofia Straudi, Giacomo Severini, Amira Sabbagh Charabati, Claudia Pavarelli, Giulia Gamberini, Anna Scotti, and Nino Basaglia. 2017. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: An exploratory study. BMC Neurol. 17, 1 (2017), 86.
62
Daria Tsoupikova, Kristen Triandafilou, Saumya Solanki, Alex Barry, Fabian Preuss, and Derek Kamper. 2016. Real-time diagnostic data in multi-user virtual reality post-stroke therapy. In Proceedings of the SIGGRAPH ASIA 2016 VR Showcase (SA’16). ACM, New York, NY. DOI:https://doi.org/10.1145/2996376.2996387
63
Pan Wang, Gerald Choon Huat Koh, Christian Gilles Boucharenc, Tian Ma Xu, Hamasaki, and Ching Chiuan Yen. 2017. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction (TEI’17). ACM, New York, NY, 617–624. DOI:https://doi.org/10.1145/3024969.3025080

via Project Star Catcher

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke – Full Text

Abstract

Background

Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke.

Material/Methods

Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups.

Results

At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05).

Conclusions

Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.

Background

The maintenance of the core or upper body control, is essential for maintaining posture and stability while changing positions, performing activities of daily living (ADL), and ambulating [1,2]. Patients who are undergoing physical rehabilitation following stroke, tend to deviate towards the affected side, as a result of postural instability, which induces both asymmetrical trunk movement and trunk muscle weakness. Upper body instability makes it difficult to maintain postural control when performing tasks and leads to functional disability [3]. The lack of postural stability also affects the balance of patients following stroke, increasing the risk of falls, and negatively impacting on patient independence and safety. For example, it has been reported that up to 73% of patients with stroke experience a fall within six months after leaving hospital [4]. Falls following a stroke can have severe consequences, including hip fractures and reduced physical activity due to fear of repeat falls [5]. Therefore, because these factors can have a negative impact on patient rehabilitation following stroke, the improvement of postural stability is an important goal of patient rehabilitation following stroke [6].

Sports that involve paddling with a single oar, such as canoeing and kayaking, are effective outdoor activities that improve postural stability and upper body stabilization [7]. Continuous body adjustment and compensation are required during the single-oar paddling motion to maintain balance during perturbations caused by the movement of the canoe or kayak and the paddle in the water [8]. Currently, canoe paddling training can be conducted using an ergometer to provide a training opportunity that is independent of outdoor conditions and to better control training progression [9]. A paddling ergometer has also been studied for rehabilitation training of patients with paraplegia and has been shown to be effective in improving postural control, balance, motor performance, and upper extremity strength [8,9].

Game-based virtual reality (VR) using gaming consoles is now used as a therapeutic approach for the rehabilitation of patients with stroke and provides an opportunity for patients to perform activities that are difficult in a clinical setting. Furthermore, VR programs are often designed to be more entertaining and enjoyable than traditional physical therapy tasks, thereby encouraging patients to participate in the rehabilitation program.

The use of VR equipment specifically designed for physical rehabilitation is not yet commonly available in clinical settings. Therefore, VR rehabilitation programs using a game-based, motion-controlled console that can be used in clinical settings and at low cost that can utilize a variety of gaming software are needed.

The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke.[…]

 

Continue —>  Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke

An external file that holds a picture, illustration, etc.Object name is medscimonit-24-2590-g002.jpg

Figure 2
Game-based virtual reality (VR) canoe paddling training.

, , , , , , ,

Leave a comment

[WEB SITE] Virtual reality games to help patients’ rehabilitation in UAE

The AI system is already in use in Ras Al Khaimah Physiotherapy and Sports Centre and will be rolled out soon in all ministry hospitals.

A therapist will always be present to monitor these sessions of patients.

Games developed specially for rehabilitation in physiotherapy for patients of stroke, cerebral palsy and similar conditions, will be used by the Ministry of Health and Prevention (Mohap) as it rolls out use of artificial intelligence (AI) and virtual reality (VR) in hospitals.

The AI system is already in use in Ras Al Khaimah Physiotherapy and Sports Centre and will be rolled out soon in all other ministry hospitals. “Games are developed for rehab of such patients, for both children and adults, especially those suffering from cerebral palsy and motor delay conditions,” Dr Yousif Mohammed Al Serkal, assistant undersecretary for the hospital sector, told Khaleej Times.

“The AI system is composed of three parts – a TV set, a sensory kinetic bar and an X-Box linked with these. Specific games are used to assess how cognitive a patient is,” he said.

A therapist will always be present to monitor these sessions of patients and will assess their conditions accordingly, he added.

He also explained the advantages of VR using AI in physiotherapy to provide treatment. “This will allow the patient to complete the treatment at his/her home with the possibility of remote rehabilitation,” he said.

“In the treatment of stroke, the virtual reality system evaluates and enhances the recovery of the affected upper parts, in addition to the training for the walking device used for rehabilitation.

“The patient moves at a speed on the motion platform with changing virtual environments being displayed on the front screen to simulate daily activities. In the treatment of the balance disorder, virtual reality is a safe and effective alternative to conventional therapy to improve the balance in patients,” he said. “Patients have reported that they enjoyed VR therapy without suffering from side effects, and with increased motivation.

“This technique is also used to treat children with developmental disorders, including positive developments in both perceived and performance capabilities in areas of daily activities including social activities that they have not been able to do before.”

The virtual therapy also assists cerebral palsy patients in the reorganisation of the brain and movement ability and visual cognitive skills, in addition to social participation and personal factors.

More about VR with AI

The UAE Strategy for Artificial Intelligence (AI) is a project within the Centennial Plan 2071. The plan will also include virtual reality (VR) rehabilitation in physiotherapy for stroke patients, patients suffering from balance disorder and children with development disorders, cerebral palsy and Parkinson’s syndrome.

VR rehabilitation technology makes use of virtual world simulation to meet various requirements for effective medical intervention to achieve the best results using the video game controller and the moving sensor. Scientific studies have proven the effectiveness of this innovative technique in the rehabilitation and treatment of many such cases.

KT NANO EDIT

AI boost to healthcare

Healthcare industry stands to gain significantly by inducting artificial intelligence into various processes. The technology can take the fear out of procedures and make treatments more effective. The UAE has been experimenting on this front and results are encouraging so far. Innovation through AI is becoming more meaningful with its human-centric approach, and the medical experts are now looking at expanding its scope.

asmaalizain@khaleejtimes.com

 

via Virtual reality games to help patients’ rehabilitation in UAE – Khaleej Times

, , , , , ,

Leave a comment

[Abstract+References] Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots

Abstract

Rehabilitation aims to ameliorate deficits in motor control via intensive practice with the affected limb. Current strategies, such as one-on-one therapy done in rehabilitation centers, have limitations such as treatment frequency and intensity, cost and requirement of mobility. Thus, a promising strategy is home-based therapy that includes task specific exercises. However, traditional rehabilitation tasks may frustrate the patient due to their repetitive nature and may result in lack of motivation and poor rehabilitation. In this article, we propose the design and verification of an effective upper extremity rehabilitation game with a tangible robotic platform named Cellulo as a novel solution to these issues. We first describe the process of determining the design rationales to tune speed, accuracy and challenge. Then we detail our iterative participatory design process and test sessions conducted with the help of stroke, brachial plexus and cerebral palsy patients (18 in total) and 7 therapists in 4 different therapy centers. We present the initial quantitative results, which support several aspects of our design rationales and conclude with our future study plans.

References

Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to expose the complete List rather than only correct and linked references.

1
R. Aarhus, E. Grönvall, S.B. Larsen, and S. Wollsen. Turning training into play: Embodied gaming, seniors, physical training and motivation. Gerontechnology, 10(2):110–120, 2011.
2
G. Alankus, A. Lazar, M. May, and C. Kelleher. Towards customizable games for stroke rehabilitation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2113–2122. ACM, 2010.
3
T. Apted, J. Kay, and A. Quigley. Tabletop sharing of digital photographs for the elderly. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 781–790. ACM, 2006.
4
L. Axelrod, G. Fitzpatrick, J. Burridge, S. Mawson, P. Smith, T. Rodden, and I. Ricketts. The reality of homes fit for heroes: design challenges for rehabilitation technology at home. Journal of Assistive Technologies, 3(2):35–43, 2009.
5
B. Bonnechère, B. Jansen, L. Omelina, J. Van Sint, et al. The use of commercial video games in rehabilitation: a systematic review. International journal of rehabilitation research, 39(4):277–290, 2016.
6
B. Bonnechère, B. Jansen, L. Omelina, and S. Van Sint Jan. Do patients perform their exercises at home and why (not)? a survey on patients’ habits during rehabilitation exercises. Ulutas Med J, 2:41–6, 2016.
7
J.W. Burke, M. McNeill, D. Charles, P.J. Morrow, J. Crosbie, and S. McDonough. Augmented reality games for upper-limb stroke rehabilitation. In Games and Virtual Worlds for Serious Applications (VS-GAMES), 2010 Second International Conference on, pages 75–78. IEEE, 2010.
8
J.W. Burke, M. McNeill, D.K. Charles, P.J. Morrow, J.H. Crosbie, and S.M. McDonough. Optimising engagement for stroke rehabilitation using serious games. The Visual Computer, 25(12):1085, 2009.
9
M.S. Cameirao, I.B.S. Bermúdez, E. Duarte Oller, and P.F. Verschure. The rehabilitation gaming system: a review. Stud Health Technol Inform, 145(6), 2009.
10
M.S. Cameirão, S.B. i Badia, E.D. Oller, and P.F. Verschure. Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation. Journal of neuroengineering and rehabilitation, 7(1):48, 2010.
11
M.S. Cameirão, S.B. i Badia, L. Zimmerli, E.D. Oller, and P.F. Verschure. The rehabilitation gaming system: a virtual reality based system for the evaluation and rehabilitation of motor deficits. In Virtual Rehabilitation, 2007, pages 29–33. IEEE, 2007.
12
J.H. Cauraugh and J.J. Summers. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in neurobiology, 75(5):309–320, 2005.
13
J. Crosbie, S. Lennon, M. McGoldrick, M. McNeill, and S. McDonough. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clinical Rehabilitation, 26(9):798–806, 2012.
14
J.J. Daly, N. Hogan, E.M. Perepezko, H.I. Krebs, et al. Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of rehabilitation research and development, 42(6):723, 2005.
15
M.P. Dijkers, R. Erlandson, K. Kristy, D. Geer, A. Nichols, et al. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. Journal of rehabilitation research and development, 28(2):33, 1991.
16
L.R.A. Dos Santos, A.A. Carregosa, M.R. Masruha, P.A. Dos Santos, M.L.D.S. Coêlho, D.D. Ferraz, and N.M.D.S. Ribeiro. The use of nintendo wii in the rehabilitation of poststroke patients: a systematic review. Journal of Stroke and Cerebrovascular Diseases, 24(10):2298–2305, 2015.
17
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, and N. Hogan. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Archives of physical medicine and rehabilitation, 84(4):477–482, 2003.
18
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, R. Hughes, and N. Hogan. Robotic therapy for chronic motor impairments after stroke: Follow-up results. Archives of physical medicine and rehabilitation, 85(7):1106–1111, 2004.
19
G. Fitzpatrick, M. Balaam, and S.R. Egglestone. Involving stroke survivors in designing for rehabilitation at home. Therapeutic Strategies A Challenge for User Involvement in Design, page 13, 2010.
20
F. Garcia-Sanjuan, J. Jaen, and V. Nacher. Tangibot: a tangible-mediated robot to support cognitive games for ageing people usability study. Pervasive and Mobile Computing, 34:91–105, 2017.
21
K.M. Gerling, F.P. Schulte, and M. Masuch. Designing and evaluating digital games for frail elderly persons. In Proceedings of the 8th international conference on advances in computer entertainment technology, page 62. ACM, 2011.
22
C. Grefkes and N.S. Ward. Cortical reorganization after stroke: how much and how functional? The Neuroscientist, 20(1):56–70, 2014.
23
M.K. Holden. Virtual environments for motor rehabilitation. Cyberpsychology & behavior, 8(3):187–211, 2005.
24
J.A. Hosp and A.R. Luft. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural plasticity, 2011, 2011.
25
J.K. Hsu, R. Thibodeau, S.J. Wong, D. Zukiwsky, S. Cecile, and D.M. Walton. A “wii” bit of fun: The effects of adding nintendo wii® bowling to a standard exercise regimen for residents of long-term care with upper extremity dysfunction. Physiotherapy Theory and Practice, 27(3):185–193, 2011.
26
M. Hudson. Applying exergaming input to standard commercial digital games. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pages 1886–1895. ACM, 2016.
27
Y.-X. Hung, P.-C. Huang, K.-T. Chen, and W.-C. Chu. What do stroke patients look for in game-based rehabilitation: a survey study. Medicine, 95(11), 2016.
28
M.J. Johnson. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of NeuroEngineering and Rehabilitation, 3(1):29, 2006.
29
L.Y. Joo, T.S. Yin, D. Xu, E. Thia, P.F. Chia, C.W.K. Kuah, and K.K. He. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. Journal of rehabilitation medicine, 42(5):437–441, 2010.
30
H. Kim, L.M. Miller, I. Fedulow, M. Simkins, G.M. Abrams, N. Byl, and J. Rosen. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2):153–164, 2013.
31
H.I. Krebs, S. Mernoff, S.E. Fasoli, R. Hughes, J. Stein, and N. Hogan. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation, 23(1):81–87, 2008.
32
H.I. Krebs, B.T. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, and N. Hogan. Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Topics in stroke rehabilitation, 8(4):54–70, 2002.
33
J.A. Kumar, M. Binal Motawar PT, and K. Lakshminarayanan. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. Journal of rehabilitation research and development, 53(3):321, 2016.
34
K.E. Laver, S. George, S. Thomas, J.E. Deutsch, and M. Crotty. Virtual reality for stroke rehabilitation. The Cochrane Library, 2015.
35
A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, T.H. Wagner, H.I. Krebs, B.T. Volpe, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010.
36
M. Ma and K. Bechkoum. Serious games for movement therapy after stroke. In Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on, pages 1872–1877. IEEE, 2008.
37
P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt. A survey on robotic devices for upper limb rehabilitation. Journal of neuroengineering and rehabilitation, 11(1):3, 2014.
38
T. Nef, G. Quinter, R. Müller, and R. Riener. Effects of arm training with the robotic device armin i in chronic stroke: three single cases. Neurodegenerative diseases, 6(5–6):240–251, 2009.
39
Nintendo. Wii health and safety precautions.
40
D. Novak, A. Nagle, U. Keller, and R. Riener. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of neuroengineering and rehabilitation, 11(1):64, 2014.
41
O. ONeil, C. Gatzidis, and I. Swain. A state of the art survey in the use of video games for upper limb stroke rehabilitation. In Virtual, Augmented Reality and Serious Games for Healthcare 1, pages 345–370. Springer, 2014.
42
A. Özgür, W. Johal, F. Mondada, and P. Dillenbourg. Haptic-enabled handheld mobile robots: Design and analysis. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 2449–2461. ACM, 2017.
43
T. Park, C. Yoo, S.P. Choe, B. Park, and J. Song. Transforming solitary exercises into social exergames. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pages 863–866. ACM, 2012.
44
D. Rand, R. Kizony, and P.T.L. Weiss. The sony playstation ii eyetoy: low-cost virtual reality for use in rehabilitation. Journal of neurologic physical therapy, 32(4):155–163, 2008.
45
R. Sanchez, D. Reinkensmeyer, P. Shah, J. Liu, S. Rao, R. Smith, S. Cramer, T. Rahman, and J. Bobrow. Monitoring functional arm movement for home-based therapy after stroke. In Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, volume 2, pages 4787–4790. IEEE, 2004.
46
G. Saposnik, M. Levin, S.O.R.C.S.W. Group, et al. Virtual reality in stroke rehabilitation. Stroke, 42(5):1380–1386, 2011.
47
G. Saposnik, R. Teasell, M. Mamdani, J. Hall, W. McIlroy, D. Cheung, K.E. Thorpe, L.G. Cohen, M. Bayley, et al. Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation. Stroke, 41(7):1477–1484, 2010.
48
M. Shaughnessy, B.M. Resnick, and R.F. Macko. Testing a model of post-stroke exercise behavior. Rehabilitation nursing, 31(1):15–21, 2006.
49
M.M. Shoja, R.S. Tubbs, A. Malekian, A.H.J. Rouhi, M. Barzgar, and W.J. Oakes. Video game epilepsy in the twentieth century: a review. Child’s Nervous System, 23(3):265–267, 2007.
50
P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener. Effects of intensive arm training with the rehabilitation robot armin ii in chronic stroke patients: four single-cases. Journal of neuroengineering and rehabilitation, 6(1):46, 2009.
51
K. Thomson, A. Pollock, C. Bugge, and M. Brady. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. International Journal of Stroke, 9(4):479–488, 2014.
52
K. Thomson, A. Pollock, C. Bugge, and M.C. Brady. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disability and Rehabilitation: Assistive Technology, 11(6):454–461, 2016.
53
B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces. IBM systems journal, 39(3.4):915–931, 2000.
54
A. Van Delden, C.L.E. Peper, G. Kwakkel, and P.J. Beek. A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke research and treatment, 2012, 2012.
55
J.H. Van der Lee, R.C. Wagenaar, G.J. Lankhorst, T.W. Vogelaar, W.L. Devillé, and L.M. Bouter. Forced use of the upper extremity in chronic stroke patients. Stroke, 30(11):2369–2375, 1999.
56
M. Vandermaesen, T. De Weyer, K. Luyten, and K. Coninx. Physicube: providing tangible interaction in a pervasive upper-limb rehabilitation system. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, pages 85–92. ACM, 2014.
57
P. Wang, G.C.H. Koh, C.G. Boucharenc, T.M. Xu, C.C. Yen, et al. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pages 617–624. ACM, 2017.
58
J. Whitall, S.M. Waller, K.H. Silver, and R.F. Macko. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31(10):2390–2395, 2000.
59
H. Woldag and H. Hummelsheim. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. Journal of neurology, 249(5), 2002.
60
G. Yavuzer, A. Senel, M. Atay, and H. Stam. “playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. European journal of physical and rehabilitation medicine, 44(3):237–244, 2008.

 

via Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots

, , , , , ,

Leave a comment

[WEB SITE] Using Virtual Reality to Make Users Want to Exercise

[VIDEO] High-Tech Treadmill Uses Virtual Reality to Encourage Cardiovascular Fitness

Businesses are finding more uses for Virtual Reality (VR) as the technology develops.

VR is no longer only for gaming or enjoyment. An American company called Blue Goji is using VR to improve one’s health by making exercise more fun.

Blue Goji has offices in Austin, the capital of Texas. The company demonstrated its cardiovascular workout machine, called the Infinity treadmill, at the recent South by Southwest festival. The event is held every year in Austin.

A person using the treadmill wears a virtual reality headset when exercising. Before starting, the user is connected to a belt to prevent falls. Then, the user plays a VR game while running on the machine. The game can transport the user into the virtual world, where he or she can be racing against virtual people.

The cost of the hardware and computer software program is $12,000. That is a lot of money for most people. But Kyra Constam of Blue Goji says the virtual reality treadmill is ideal for places where people go to exercise, like a high-end gymnasium or recreation center. She added that people seeking treatment at physical therapy or rehabilitation centers would find the equipment useful.

Recently, Leonardo Mattiazzi tested the Infinity treadmill. Mattiazzi said he had a strong feeling to actually get running and do something that pushed his limits. He said the experience was more interesting than running inside the gym without actually going anywhere.

Motion sickness less likely

Constam said the active use of virtual reality helps solve a common problem while wearing a VR headset. She noted that a lot of VR experiences cause motion sickness because people are in motion during the game, but not moving in real life. But when the user is moving on the treadmill and in the game, the chances of motion sickness are reduced, she said.

However, users who tested the treadmill while wearing the VR headset each had a different experience. It took Leonardo Mattiazzi 10 seconds to set the controls to running in the virtual world.

VR learning curve

Kyra Constam said there generally is a learning curve for VR. The first time users feel lost, but “the more you do it, the more you get used to it,” she said.

Mark Sackler was a first time user. He said he felt a little sick at one point during the game. But he thought the experience was surprisingly realistic.

After carefully studying the users’ experiences, Blue Goji plans to begin selling the Infinity treadmill to the public in 2019.

VOA’s Elizabeth Lee reported on this story from Texas. Xiaotong Zhou adapted her report for Learning English. George Grow was the editor.

via Using Virtual Reality to Make Users Want to Exercise

, , , , , ,

Leave a comment

[WEB SITE] Game On: Virtual Reality as Pain Treatment Shows Promise in Early Trials

Imagine being in pain, but happily distracted from your suffering by being totally immersed in floating lazily down a river or tossing fish to hungry otters that pop up out of nowhere. Such scenarios of a 360-degree world are possible via virtual reality (VR), whereby a patient sits in a chair wearing a head visor connected to a computer and holds a small wireless device in his or her hand to change direction.

“Although [VR] is very early in its inception for treating painful conditions, we are hopeful that VR will interest other research and payors,” said James Choo, MD, owner and medical director of Pain Consultants of East Tennessee, in Knoxville, which conducted two clinical studies of VR. “I think there is a lot of potential for VR, especially if you marry VR to other pain treatments that are not widely available but that we know work, such as cognitive-behavioral therapy and mindfulness meditation for lower back pain.”

However, he added that few pain psychologists are practicing in the United States, and cognitive-behavioral therapy is time-consuming. “We have never had scalable treatments that work and that can be highly disseminated,” Dr. Choo said. “With VR, if you have the right software, there is an enormous potential to disseminate that type of care to millions of people rather than just a handful of patients who have access to the one pain psychologist that might be in their region.”

Similarly, mindfulness-based instruction through VR may be plausible.

“The effects of the type of VR program that we used derive from a game,” Dr. Choo said. “It is not just a passive immersive experience of looking around at the scene. You are actually playing a game—interacting with the environment itself. Besides distracting pain, VR is fun, like playing a video game.”

Dr. Choo said the immersive experience of being in a virtual environment and simply being distracted from pain are helpful. In addition, “perhaps even the immersive experience has its own analgesic effect,” he said. “But we do not understand quite yet the neuropathways that are being affected that cause the analgesic effect. Once we do, then we will be able to better target the type of VR programs that best suit the patient and their particular pain needs.”

Ted Jones, PhD, a clinical psychologist at Pain Consultants of East Tennessee, heard a conference speaker last year refer to VR as a syringe, meaning its effect “depends on the content.” He added, “Historically, since the late 1980s, VR has been used for procedural pain—basically for burn pain and injections in an inpatient setting or a burn unit. However, the majority of pain [treated by clinicians] is outpatient pain. So we are taking what has been used for inpatient procedural pain and using it for outpatient pain.”

To date, VR treatments at the clinic have been isolated to two completed studies, using software called Cool! developed by Firsthand Technology.

“What we have found is that if you give someone doses of VR, it cuts their pain dramatically,” said Dr. Jones, who was principal investigator of both trials. “However, there is no [long-term] effect. A week later, the patient is right back where he or she started, both painwise and depression-wise and stresswise. It is similar to a person coming to a pain clinic, giving them a dose of medicine and sending them home.”

The first study, conducted in 2015 and published last year in PLOS ONE (2016;11:e0167523), consisted of 30 patients with chronic pain. Participants were asked about their pain before and after a single, five-minute session of VR conducted at the clinic.

“The study decreased pain by 55% to 60%,” Dr. Jones said. “VR is like distractionon steroids, because when your brain is in a virtual world, it is like you are there. In comparison, morphine reduces pain by only one-third.”

The second study, performed last year at the clinic, involved 10 patients with neuropathic pain. The protocol was three sessions of VR, each lasting 20 minutes and spaced one week apart.

“Pain was cut by roughly 70%, due to the longer exposure sessions and multiple treatments,” Dr. Jones said. “There was also a lingering effect. Most patients reported that their pain continued to be less for about one day on average after each session.”

‘Still Out of Reach’

However, depression, anxiety, beliefs about pain and how to cope with pain did not change over time. “In other words, VR did not provide patients any emotional or cognitive benefit,” Dr. Jones said.

Dr. Jones said a single VR unit costs between $3,000 and $4,000. Although it’s a dramatic drop from the previous $8,000 cost, “it is still out of reach for most patients,” he said. “Further, many of the units currently available have a lot of wires and require a high-end machine. You cannot take it home with you—physically or financially.”

To address these shortcomings, Pain Consultants of East Tennessee and the University of Tennessee plan on conducting a pilot study of 10 to 20 patients this fall with the portable Samsung Gear VR, which has an easy-to-use headset and some pain and relaxation applications, along with a Fitbit fitness mobile device to detect activity level and record pain.

“We will determine if daily VR home use is effective, which should be the case, based on our two previous studies,” Dr. Jones said. “Using VR at home several times a day is like being prescribed a pain reliever to be taken two or three times daily. VR has the chance to replace as-needed pain medicine at home.”

The occupational therapy department at the pain clinic is also scheduled to incorporate VR into therapy for conditions such as phantom limb pain and stroke pain. “For this application, VR acts like a mirror, so patients can see and restore movement,” Dr. Jones said.

Despite enthusiasm about VR for pain, there are several hurdles and challenges to make the modality effective in the clinical space. Besides no payors yet, “we need more in-depth studies to show its efficacy for [specific] conditions,” Dr. Choo said.

Apart from employing VR as simply a game, VR may be used as a substitute therapist in certain cases, or for biometric functioning and rehabilitation. “These are completely different programs,” Dr. Choo said. “Therefore, we have to be very specific on the types of software programs we use and the way they deliver care.”

For instance, VR could be used to help patients meditate or provide biofeedback.

“One of the key [goals] is for VR to become a scalable model,” Dr. Choo said. “The unit we are using is not portable. But in the future, we envision all VR units being extremely portable, easy to use and accessible.”

Dr. Jones added, “VR has a lot of potential. We just need to match it to the right patient at the correct setting and the right cost.”

—Bob Kronemyer

Source: Game On: Virtual Reality as Pain Treatment Shows Promise in Early Trials – Pain Medicine News

, , ,

Leave a comment

[Master’s thesis] Tracking, monitoring and feedback of patient exercises using depth camera technology for home based rehabilitation – ANNA RIDDERSTOLPE – Full Text PDF

Abstract

Neurological and chronic diseases have profound impacts on a person’s life. Rehabilitation is essential in order to maintain and promote maximal level of recovery by pushing the bounds of physical, emotional and cognitive impairments. However, due to the low physical mobility and poor overall condition of many patients, traveling back and forth to doctors, nurses and rehabilitation centers can be exhausting tasks. In this thesis a game-based rehabilitation platform for home usage, supporting stroke and COPD rehabilitation is presented. The main goal is to make rehabilitation more enjoyable, individualized and easily accessible for the patients.

The game-based rehabilitation tool consists of three systems with integrated components: the caregiver’s planning and follow-up system, the patient’s gaming system and the connecting server system. The server back end components allow the storage of patient specific information that can be transmitted between the patient and the caregiver system for planning, monitoring and feedback purposes. The planning and follow-up system is a server system accessed through a web-based front-end, where the caregiver schedules the rehabilitation program adjusted for each individual patient and follow up on the rehabilitation progression. The patient system is the game platform developed in this project, containing 16 different games and three assessment tests. The games are based on specific motion patterns produced in collaboration with rehabilitation specialists. Motion orientation and guidance functions is implemented specifically for each exercise to provide feedback to the user of the performed motion and to ensure proper execution of the desired motion pattern.

The developed system has been tested by several people and with three real patients. The participants feedback supported the use of the game-based platform for rehabilitation as an entertaining alternative for rehabilitation at home. Further implementation work and evaluation with real patients are necessary before the product can be used for commercial purpose.

Full Text PDF

 

, , , , , , , ,

Leave a comment

[VIDEO] A virtual reality game to help stroke patients – Futuris – YouTube

At a sophisticated lab in Barcelona, researchers are convinced that computer models based on virtual reality can help people who have suffered strokes, by providing them with better rehabilitation techniques. The claim is not just science fiction.

, , ,

Leave a comment

%d bloggers like this: