Posts Tagged Game

[NEWS] Struggling to focus? This new brain training app may help

In a world in which our brains are almost constantly overstimulated, many of us may find it challenging to stay focused for extended periods. Researchers from the University of Cambridge in the United Kingdom have now developed an app that trains the mind to maintain concentration.

This newly developed brain-training app could effectively improve your concentration and other cognitive skills.

Research suggests that a newly developed brain training app may improve our concentration and other cognitive skills.

Many, if not most, of us spend our days rapidly switching between competing tasks. We call this “multitasking,” and take pride in how efficient we are in dealing with multiple problems at the same time.

However, multitasking requires that we quickly redirect our focus from one activity to another and then back again, which, in time, can have a detrimental effect on our ability to concentrate.

“We’ve all experienced coming home from work feeling that we’ve been busy all day but unsure what we actually did,” says Prof. Barbara Sahakian from the Department of Psychiatry at the University of Cambridge.

“Most of us spend our time answering emails, looking at text messages, searching social media, trying to multitask. But, instead of getting a lot done, we sometimes struggle to complete even a single task and fail to achieve our goal for the day,” she adds, noting that we may even find it difficult to stay focused on pleasant, relaxing activities, such as watching TV.

Yet, she continues, “For complex tasks, we need to get in the ‘flow’ and stay focused.” So, how can we re-teach our minds to stay focused?

Prof. Sahakian and colleagues believe that they may have found an effective and uncomplicated solution to this problem.

The research team has developed a brain training app called “Decoder,” which can help users improve their concentration, memory, and numerical skills.

The scientists have recently conducted a study to test the effectiveness of their new app, and they now report their results in the journal Frontiers in Behavioral Neuroscience.

An app that improves concentration

In the study, Prof. Sahakian and team worked with a cohort of 75 young and healthy adult participants. The trial spanned 4 weeks, and all the participants took a special test measuring their concentration skills at both the beginning and the end of the study.

As part of the trial, the researchers divided the participants into three groups. They asked one group to play the new Decoder training game, while the second group had to play Bingo, and the third group received no game to play.

Those in the first two groups played their respective games during eight 1-hour sessions over the 4 weeks, and they did so under the researchers’ supervision.

At the end of the trial period, the researchers found that the participants who had played Decoder demonstrated better attention skills than both the participants who had played Bingo and those who had played no game at all.

The researchers state that these improvements were “significant” and comparable to the effects of medication that doctors prescribe for the treatment of attention-impairing conditions, such as attention deficit hyperactivity disorder (ADHD).

App could help with ADHD

In the next step of the trial, Prof. Sahakian and team wanted to test whether Decoder could boost concentration without negatively affecting a person’s ability to shift their attention effectively from one task to another.

To do so, they asked participants who had used Decoder and Bingo to take the Trail Making Test (TMT), which assesses individuals’ attention-shifting capacity. The researchers found that Decoder players performed better on the TMT than Bingo players.

Finally, participants who played Decoder reported higher rates of enjoyment while participating in this activity, as well as stronger motivation and better alertness throughout all their sessions.

“Many people tell me that they have trouble focusing their attention. Decoder should help them improve their ability to do this,” says Prof. Sahakian.

“In addition to healthy people, we hope that the game will be beneficial for patients who have impairments in attention, including those with ADHD or traumatic brain injury. We plan to start a study with traumatic brain injury patients this year,” the researcher also notes.

An ‘evidence-based game’

Cambridge Enterprise recently licensed the new game to app developer Peak, who specialize in the release of brain training apps. Peak have adapted Decoder for the iPad platform, and the game is now available from the App Store as part of the Peak Brain Training package.

George Savulich, another of the current study’s authors, notes that, unlike other apps that claim to train the brain but do not necessarily deliver on their promise, he and his colleagues based the development of Decoder on hard scientific evidence.

Many brain training apps on the market are not supported by rigorous scientific evidence. Our evidence-based game is developed interactively […]. The level of difficulty is matched to the individual player, and participants enjoy the challenge of the cognitive training.”

George Savulich

“Peak’s version of Decoder is even more challenging than our original test game, so it will allow players to continue to gain even larger benefits in performance over time,” Prof. Sahakian adds.

“By licensing our game, we hope it can reach a wide audience who are able to benefit by improving their attention,” she says.

via Struggling to focus? This new brain training app may help

, , , , , ,

Leave a comment

[WEB SITE] This Smart Glove Could Be the Future of Physical Therapy

BY  01.10.2019

Rapael Smart Glove (Photo Credit: Neofect)

Recovering after a stroke isn’t easy, but Neofect is here to help patients track their rehabilitation progress with an innovative wearable solution.

At CES 2019, the company exhibited its Rapael Smart Glove, a high-tech rehab device that helps stroke patients improve their hand movements. The device also syncs with an app, where patients can play rehabilitation games and track milestones.

Neofect didn’t disclose a price for the Rapael Smart Glove, but customers can go on the company’s website to buy it. The Rapael Smart Glove is also available for clinics that need stroke rehabilitation equipment.

https://mashable.com/videos/blueprint:yanmAj9rnK/embed/?player=offsite?wmode=transparent

Using the Rapael Smart Glove is very easy: Gently slide on the device, connect to the Rapael App with a smartphone or tablet, and play a variety of rehabilitation games. The app’s fun games include virtual tennis matches and house painting, and they’re available in different levels to balance challenge and motivation. Plus, the Rapael App collects practice data for patients, so they can track their hand recovery progress.

With the Rapael Smart Glove, patients can practice hand exercises and improve dexterity over time. An advantage of the Rapael Smart Glove is that it can help stroke patients who might not have immediate access to hospitals or physical therapy facilities, so they can work on their hand movements without leaving home.

“We aim to help patients all around the world including, but not limited to, those unable to receive appropriate treatment due to economic or geographic reasons,” says Neofect’s website. “By providing rehab training products and services that are available anytime and anywhere, we are committed to improving patient’s rehab experiences and quality of life.”

 

via This Smart Glove Could Be the Future of Physical Therapy – Geek.com

, , , , , , , , ,

Leave a comment

[WEB SITE] Augmented reality game helps stroke victims recover faster

A new augmented reality game is being developed to help stroke victims stick to their rehabilitation regimen.

More than six million people worldwide die each year from strokes. Every two seconds, someone, somewhere is having one. Not all strokes are fatal, of course. In fact, 80 per cent of stroke victims survive, though many experience one or more serious lingering effects, including paralysis and cognitive and motor impairment. When a stroke occurs, areas of the brain are deprived of oxygen and neural pathways can become damaged. The good news is that the brain is a resourceful organ, and thanks to neural plasticity, it may be possible to relearn forgotten abilities through rehabilitation—targeted repetitive exercises—that helps the neurons re-organize themselves and allows the victim to regain function. The problem is that rehab is hard, and painful, and according to Regan David Petrie, some 69 per cent of stroke patients don’t get the recommended level of rehab activities. This is why the master student at Victoria University of Wellington has been developing an augmented reality (AR) mobile game, an “exergame,” whose purpose is to engage and reward stroke victims in order to keep them engaged in their therapy.

NZ Fauna AR

Petrie’s game was designed using Google’s Tango Augmented Reality platform prior to the search giant switching support to its newer, more consumer-oriented ARCore system. As the game’s player observes his or her surroundings through a mobile device, virtual 3D objects appear to set the scene and with which the player can interact.

(Photo: Petrie, et al)

The game, still under development, is called NZ Fauna AR. As its name implies, it’s designed for stroke victims of New Zealand, leveraging their love of the country’s forests to provide a calming and enjoyable context in which play can occur. Fizzy, a virtual Rowi kiwi, is the AR star of the current iteration of the game.

(Photo: Petrie, et al)

Players gather blueberries and feed them to Fizzy by performing sit-to-stand exercises, an important form of therapy for stroke victims. The most basic actions of the game are:

• standing up to throw berries to Fizzy

• sitting down to collect more berries from an AR bucket on the floor.

There are game controller buttons with interactive elements, but, says Petrie’s thesis, “The game was designed to incorporate minimal touch interactions—this was driven by the interaction model which was comprised of natural physical movements,” that is, standing up and sitting down.

Petrie has plans for at least two other versions of the game:

• Biggie the Tuatara, focusing on stepping exercises

• Penny the Yellow-Eyed Penguin, focusing on walking exercises.

Testing with Fizzy

Petrie’s thesis describes the design and goals of the app, and usability testing he completed for NZ Fauna AR.

Pre-testing

Petrie began with a round of preliminary testing with three neurological physiotherapists who helped him refine the gameplay to strengthen the rehab it provided. The three endorsed the idea and game, with one saying, “This is what we need to get people to enjoy therapy.”

User testing

Petrie tested NZ Fauna AR with a cohort of five stroke victims in two phases. The five subjects were selected as “a user base that represented an audience with a wide range of cognitive and physiological abilities.” Gameplay lasted for 10-15 minutes, followed by a questionnaire in which they recorded their reactions to the experience.

A second test was conducted with two of the five subjects, who used a second version of the game prototype in which Petrie had fixed some flaws revealed in the first round. One of the subjects still had trouble understanding the game, while the other one loved the changes. One reaction to the game was particularly touching, and revealing: “Caroline passionately illustrated that taking the focus off her is important and that her being the caregiver (instead of the care receiver) and coherently helping someone else (the kiwi) was delightful and made the experience meaningful to her.” One can imagine that such a perspective shift would be welcome for anyone sick of being the subject of chronic care.

(Source: Petrie, et al)

Level up

Petrie will no doubt continue to refine his game, not least because he’ll probably want to migrate to Google’s latest AR platform. He also hopes to add a multiplayer mode of some sort so stroke patients can do their rehab together, with the added social element making it even more fun.

As to the efficacy of AR for promoting rehabilitation in stroke victims and others who require repetitive exercise to regain lost function, it would seem that the game designers involved will need to capture some Pokémon Go/Super Mario/Angry Birds magic to keep players—the patients—engaged. That’s a challenge for any game developer, but NZ Fauna AR is certainly an interesting and potentially life-changing use of AR.

via Augmented reality game helps stroke victims recover faster – Big Think

, , , ,

Leave a comment

[WEB SITE] Virtual personal trainer helps seniors get more exercise at home

U of A researcher developing personalized program that brings the appeal of electronic gaming to physical therapy for older adults.

By BEV BETKOWSKI

 

A high-tech University of Alberta research project is letting seniors hit a computerized gym especially designed for their needs.

VirtualGym, an electronic game that combines the entertainment of gaming with prescribed exercises, is being put through its paces in a Calgary seniors’ residence to test its user-friendliness and appeal.

Once perfected, it will deliver at-home therapeutic exercises for seniors with chronic health issues, mobility problems or dementia, at the click of a button.

“It’s a concept of bringing rehabilitation home,” said PhD candidate Noelannah Neubauer, who helped design the program. “We already have telehealth being used by doctors, why not rehabilitation too?”

The joint research project is teaming computing scientist Eleni Stroulia and other researchers from the faculties of science and rehabilitation medicine, with support from AGE-WELL, Canada’s Technology and Aging Network.

Designed to work through Kinect, a motion sensor system originally designed for Xbox video game consoles, VirtualGym works by giving users personalized feedback as they exercise along with an onscreen avatar using a “Simon Says” theme.

“It’s designed so the exercises are completely customizable from a personal trainer or physical therapist and their progress can be monitored,” Neubauer said. By recording users’ movements through VirtualGym, therapists can remotely watch for progressions and adjust exercises accordingly.

Stroulia and her team thought their original version of VirtualGym, developed in 2015, would be a good fit for seniors, but it was a flop with their test group, who found the game too busy.

“They didn’t like it at all,” said Victor Fernandez-Cervantes, a post-doctoral researcher in computing science, who took it back to the drawing board.

Using feedback from Edmonton senior Stuart Embleton and other volunteers from the Cardiac Athletic Society of Edmonton who tried the system, Fernandez-Cervantes made VirtualGym more user-friendly.

“We wanted to design it from their point of view.”

He dialled down the noise with a less distracting and cartoonish version of the game. The screen scenery evolved from its original version—an instructional avatar exercising on snowy ground in front of a brick building—to a soothing blank-walled room with a potted plant at either side. The avatar’s build was also adjusted to reflect a more typical body shape for older adults. As well, he programmed its movements with simple but specific instructions on how to do an exercise properly, complete with correctional tools like arrows and colours that pop up if needed.

Fernandez-Cervantes is continuing to tweak VirtualGym to create a 3-D version. Right now the exercises are only partially viewable, which is a problem for seniors, Embleton believes. “If the program wants you to lift your leg and kick your foot up, you should be able to see that action from a suitable perspective,” he explained.

Other planned improvements include adding simple games to measure cognitive awareness for users. “Over time, perhaps changes in scores could reflect varying levels of cognitive impairment,” Neubauer said.

The eventual plan is to market VirtualGym widely through a spinoff company, Stroulia said.

Embleton, 77, believes seniors would use VirtualGym if it were available to them.

“Most seniors nowadays have computers and TV sets, and that, plus an optical input, is all you need to use the system. It’s going to be more and more useful as it’s further developed. It’s called a game, but it’s really a useful therapeutic process. If I had a broken hip or was frail or couldn’t drive, and needed some physical therapy, I could use a virtual gym at home,” he said.

That’s especially valuable for rural or shut-in seniors who can’t go to real-life gym classes or make regular visits to physiotherapy clinics, said Neubauer.

“We want seniors to be able to exercise more, and this provides another option for them.”

Their work on VirtualGym also offers insight and a set of guidelines for other game designers wanting to develop exercise technology for seniors, said Fernandez-Cervantes.

“When designing products, seniors need to be involved. Soon enough, everyone will be a senior.”

 

via Virtual personal trainer helps seniors get more exercise at home

, , , , , , , ,

Leave a comment

[WEB SITE] Tampa students develop virtual reality games to increase physical therapy’s effectiveness

VIDEO —> VR could increase physical therapy effectiveness

http://www.fox13news.com/health/tampa-students-develop-virtual-reality-games-to-increase-physical-therapy-s-effectiveness

 – Anyone who’s gone through physical therapy knows it can be an arduous and time-consuming process, but what if physical therapy was more like playing a really fun video game?

Some students at the University of Tampa are changing the game for injury recovery, using virtual reality to ease the mental burden of rehabilitation.

Student Jonathan Truong is part of the team of UT students developing PT VR. As a child, he contracted meningitis and, as a complication of the disease, suffered a stroke.

Since then, he’s gone through eight rounds of physical therapy. His history of pain and rehab is the driving force behind his desire to improve the field.

“It’s aggravating,” Truong said. “Physical therapy is boring. It’s very repetitive for me.”

The University of Tampa senior is majoring in entrepreneurship, meanwhile, keeping an eye on advancements in virtual reality.

So he launched Verapy. It allows patients to do physical therapy using a virtual reality headset connected to sensors on a patient’s hands and feet.

“We are allowing these patients to feel empowered,” he said. “They are doing their physical therapy without thinking about it.”

But the game isn’t just a game. Verapy games sent data that can help physical therapists understand a patient’s improvement, both for pain level and range of motion.

“The therapist doesn’t have to watch them constantly,” he said. “So it saves them time.”

There are a number of games that allow for work on different body parts. It’s still in beta testing in three physical therapist’s offices in the Bay Area.

A problem doctors and therapists face is patients quitting before they are fully rehabilitated. They hope Verapy will help them keep more patients.

It’s music to Jonathan’s ears, after what he’s been through.

“It [makes] me feel great,” he said, adding that Verapy has gotten 16 letters of intent from local therapists to test the product.

via Tampa students develop virtual reality games to increase physical therapy’s effectiveness

, , ,

Leave a comment

[Abstract + References] Project Star Catcher: A Novel Immersive Virtual Reality Experience for Upper Limb Rehabilitation

Abstract

Modern immersive virtual reality experiences have the unique potential to motivate patients undergoing physical therapy for performing intensive repetitive task-based treatment and can be utilized to collect real-time user data to track adherence and compliance rates. This article reports the design and evaluation of an immersive virtual reality game using the HTC Vive for upper limb rehabilitation, titled “Project Star Catcher” (PSC), aimed at users with hemiparesis. The game mechanics were adapted from modified Constraint Induced Therapy (mCIT), an established therapy method where users are asked to use the weaker arm by physically binding the stronger arm. Our adaptation changes the physical to psychological binding by providing various types of immersive stimulation to influence the use of the weaker arm. PSC was evaluated by users with combined developmental and physical impairments as well as stroke survivors. The results suggest that we were successful in providing a motivating experience for performing mCIT as well as a cost-effective solution for real-time data capture during therapy. We conclude the article with a set of considerations for immersive virtual reality therapy game design.

References

1
Gilda Aparecida de Assis, Ana Grasielle Dionísio Corrêa, Maria Bernardete Rodrigues Martins, Wendel Goes Pedrozo, and Roseli de Deus Lopes. 2016. An augmented reality system for upper-limb post-stroke motor rehabilitation: A feasibility study. Disabil. Rehabil. Assist. Technol. 11, 6 (2016), 521–528.
2
Alejandro Baldominos, Yago Saez, and Cristina García del Pozo. 2015. An approach to physical rehabilitation using state-of-the-art virtual reality and motion tracking technologies. Proced. Comput. Sci. 64 (2015), 10–16.
3
Stacy J. Morris Bamberg, Ari Y. Benbasat, Donna Moxley Scarborough, David E. Krebs, and Joseph A. Paradiso. 2008. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12, 4 (2008), 413–423.
4
Rosa María Baños, Cristina Botella, Mariano Alcañiz, Víctor Liaño, Belén Guerrero, and Beatriz Rey. 2004. Immersion and emotion: Their impact on the sense of presence. CyberPsychol. Behav. 7, 6 (2004), 734–741.
5
Corey J. Bohil, Bradly Alicea, and Frank A. Biocca. 2011. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 12 (2011), 752–762.
6
Nancy N. Byl, Gary M. Abrams, Erica Pitsch, Irina Fedulow, Hyunchul Kim, Matt Simkins, Srikantan Nagarajan, and Jacob Rosen. 2013. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. J. Hand Ther. 26, 4 (2013), 343–352.
7
Mónica S. Cameirão, S. Bermúdez, and P. F. M. J. Verschure. 2008. Virtual reality based upper extremity rehabilitation following stroke: A review. J. CyberTher. Rehabil. 1, 1 (2008), 63–74.
8
R. Campbell, M. Evans, M. Tucker, B. Quilty, P. Dieppe, and J. L. Donovan. 2001. Why don’t patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee. J. Epidemiol. Commun. Health 55, 2 (2001), 132–138.
9
Stephanie K. Carter and John A. Rizzo. 2007. Use of outpatient physical therapy services by people with musculoskeletal conditions. Phys. Ther. 87, 5 (2007), 497.
10
Derwin K. Chan, Chris Lonsdale, Po Y. Ho, Patrick S. Yung, and Kai M. Chan. 2009. Patient motivation and adherence to postsurgery rehabilitation exercise recommendations: The influence of physiotherapists’ autonomy-supportive behaviors. Arch. Phys. Med. Rehabil. 90, 12 (2009), 1977–1982.
11
Luca Chittaro, Riccardo Sioni, Cristiano Crescentini, and Franco Fabbro. 2017. Mortality salience in virtual reality experiences and its effects on users attitudes towards risk. Int. J. Hum.-Comput. Stud. 101 (2017), 10–22.
12
Davide Corbetta, Federico Imeri, and Roberto Gatti. 2015. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 61, 3 (2015), 117–124.
13
GSV Capital Corp. 2013. GSV Capital Corp. The Pioneer Building. Retrieved from http://gsvcap.com/wp/market-commentary/project-runway/.
14
Patrick J. Costello. 1997. Health and Safety Issues Associated with Virtual Reality: A Review of Current Literature. Advisory Group on Computer Graphics.
15
J. H. Crosbie, S. Lennon, J. R. Basford, and S. M. McDonough. 2007. Virtual reality in stroke rehabilitation: Still more virtual than real. Disabil. Rehabil. 29, 14 (2007), 1139–1146.
16
Mónica da Silva Cameirão, Sergi Bermúdez i Badia, Esther Duarte, and Paul F. M. J. Verschure. 2011. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: A randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor. Neurol. Neurosci. 29, 5 (2011), 287–298.
17
Julieta Dascal, Mark Reid, Waguih William IsHak, Brennan Spiegel, Jennifer Recacho, Bradley Rosen, and Itai Danovitch. 2017. Virtual reality and medical inpatients: A systematic review of randomized, controlled trials. Inn. Clin. Neurosci. 14, 1–2 (2017), 14.
18
Judith E. Deutsch, Jeffrey A. Lewis, and Grigore Burdea. 2007. Technical and patient performance using a virtual reality-integrated telerehabilitation system: Preliminary finding. IEEE Trans. Neur. Syst. Rehabil. Eng. 15, 1 (2007), 30–35.
19
Julia Diemer, Georg W. Alpers, Henrik M. Peperkorn, Youssef Shiban, and Andreas Mühlberger. 2015. The impact of perception and presence on emotional reactions: A review of research in virtual reality. Front. Psychol. 6, Article 26 (2015), 1–9.
20
Sheryl Flynn, Phyllis Palma, and Anneke Bender. 2007. Feasibility of using the sony playstation 2 gaming platform for an individual poststroke: A case report. J. Neurol. Phys. Therapy 31, 4 (2007), 180–189.
21
AMP New Ventures Follow. 2016. Virtual Reality (VR) Continuum—AMP New Ventures. Retrieved from https://www.slideshare.net/ampnewventures/virtual-reality-vr-continuum-amp-new-ventures.
22
Centers for Medicare and Medicaid Services. 2016. U.S. Department of Health and Human Services Centers for Medicare 8 Medicaid Services (CMS). Report to the Congress: Medicare Payment Policy. Technical Report, 2016. Retrieved February 7, 2016 from http://www.medpac.gov/docs/default-source/reports/march-2016-report-to-the-congress-medicare-payment-policy.pdf?sfvrsn=0.
23
Helena Grillon, Françoise Riquier, Bruno Herbelin, and Daniel Thalmann. 2006. Virtual reality as a therapeutic tool in the confines of social anxiety disorder treatment. Int. J. Disabil. Hum. Dev. 5, 3 (2006), 243–250.
24
Diane Gromala, Xin Tong, Amber Choo, Mehdi Karamnejad, and Chris D. Shaw. 2015. The virtual meditative walk: Virtual reality therapy for chronic pain management. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 521–524.
25
Sophie Heins, Stéphanie Dehem, Vincenza Montedoro, Franz Rocca, Pierre-Henri de Deken, Martin Edwards, Bruno Dehez, Matei Mancas, Gaëtan Stoquart, Thierry Lejeune, et al. 2017. Robotic-assisted serious game for motor and cognitive post-stroke rehabilitation. In Proceedings of the 5th IEEE Conference on Serious Games and Applications for Health.
26
Hunter G. Hoffman, Gloria T. Chambers, Walter J. Meyer, Lisa L. Arceneaux, William J. Russell, Eric J. Seibel, Todd L. Richards, Sam R. Sharar, and David R. Patterson. 2011. Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Ann. Behav. Med. 41, 2 (2011), 183–191.
27
Jerome Iruthayarajah, Amanda McIntyre, Andreea Cotoi, Steven Macaluso, and Robert Teasell. 2017. The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Top. Stroke Rehabil. 24, 1 (2017), 68–79.
28
Kirsten Jack, Sionnadh Mairi McLean, Jennifer Klaber Moffett, and Eric Gardiner. 2010. Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review. Manual Therapy 15, 3 (2010), 220–228.
29
Eun-Kyu Ji and Sang-Heon Lee. 2016. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: A preliminary study. J. Phys. Ther. Sci. 28, 11 (2016), 3168–3172.
30
Dahlia Kairy, Michel Tousignant, Nancy Leclerc, Anne-Marie Côté, Mélanie Levasseur, et al. 2013. The patients perspective of in-home telerehabilitation physiotherapy services following total knee arthroplasty. Int. J. Environ. Res. Publ. Health 10, 9 (2013), 3998–4011.
31
Michelle R. Kandalaft, Nyaz Didehbani, Daniel C. Krawczyk, Tandra T. Allen, and Sandra B. Chapman. 2013. Virtual reality social cognition training for young adults with high-functioning autism. J. Autism Dev. Disord. 43, 1 (2013), 34–44.
32
Oliver Kreylos. 2016. Lighthouse tracking examined. Retrieved from http://doc-ok.org/?p=1478.
33
Danielle E. Levac, Stephanie M. N. Glegg, Heidi Sveistrup, Heather Colquhoun, Patricia Miller, Hillel Finestone, Vincent DePaul, Jocelyn E. Harris, and Diana Velikonja. 2016. Promoting therapists use of motor learning strategies within virtual reality-based stroke rehabilitation. PloS One 11, 12 (2016), e0168311.
34
Mindy F. Levin, Osnat Snir, Dario G. Liebermann, Harold Weingarden, and Patrice L. Weiss. 2012. Virtual reality versus conventional treatment of reaching ability in chronic stroke: Clinical feasibility study. Neurol. Ther. 1, 1 (2012), 3.
35
Robert W. Lindeman, Yasuyuki Yanagida, Kenichi Hosaka, and Shinji Abe. 2006. The tactapack: A wireless sensor/actuator package for physical therapy applications. In Proceedings of the 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. IEEE, 337–341.
36
Roberto Lloréns, Enrique Noé, Carolina Colomer, and Mariano Alcañiz. 2015. Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 96, 3 (2015), 418–425.
37
Keith R. Lohse, Courtney G. E. Hilderman, Katharine L. Cheung, Sandy Tatla, and H. F. Machiel Van der Loos. 2014. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PloS One 9, 3 (2014), e93318.
38
Peter S. Lum, Gitendra Uswatte, Edward Taub, Phillip Hardin, and Victor W. Mark. 2006. A telerehabilitation approach to delivery of constraint-induced movement therapy. J. Rehabil. Res. Dev. 43, 3 (2006), 391.
39
Victor W. Mark and Edward Taub. 2004. Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restor. Neurol. Neurosci. 22, 3–5 (2004), 317–336.
40
Gary Marshall. 2016. Best VR controller: HTC Vive vs Oculus Rift vs PlayStation VR vs Gear VR. Retrieved April 30, 2017 from http://www.techradar.com/news/gaming/best-vr-controller-htc-vive-vs-oculus-rift-vs-.
41
R. R. Mellecker and A. M. McManus. 2014. Active video games and physical activity recommendations: A comparison of the Gamercize Stepper, XBOX Kinect and XaviX J-Mat. J. Sci. Med. Sport 17, 3 (2014), 288–292.
42
Nexhmedin Morina, Hiske Ijntema, Katharina Meyerbröker, and Paul M. G. Emmelkamp. 2015. Can virtual reality exposure therapy gains be generalized to real-life? A meta-analysis of studies applying behavioral assessments. Behav. Res. Ther. 74 (2015), 18–24.
43
Hossein Mousavi Hondori and Maryam Khademi. 2014. A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014 (2014).
44
Maria V. Nararro-Haro, Hunter G. Hoffman, Azucena Garcia-Palacios, Mariana Sampaio, Wadee Alhalabi, Karyn Hall, and Marsha Linehan. 2016. The use of virtual reality to facilitate mindfulness skills training in dialectical behavioral therapy for borderline personality disorder: A case study. Front. Psychol. 7, Article 1573 (2016), 1–9.
45
Diederick C. Niehorster, Li Li, and Markus Lappe. 2017. The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception 8, 3 (2017), 2041669517708205.
46
NINDS. 2014. Post-Stroke Rehabilitation. NIH Publication No. 14 1846. Retrieved April 30, 2017 from https://stroke.nih.gov/materials/rehabilitation.html.
47
Stephen J. Page, Peter Levine, Sueann Sisto, Quin Bond, and Mark V. Johnston. 2002. Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clin. Rehabil. 16, 1 (2002), 55–60.
48
Marco Pasch, Nadia Berthouze, Betsy Dijk, and Anton Nijholt. 2008. Motivations, strategies, and movement patterns of video gamers playing Nintendo Wii boxing. In Proceedings of the Facial and Bodily Expressions for Control and Adaptation of Games Workshop.
49
Lamberto Piron, Andrea Turolla, Michela Agostini, Carla Zucconi, Feliciana Cortese, Mauro Zampolini, Mara Zannini, Mauro Dam, Laura Ventura, Michela Battauz, et al. 2009. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41, 12 (2009), 1016–1020.
50
Barbara Olasov Rothbaum, Matthew Price, Tanja Jovanovic, Seth D. Norrholm, Maryrose Gerardi, Boadie Dunlop, Michael Davis, Bekh Bradley, Erica J. Duncan, Albert Rizzo, et al. 2014. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am. J. Psychiat. 171, 6 (2014), 640–648.
51
Anil K. Roy, Yash Soni, and Sonali Dubey. 2013. Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In Proceedings of the 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS’13). IEEE, 298–304.
52
Mar Rus-Calafell, José Gutiérrez-Maldonado, and Joan Ribas-Sabaté. 2014. A virtual reality-integrated program for improving social skills in patients with schizophrenia: A pilot study. J. Behav. Ther. Exp. Psychiat. 45, 1 (2014), 81–89.
53
Yasser Salem, Stacy Jaffee Gropack, Dale Coffin, and Ellen M. Godwin. 2012. Effectiveness of a low-cost virtual reality system for children with developmental delay: A preliminary randomised single-blind controlled trial. Physiotherapy 98, 3 (2012), 189–195.
54
Gustavo Saposnik, Mindy Levin, Stroke Outcome Research Canada (SORCan) Working Group, et al. 2011. Virtual reality in stroke rehabilitation. Stroke 42, 5 (2011), 1380–1386.
55
Gustavo Saposnik, Robert Teasell, Muhammad Mamdani, Judith Hall, William McIlroy, Donna Cheung, Kevin E. Thorpe, Leonardo G. Cohen, Mark Bayley, et al. 2010. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation. Stroke 41, 7 (2010), 1477–1484.
56
Dante D’Orazio Savov and Vlad. 2015. Valve’s VR headset is called the Vive and it’s made by HTC. Retrieved from https://www.theverge.com/2015/3/1/8127445/htc-vive-valve-vr-headset.
57
Yue X. Shi, Jin H. Tian, Ke H. Yang, and Yue Zhao. 2011. Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 92, 6 (2011), 972–982.
58
Youssef Shiban, Iris Schelhorn, Paul Pauli, and Andreas Mühlberger. 2015. Effect of combined multiple contexts and multiple stimuli exposure in spider phobia: A randomized clinical trial in virtual reality. Behav. Res. Ther. 71 (2015), 45–53.
59
Fabian Soffel, Markus Zank, and Andreas Kunz. 2016. Postural stability analysis in virtual reality using the HTC vive. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. ACM, 351–352.
60
Digital Trends Staff. 2017. Oculus Rift vs. HTC Vive. Retrieved from https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/.
61
Sofia Straudi, Giacomo Severini, Amira Sabbagh Charabati, Claudia Pavarelli, Giulia Gamberini, Anna Scotti, and Nino Basaglia. 2017. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: An exploratory study. BMC Neurol. 17, 1 (2017), 86.
62
Daria Tsoupikova, Kristen Triandafilou, Saumya Solanki, Alex Barry, Fabian Preuss, and Derek Kamper. 2016. Real-time diagnostic data in multi-user virtual reality post-stroke therapy. In Proceedings of the SIGGRAPH ASIA 2016 VR Showcase (SA’16). ACM, New York, NY. DOI:https://doi.org/10.1145/2996376.2996387
63
Pan Wang, Gerald Choon Huat Koh, Christian Gilles Boucharenc, Tian Ma Xu, Hamasaki, and Ching Chiuan Yen. 2017. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the 11th International Conference on Tangible, Embedded, and Embodied Interaction (TEI’17). ACM, New York, NY, 617–624. DOI:https://doi.org/10.1145/3024969.3025080

via Project Star Catcher

, , , , , , , , , , , ,

Leave a comment

[ARTICLE] Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke – Full Text

Abstract

Background

Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke.

Material/Methods

Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups.

Results

At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05).

Conclusions

Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.

Background

The maintenance of the core or upper body control, is essential for maintaining posture and stability while changing positions, performing activities of daily living (ADL), and ambulating [1,2]. Patients who are undergoing physical rehabilitation following stroke, tend to deviate towards the affected side, as a result of postural instability, which induces both asymmetrical trunk movement and trunk muscle weakness. Upper body instability makes it difficult to maintain postural control when performing tasks and leads to functional disability [3]. The lack of postural stability also affects the balance of patients following stroke, increasing the risk of falls, and negatively impacting on patient independence and safety. For example, it has been reported that up to 73% of patients with stroke experience a fall within six months after leaving hospital [4]. Falls following a stroke can have severe consequences, including hip fractures and reduced physical activity due to fear of repeat falls [5]. Therefore, because these factors can have a negative impact on patient rehabilitation following stroke, the improvement of postural stability is an important goal of patient rehabilitation following stroke [6].

Sports that involve paddling with a single oar, such as canoeing and kayaking, are effective outdoor activities that improve postural stability and upper body stabilization [7]. Continuous body adjustment and compensation are required during the single-oar paddling motion to maintain balance during perturbations caused by the movement of the canoe or kayak and the paddle in the water [8]. Currently, canoe paddling training can be conducted using an ergometer to provide a training opportunity that is independent of outdoor conditions and to better control training progression [9]. A paddling ergometer has also been studied for rehabilitation training of patients with paraplegia and has been shown to be effective in improving postural control, balance, motor performance, and upper extremity strength [8,9].

Game-based virtual reality (VR) using gaming consoles is now used as a therapeutic approach for the rehabilitation of patients with stroke and provides an opportunity for patients to perform activities that are difficult in a clinical setting. Furthermore, VR programs are often designed to be more entertaining and enjoyable than traditional physical therapy tasks, thereby encouraging patients to participate in the rehabilitation program.

The use of VR equipment specifically designed for physical rehabilitation is not yet commonly available in clinical settings. Therefore, VR rehabilitation programs using a game-based, motion-controlled console that can be used in clinical settings and at low cost that can utilize a variety of gaming software are needed.

The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke.[…]

 

Continue —>  Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke

An external file that holds a picture, illustration, etc.Object name is medscimonit-24-2590-g002.jpg

Figure 2
Game-based virtual reality (VR) canoe paddling training.

, , , , , , ,

Leave a comment

[WEB SITE] Virtual reality games to help patients’ rehabilitation in UAE

The AI system is already in use in Ras Al Khaimah Physiotherapy and Sports Centre and will be rolled out soon in all ministry hospitals.

A therapist will always be present to monitor these sessions of patients.

Games developed specially for rehabilitation in physiotherapy for patients of stroke, cerebral palsy and similar conditions, will be used by the Ministry of Health and Prevention (Mohap) as it rolls out use of artificial intelligence (AI) and virtual reality (VR) in hospitals.

The AI system is already in use in Ras Al Khaimah Physiotherapy and Sports Centre and will be rolled out soon in all other ministry hospitals. “Games are developed for rehab of such patients, for both children and adults, especially those suffering from cerebral palsy and motor delay conditions,” Dr Yousif Mohammed Al Serkal, assistant undersecretary for the hospital sector, told Khaleej Times.

“The AI system is composed of three parts – a TV set, a sensory kinetic bar and an X-Box linked with these. Specific games are used to assess how cognitive a patient is,” he said.

A therapist will always be present to monitor these sessions of patients and will assess their conditions accordingly, he added.

He also explained the advantages of VR using AI in physiotherapy to provide treatment. “This will allow the patient to complete the treatment at his/her home with the possibility of remote rehabilitation,” he said.

“In the treatment of stroke, the virtual reality system evaluates and enhances the recovery of the affected upper parts, in addition to the training for the walking device used for rehabilitation.

“The patient moves at a speed on the motion platform with changing virtual environments being displayed on the front screen to simulate daily activities. In the treatment of the balance disorder, virtual reality is a safe and effective alternative to conventional therapy to improve the balance in patients,” he said. “Patients have reported that they enjoyed VR therapy without suffering from side effects, and with increased motivation.

“This technique is also used to treat children with developmental disorders, including positive developments in both perceived and performance capabilities in areas of daily activities including social activities that they have not been able to do before.”

The virtual therapy also assists cerebral palsy patients in the reorganisation of the brain and movement ability and visual cognitive skills, in addition to social participation and personal factors.

More about VR with AI

The UAE Strategy for Artificial Intelligence (AI) is a project within the Centennial Plan 2071. The plan will also include virtual reality (VR) rehabilitation in physiotherapy for stroke patients, patients suffering from balance disorder and children with development disorders, cerebral palsy and Parkinson’s syndrome.

VR rehabilitation technology makes use of virtual world simulation to meet various requirements for effective medical intervention to achieve the best results using the video game controller and the moving sensor. Scientific studies have proven the effectiveness of this innovative technique in the rehabilitation and treatment of many such cases.

KT NANO EDIT

AI boost to healthcare

Healthcare industry stands to gain significantly by inducting artificial intelligence into various processes. The technology can take the fear out of procedures and make treatments more effective. The UAE has been experimenting on this front and results are encouraging so far. Innovation through AI is becoming more meaningful with its human-centric approach, and the medical experts are now looking at expanding its scope.

asmaalizain@khaleejtimes.com

 

via Virtual reality games to help patients’ rehabilitation in UAE – Khaleej Times

, , , , , ,

Leave a comment

[Abstract+References] Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots

Abstract

Rehabilitation aims to ameliorate deficits in motor control via intensive practice with the affected limb. Current strategies, such as one-on-one therapy done in rehabilitation centers, have limitations such as treatment frequency and intensity, cost and requirement of mobility. Thus, a promising strategy is home-based therapy that includes task specific exercises. However, traditional rehabilitation tasks may frustrate the patient due to their repetitive nature and may result in lack of motivation and poor rehabilitation. In this article, we propose the design and verification of an effective upper extremity rehabilitation game with a tangible robotic platform named Cellulo as a novel solution to these issues. We first describe the process of determining the design rationales to tune speed, accuracy and challenge. Then we detail our iterative participatory design process and test sessions conducted with the help of stroke, brachial plexus and cerebral palsy patients (18 in total) and 7 therapists in 4 different therapy centers. We present the initial quantitative results, which support several aspects of our design rationales and conclude with our future study plans.

References

Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to expose the complete List rather than only correct and linked references.

1
R. Aarhus, E. Grönvall, S.B. Larsen, and S. Wollsen. Turning training into play: Embodied gaming, seniors, physical training and motivation. Gerontechnology, 10(2):110–120, 2011.
2
G. Alankus, A. Lazar, M. May, and C. Kelleher. Towards customizable games for stroke rehabilitation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2113–2122. ACM, 2010.
3
T. Apted, J. Kay, and A. Quigley. Tabletop sharing of digital photographs for the elderly. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 781–790. ACM, 2006.
4
L. Axelrod, G. Fitzpatrick, J. Burridge, S. Mawson, P. Smith, T. Rodden, and I. Ricketts. The reality of homes fit for heroes: design challenges for rehabilitation technology at home. Journal of Assistive Technologies, 3(2):35–43, 2009.
5
B. Bonnechère, B. Jansen, L. Omelina, J. Van Sint, et al. The use of commercial video games in rehabilitation: a systematic review. International journal of rehabilitation research, 39(4):277–290, 2016.
6
B. Bonnechère, B. Jansen, L. Omelina, and S. Van Sint Jan. Do patients perform their exercises at home and why (not)? a survey on patients’ habits during rehabilitation exercises. Ulutas Med J, 2:41–6, 2016.
7
J.W. Burke, M. McNeill, D. Charles, P.J. Morrow, J. Crosbie, and S. McDonough. Augmented reality games for upper-limb stroke rehabilitation. In Games and Virtual Worlds for Serious Applications (VS-GAMES), 2010 Second International Conference on, pages 75–78. IEEE, 2010.
8
J.W. Burke, M. McNeill, D.K. Charles, P.J. Morrow, J.H. Crosbie, and S.M. McDonough. Optimising engagement for stroke rehabilitation using serious games. The Visual Computer, 25(12):1085, 2009.
9
M.S. Cameirao, I.B.S. Bermúdez, E. Duarte Oller, and P.F. Verschure. The rehabilitation gaming system: a review. Stud Health Technol Inform, 145(6), 2009.
10
M.S. Cameirão, S.B. i Badia, E.D. Oller, and P.F. Verschure. Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation. Journal of neuroengineering and rehabilitation, 7(1):48, 2010.
11
M.S. Cameirão, S.B. i Badia, L. Zimmerli, E.D. Oller, and P.F. Verschure. The rehabilitation gaming system: a virtual reality based system for the evaluation and rehabilitation of motor deficits. In Virtual Rehabilitation, 2007, pages 29–33. IEEE, 2007.
12
J.H. Cauraugh and J.J. Summers. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in neurobiology, 75(5):309–320, 2005.
13
J. Crosbie, S. Lennon, M. McGoldrick, M. McNeill, and S. McDonough. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clinical Rehabilitation, 26(9):798–806, 2012.
14
J.J. Daly, N. Hogan, E.M. Perepezko, H.I. Krebs, et al. Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of rehabilitation research and development, 42(6):723, 2005.
15
M.P. Dijkers, R. Erlandson, K. Kristy, D. Geer, A. Nichols, et al. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study. Journal of rehabilitation research and development, 28(2):33, 1991.
16
L.R.A. Dos Santos, A.A. Carregosa, M.R. Masruha, P.A. Dos Santos, M.L.D.S. Coêlho, D.D. Ferraz, and N.M.D.S. Ribeiro. The use of nintendo wii in the rehabilitation of poststroke patients: a systematic review. Journal of Stroke and Cerebrovascular Diseases, 24(10):2298–2305, 2015.
17
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, and N. Hogan. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Archives of physical medicine and rehabilitation, 84(4):477–482, 2003.
18
S.E. Fasoli, H.I. Krebs, J. Stein, W.R. Frontera, R. Hughes, and N. Hogan. Robotic therapy for chronic motor impairments after stroke: Follow-up results. Archives of physical medicine and rehabilitation, 85(7):1106–1111, 2004.
19
G. Fitzpatrick, M. Balaam, and S.R. Egglestone. Involving stroke survivors in designing for rehabilitation at home. Therapeutic Strategies A Challenge for User Involvement in Design, page 13, 2010.
20
F. Garcia-Sanjuan, J. Jaen, and V. Nacher. Tangibot: a tangible-mediated robot to support cognitive games for ageing people usability study. Pervasive and Mobile Computing, 34:91–105, 2017.
21
K.M. Gerling, F.P. Schulte, and M. Masuch. Designing and evaluating digital games for frail elderly persons. In Proceedings of the 8th international conference on advances in computer entertainment technology, page 62. ACM, 2011.
22
C. Grefkes and N.S. Ward. Cortical reorganization after stroke: how much and how functional? The Neuroscientist, 20(1):56–70, 2014.
23
M.K. Holden. Virtual environments for motor rehabilitation. Cyberpsychology & behavior, 8(3):187–211, 2005.
24
J.A. Hosp and A.R. Luft. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural plasticity, 2011, 2011.
25
J.K. Hsu, R. Thibodeau, S.J. Wong, D. Zukiwsky, S. Cecile, and D.M. Walton. A “wii” bit of fun: The effects of adding nintendo wii® bowling to a standard exercise regimen for residents of long-term care with upper extremity dysfunction. Physiotherapy Theory and Practice, 27(3):185–193, 2011.
26
M. Hudson. Applying exergaming input to standard commercial digital games. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pages 1886–1895. ACM, 2016.
27
Y.-X. Hung, P.-C. Huang, K.-T. Chen, and W.-C. Chu. What do stroke patients look for in game-based rehabilitation: a survey study. Medicine, 95(11), 2016.
28
M.J. Johnson. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of NeuroEngineering and Rehabilitation, 3(1):29, 2006.
29
L.Y. Joo, T.S. Yin, D. Xu, E. Thia, P.F. Chia, C.W.K. Kuah, and K.K. He. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. Journal of rehabilitation medicine, 42(5):437–441, 2010.
30
H. Kim, L.M. Miller, I. Fedulow, M. Simkins, G.M. Abrams, N. Byl, and J. Rosen. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2):153–164, 2013.
31
H.I. Krebs, S. Mernoff, S.E. Fasoli, R. Hughes, J. Stein, and N. Hogan. A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation, 23(1):81–87, 2008.
32
H.I. Krebs, B.T. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, and N. Hogan. Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Topics in stroke rehabilitation, 8(4):54–70, 2002.
33
J.A. Kumar, M. Binal Motawar PT, and K. Lakshminarayanan. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. Journal of rehabilitation research and development, 53(3):321, 2016.
34
K.E. Laver, S. George, S. Thomas, J.E. Deutsch, and M. Crotty. Virtual reality for stroke rehabilitation. The Cochrane Library, 2015.
35
A.C. Lo, P.D. Guarino, L.G. Richards, J.K. Haselkorn, G.F. Wittenberg, D.G. Federman, R.J. Ringer, T.H. Wagner, H.I. Krebs, B.T. Volpe, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19):1772–1783, 2010.
36
M. Ma and K. Bechkoum. Serious games for movement therapy after stroke. In Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on, pages 1872–1877. IEEE, 2008.
37
P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt. A survey on robotic devices for upper limb rehabilitation. Journal of neuroengineering and rehabilitation, 11(1):3, 2014.
38
T. Nef, G. Quinter, R. Müller, and R. Riener. Effects of arm training with the robotic device armin i in chronic stroke: three single cases. Neurodegenerative diseases, 6(5–6):240–251, 2009.
39
Nintendo. Wii health and safety precautions.
40
D. Novak, A. Nagle, U. Keller, and R. Riener. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of neuroengineering and rehabilitation, 11(1):64, 2014.
41
O. ONeil, C. Gatzidis, and I. Swain. A state of the art survey in the use of video games for upper limb stroke rehabilitation. In Virtual, Augmented Reality and Serious Games for Healthcare 1, pages 345–370. Springer, 2014.
42
A. Özgür, W. Johal, F. Mondada, and P. Dillenbourg. Haptic-enabled handheld mobile robots: Design and analysis. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 2449–2461. ACM, 2017.
43
T. Park, C. Yoo, S.P. Choe, B. Park, and J. Song. Transforming solitary exercises into social exergames. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pages 863–866. ACM, 2012.
44
D. Rand, R. Kizony, and P.T.L. Weiss. The sony playstation ii eyetoy: low-cost virtual reality for use in rehabilitation. Journal of neurologic physical therapy, 32(4):155–163, 2008.
45
R. Sanchez, D. Reinkensmeyer, P. Shah, J. Liu, S. Rao, R. Smith, S. Cramer, T. Rahman, and J. Bobrow. Monitoring functional arm movement for home-based therapy after stroke. In Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, volume 2, pages 4787–4790. IEEE, 2004.
46
G. Saposnik, M. Levin, S.O.R.C.S.W. Group, et al. Virtual reality in stroke rehabilitation. Stroke, 42(5):1380–1386, 2011.
47
G. Saposnik, R. Teasell, M. Mamdani, J. Hall, W. McIlroy, D. Cheung, K.E. Thorpe, L.G. Cohen, M. Bayley, et al. Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation. Stroke, 41(7):1477–1484, 2010.
48
M. Shaughnessy, B.M. Resnick, and R.F. Macko. Testing a model of post-stroke exercise behavior. Rehabilitation nursing, 31(1):15–21, 2006.
49
M.M. Shoja, R.S. Tubbs, A. Malekian, A.H.J. Rouhi, M. Barzgar, and W.J. Oakes. Video game epilepsy in the twentieth century: a review. Child’s Nervous System, 23(3):265–267, 2007.
50
P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener. Effects of intensive arm training with the rehabilitation robot armin ii in chronic stroke patients: four single-cases. Journal of neuroengineering and rehabilitation, 6(1):46, 2009.
51
K. Thomson, A. Pollock, C. Bugge, and M. Brady. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. International Journal of Stroke, 9(4):479–488, 2014.
52
K. Thomson, A. Pollock, C. Bugge, and M.C. Brady. Commercial gaming devices for stroke upper limb rehabilitation: a survey of current practice. Disability and Rehabilitation: Assistive Technology, 11(6):454–461, 2016.
53
B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces. IBM systems journal, 39(3.4):915–931, 2000.
54
A. Van Delden, C.L.E. Peper, G. Kwakkel, and P.J. Beek. A systematic review of bilateral upper limb training devices for poststroke rehabilitation. Stroke research and treatment, 2012, 2012.
55
J.H. Van der Lee, R.C. Wagenaar, G.J. Lankhorst, T.W. Vogelaar, W.L. Devillé, and L.M. Bouter. Forced use of the upper extremity in chronic stroke patients. Stroke, 30(11):2369–2375, 1999.
56
M. Vandermaesen, T. De Weyer, K. Luyten, and K. Coninx. Physicube: providing tangible interaction in a pervasive upper-limb rehabilitation system. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, pages 85–92. ACM, 2014.
57
P. Wang, G.C.H. Koh, C.G. Boucharenc, T.M. Xu, C.C. Yen, et al. Developing a tangible gaming board for post-stroke upper limb functional training. In Proceedings of the Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pages 617–624. ACM, 2017.
58
J. Whitall, S.M. Waller, K.H. Silver, and R.F. Macko. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31(10):2390–2395, 2000.
59
H. Woldag and H. Hummelsheim. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. Journal of neurology, 249(5), 2002.
60
G. Yavuzer, A. Senel, M. Atay, and H. Stam. “playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. European journal of physical and rehabilitation medicine, 44(3):237–244, 2008.

 

via Iterative Design of an Upper Limb Rehabilitation Game with Tangible Robots

, , , , , ,

Leave a comment

[WEB SITE] Using Virtual Reality to Make Users Want to Exercise

[VIDEO] High-Tech Treadmill Uses Virtual Reality to Encourage Cardiovascular Fitness

Businesses are finding more uses for Virtual Reality (VR) as the technology develops.

VR is no longer only for gaming or enjoyment. An American company called Blue Goji is using VR to improve one’s health by making exercise more fun.

Blue Goji has offices in Austin, the capital of Texas. The company demonstrated its cardiovascular workout machine, called the Infinity treadmill, at the recent South by Southwest festival. The event is held every year in Austin.

A person using the treadmill wears a virtual reality headset when exercising. Before starting, the user is connected to a belt to prevent falls. Then, the user plays a VR game while running on the machine. The game can transport the user into the virtual world, where he or she can be racing against virtual people.

The cost of the hardware and computer software program is $12,000. That is a lot of money for most people. But Kyra Constam of Blue Goji says the virtual reality treadmill is ideal for places where people go to exercise, like a high-end gymnasium or recreation center. She added that people seeking treatment at physical therapy or rehabilitation centers would find the equipment useful.

Recently, Leonardo Mattiazzi tested the Infinity treadmill. Mattiazzi said he had a strong feeling to actually get running and do something that pushed his limits. He said the experience was more interesting than running inside the gym without actually going anywhere.

Motion sickness less likely

Constam said the active use of virtual reality helps solve a common problem while wearing a VR headset. She noted that a lot of VR experiences cause motion sickness because people are in motion during the game, but not moving in real life. But when the user is moving on the treadmill and in the game, the chances of motion sickness are reduced, she said.

However, users who tested the treadmill while wearing the VR headset each had a different experience. It took Leonardo Mattiazzi 10 seconds to set the controls to running in the virtual world.

VR learning curve

Kyra Constam said there generally is a learning curve for VR. The first time users feel lost, but “the more you do it, the more you get used to it,” she said.

Mark Sackler was a first time user. He said he felt a little sick at one point during the game. But he thought the experience was surprisingly realistic.

After carefully studying the users’ experiences, Blue Goji plans to begin selling the Infinity treadmill to the public in 2019.

VOA’s Elizabeth Lee reported on this story from Texas. Xiaotong Zhou adapted her report for Learning English. George Grow was the editor.

via Using Virtual Reality to Make Users Want to Exercise

, , , , , ,

Leave a comment

%d bloggers like this: