Posts Tagged Leap Motion

[Abstract] A game changer: the use of digital technologies in the management of upper limb rehabilitation – BOOK

Abstract

Hemiparesis is a symptom of residual weakness in half of the body, including the upper extremity, which affects the majority of post stroke survivors. Upper limb function is essential for daily life and reduction in movements can lead to tremendous decline in quality of life and independence. Current treatments, such as physiotherapy, aim to improve motor functions, however due to increasing NHS pressure, growing recognition on mental health, and close scrutiny on disease spending there is an urgent need for new approaches to be developed rapidly and sufficient resources devoted to stroke disease. Fortunately, a range of digital technologies has led to revived rehabilitation techniques in captivating and stimulating environments. To gain further insight, a meta-analysis literature search was carried out using the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) method. Articles were categorized and pooled into the following groups; pro/anti/neutral for the use of digital technology. Additionally, most literature is rationalised by quantitative and qualitative findings. Findings displayed, the majority of the inclusive literature is supportive of the use of digital technologies in the rehabilitation of upper extremity following stroke. Overall, the review highlights a wide understanding and promise directed into introducing devices into a clinical setting. Analysis of all four categories; (1) Digital Technology, (2) Virtual Reality, (3) Robotics and (4) Leap Motion displayed varying qualities both—pro and negative across each device. Prevailing developments on use of these technologies highlights an evolutionary and revolutionary step into utilizing digital technologies for rehabilitation purposes due to the vast functional gains and engagement levels experienced by patients. The influx of more commercialised and accessible devices could alter stroke recovery further with initial recommendations for combination therapy utilizing conventional and digital resources.

via A game changer: the use of digital technologies in the management of upper limb rehabilitation – Enlighten: Publications

, , , , , , , , , ,

Leave a comment

[Abstract + References] A Feasibility Study on Wrist Rehabilitation Using the Leap Motion – Conference paper

Abstract

Wrist and hand rehabilitation are common as people suffer injuries during work and exercise. Typically, the rehabilitation involves the patient and the therapist, which is both time consuming and cost burdening. It is desirable to use advanced telemedicine technologies such that the patient is able to enjoy the freedom of performing the required exercise at their own time and pace, while the healthcare system can operate more efficiently. The Leap Motion Controller (LMC), an inexpensive motion detection device, seems to be a good candidate for remote wrist rehabilitation. In this paper, the functionality and capability of the LMC are examined. Experiments are carried out with a total of twelve people performing twelve different movements. From the experimental results, the feasibility of using the LMC as a rehabilitation device is discussed.

References

  1. 1.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., Huber, M., Rabin, B., AbdelBaky, M., Nwosu, M.E., Barkat-Masih, M.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91(1), 1–8 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Li, K.F., Lin, J., Ren, J.: Leap motion for telerehabilitation: a feasibility study. In: Advances on Broadband and Wireless Computing, Communication and Applications, 13th International Conference on BWCCA, pp. 213–223 (2018)Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Golgan, A.: Changing How People Look at Physical Therapy [Blog] Leap Motion (2018). http://blog.leapmotion.com/changing-people-look-physical-therapy/. Accessed 20 Aug 2018
  6. 6.
    Sathiyanarayanan, M., Rajan, S.: Understanding the Use of Leap Motion Touchless Device in Physiotherapy and Improving the Healthcare System in India (2018). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7945443&tag=1. Accessed 20 Aug 2018
  7. 7.
  8. 8.
  9. 9.
    Salvador, S., Chan, P.: FastDTW: toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)CrossRefGoogle Scholar

via A Feasibility Study on Wrist Rehabilitation Using the Leap Motion | SpringerLink

, , , , , , , ,

Leave a comment

[Abstract] Gesture Interaction and Augmented Reality based Hand Rehabilitation Supplementary System – IEEE Conference Publication

Abstract:

The existing systems of hand rehabilitation always design different rehabilitation medical apparatus and systems according to the patients’ needs. This kind of system always contain problems such as complexity, using only single training programs, inconvenient to wear and high cost. For these reasons, this paper uses gesture recognition technology and augmented reality technology to design a simple and interactive hand rehabilitation supplementary system. The system uses a low-cost, non-contact device named Leap Motion as the input device, and Unity3D as the development engine, realizing three functional modules: conventional training, AR game training and auxiliary functions. This rehabilitation training project with different levels of difficulty increases the fun and challenge of the rehabilitation process. Users can use the system to assist the treatment activity of hand rehabilitation anytime and anywhere. The system, which has good application value, can also be used in other physical rehabilitation fields.

via Gesture Interaction and Augmented Reality based Hand Rehabilitation Supplementary System – IEEE Conference Publication

, , , , , , , , , , , , ,

Leave a comment

[Conference Proceedings] Rhythmic Entrainment for Hand Rehabilitation Using the Leap Motion Controller – Full Text PDF

Abstract

Millions of individuals around the world suffer from motor impairment or disability, yet effective, engaging, and cost-effective therapeutic solutions are still lacking. In this work, we propose a game for hand rehabilitation that leverages the therapeutic aspects of music for motor rehabilitation, incorporates the power of gamification to improve adherence to medical treatment, and uses the versatility of devices such as the Leap Motion Controller to track users’ movements. The main characteristics of the game as well as future research directions are outlined.

Full Text PDF

via Rhythmic Entrainment for Hand Rehabilitation Using the Leap Motion Controller | Kat Agres

, , , , , , , , , ,

Leave a comment

[ARTICLE] Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients – Full Text

 

Abstract

Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

Introduction

Chronic conditions such as stroke are becoming more prevalent as the world’s population ages (Christensen et al., 2009). Although the number of fatalities caused by stroke has fallen in most countries, stroke is still a leading cause of acquired adult hemiparesis (Langhorne et al., 2009; Liu and Duan, 2017). Up to 85% of patients who survive a stroke experience hemiparesis, resulting in impaired movement of an arm and hand (Nakayama et al., 1994). Among them, a large proportion (46% to 95%) remain symptomatic six months after experiencing an ischemic stroke (Kong et al., 2011). The loss of upper limb function adversely affects the quality of life and impedes the normal use of other body parts. The motor function recovery of the upper limbs is more difficult than that of the lower extremities (Kwakkel et al., 1996; Nichols-Larsen et al., 2005; Día and Gutiérrez, 2013). Functional motor recovery in the affected upper extremities in patients with hemiparesis is the primary goal of physical therapists (Page et al., 2001). Evidence suggests that repetitive, task-oriented training of the paretic upper extremity is beneficial (Barreca et al., 2003; Wolf et al., 2006). Rehabilitation intervention is a critical part of the recovery and studies have reported that intensive repeated practice is likely necessary to modify the neural organization and favor the recovery of the functional upper limb motor skills of stroke survivors (Brunnstrom, 1966; Kopp et al., 1999; Taub et al., 1999; Wolf et al., 2006; Nudo, 2011). Meta-analyses of clinical trials have indicated that longer sessions of practice promote better outcomes in the case of impairments, thus improving the daily activities of people after a stroke (Nudo, 2011; Veerbeek et al., 2014; Sehatzadeh, 2015; French et al., 2016). However, the execution of these conventional rehabilitation techniques is tedious, resource-intensive, and often requires the transportation of patients to specialized facilities (Jutai and Teasell, 2003; Teasell et al., 2009).

Virtual reality training is becoming a promising technology that can promote motor recovery by providing high-intensity, repetitive, and task-orientated training with computer programs simulating three-dimensional situations in which patients play by moving their body parts (Saposnik et al., 2010, 2011; Kim et al., 2011; Laver et al., 2015; Tsoupikova et al., 2015). The gaming industry has developed a variety of virtual reality systems for both home and clinical applications (Saposnik et al., 2010; Bao et al., 2013; Orihuela-Espina et al., 2013; Gatica-Rojas and Méndez-Rebolledo, 2014). The most difficult task related to hemiparesis rehabilitation after a stroke is the functional recovery of the affected hand (Carey et al., 2002). To facilitate the functional recovery of a paretic hand along with that of the proximal upper extremity, an ideal virtual reality system should be able to track hand position and motion, which is not a feature of most existing virtual reality systems (Jang et al., 2005; Merians et al., 2009). The leap motion controller developed by Leap Motion (https://www.leapmotion.com) provides a means of capturing and tracking the fine movements of the hand and fingers, while controlling a virtual environment requiring hand-arm coordination as part of the practicing of virtual tasks (Iosa et al., 2015; Smeragliuolo et al., 2016).

Most virtual reality studies have often only involved patients who have experienced chronic stroke (Piron et al., 2003; Yavuzer et al., 2008; Saposnik et al., 2010; da Silva Cameirao et al., 2011). For patients in the chronic stage, who had missed the window of opportunity present at the acute and subacute stages (in which the brain plasticity peaks), rehabilitation-therapy-induced neuroplasticity can only be effective within a relatively narrow range (Chen et al., 2002). No motor function recovery of the hands, six months after the onset of a stroke, indicates a poor prognosis for hand function (Duncan et al., 1992).

We hypothesized that Leap Motion-based virtual reality training would facilitate motor functional recovery of the affected upper limb, as well as neural reorganization in subacute stroke patients. Functional magnetic resonance imaging (fMRI), also called blood oxygenation level-dependent fMRI (BOLD-fMRI), is widely used as a non-invasive, convenient, and economical method to examine cerebral function (Ogawa et al., 1990; Iosa et al., 2015; Yu et al., 2016). In the present study, we evaluated the brain function reorganization by fMRI, as well as the motor function recovery of the affected upper limb in patients with subacute stroke using Leap Motion-based virtual reality training.[…]

Continue —>  Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients Wang Zr, Wang P, Xing L, Mei Lp, Zhao J, Zhang T – Neural Regen Res

Figure 1: Leap Motion-based virtual reality system and training games.
(A, B) Leap Motion-based virtual reality system; (C) petal-picking game; (D) piano-playing game; (E) robot-assembling game; (F) object-catching with balance board game; (G) firefly game; (H) bee-batting game.

 

 

, , , , , , , , ,

Leave a comment

[PDF File] MINDMOTION GO: A PORTABLE VIRTUAL REALITY SYSTEM FOR POST-STROKE REHABILITATION

… After a stroke, patients usually have motor deficiency that reduces the strength and motion range of their limbs. Physiotherapeutic rehabilitation focuses on exercises that train single movements and functions of di8erent body parts: shoulder flexion/extension and abduction/adduction, wrist flexion/extension and radial/ulnar deviation, reaching, hand opening/closing and pinch, trunk axial and lateral rotation, lateral and frontal body weight transfer on the lower limbs.[…]

Download PDF File

, , , , , , , , ,

Leave a comment

[Conference paper] Virtual Environments for Motor Fine Skills Rehabilitation with Force Feedback – Abstract+References

Abstract

In this paper, it is proposed an application to stimulate the motor fine skills rehabilitation by using a bilateral system which allows to sense the upper limbs by ways of a device called Leap Motion. This system is implemented through a human-machine interface, which allows to visualize in a virtual environment the feedback forces sent by a hand orthosis which was printed and designed in an innovative way using NinjaFlex material, it is also commanded by four servomotors that eases the full development of the proposed tasks. The patient is involved in an assisted rehabilitation based on therapeutic exercises, which were developed in several environments and classified due to the patient’s motor degree disability. The experimental results show the efficiency of the system which is generated by the human-machine interaction, oriented to develop human fine motor skills.

References

  1. 1.
    Holden, M.K.: Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8(3), 187–211 (2005). Discussion 212–219CrossRefGoogle Scholar
  2. 2.
    Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. CyberPsychol. Behav. 8(3), 241–262 (2005)CrossRefGoogle Scholar
  3. 3.
    Organización Mundial de la Salud and Banco Mundial: Informe mundial sobre la discapacidad (Resumen), Organ. Mund. la Salud, p. 27 (2011)
  4. 4.
    Parker, V.M., Wade, D.T., Hewer, R.L.: Loss of arm function after stroke: measurement, frequency, and recovery. Int. Rehabil. Med. 8(2), 69–73 (1986)CrossRefGoogle Scholar
  5. 5.
    Lai, S.M., Studenski, S., Duncan, P.W., Perera, S.: Persisting consequences of stroke measured by the stroke impact scale. Stroke 33(7), 1840–1844 (2002)CrossRefGoogle Scholar
  6. 6.
    Yazid, M.: Development of a potential system for upper limb rehabilitation training based on virtual reality. In: 2011 4th International Conference on Human System Interactions HSI 2011, pp. 352–356 (2011)
  7. 7.
    Petersen, R.: Mild cognitive impairment 56, 303–309 (2014)
  8. 8.
    WHO: International classification of impairment, disabilities and handicaps. World Health Organization, Geneva, May 1976 (1980)
  9. 9.
    van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J., van Gijn, J.: Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5), 604–607 (1988)CrossRefGoogle Scholar
  10. 10.
    Krampe, R.T.: Aging, expertise and fine motor movement. Neurosci. Biobehav. Rev. 26(7), 769–776 (2002)CrossRefGoogle Scholar
  11. 11.
    van Vliet, P.M., Wulf, G.: Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil. Rehabil. 28(13–14), 831–840 (2006)CrossRefGoogle Scholar
  12. 12.
    Byl, N., et al.: Effectiveness of sensory and motor rehabilitation of the upper limb following the principles of neuroplasticity: patients stable poststroke. Neurorehabil. Neural Repair 17(3), 176–191 (2003)CrossRefGoogle Scholar
  13. 13.
    Kizony, R., Katz, N., Weiss, P.L.: Adapting an immersive virtual reality system for rehabilitation. J. Vis. Comput. Animat. 14(5), 261–268 (2003)CrossRefGoogle Scholar
  14. 14.
    Deutsch, J.E., Latonio, J., Burdea, G.C., Boian, R.: Post-stroke rehabilitation with the rutgers ankle system: a case study. Presence Teleoperators Virtual Environ. 10(4), 416–430 (2001)CrossRefGoogle Scholar
  15. 15.
    Sveistrup, H.: Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 1, 10 (2004)CrossRefGoogle Scholar
  16. 16.
    Jack, D., et al.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 308–318 (2001)CrossRefGoogle Scholar
  17. 17.
    Alejandro, M., Cardona, C., Spitia, F.R., López, A.B.: Exoesqueletos para potenciar las capacidades humanas y apoyar la rehabilitación. Rev. Ing. Biomédica 4, 63–73 (2010)Google Scholar
  18. 18.
    Kuhtz-Buschbeck, J.P., Hoppe, B., Gölge, M., Dreesmann, M., Damm-Stünitz, U., Ritz, A.: Sensorimotor recovery in children after traumatic brain injury: analyses of gait, gross motor, and fine motor skills. Dev. Med. Child Neurol. 45(12), 821–828 (2003)CrossRefGoogle Scholar
  19. 19.
    Taylor, C.L., Harris, S.R.: Effects of ankle-foot orthosis on functional motor performance in a child with spastic diplegia. Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc. 40(7), 492–494 (1986)CrossRefGoogle Scholar
  20. 20.
    Iosa, M., et al.: Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top. Stroke Rehabil. 22(4), 306–316 (2015)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Andaluz, V., Salazar, P., Silva, S., Escudero, V., Bustamante, D.: Rehabilitation of upper limb with force feedback. In: 2016 IEEE International Conference on Automatica (ICA-ACCA) (2016)
  23. 23.
    Andaluz, V.H., et al.: Virtual reality integration with force feedback in upper limb rehabilitation. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10073, pp. 259–268. Springer, Cham (2016). doi:10.1007/978-3-319-50832-0_25 CrossRefGoogle Scholar
  24. 24.
    Matos, N., Santos, A., Vasconcelos, A.: ICTs for improving Patients Rehabilitation Research Techniques. Commun. Comput. Inf. Sci. 515(97753), 143–154 (2015)Google Scholar

Source: Virtual Environments for Motor Fine Skills Rehabilitation with Force Feedback | SpringerLink

, , , , , , ,

Leave a comment

[Abstract] Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Rehabilitation

Abstract:

Nowadays virtual reality (VR) technology give us the considerable opportunities to develop new methods to supplement traditional physiotherapy with sustain beneficial quantity and quality of rehabilitation. VR tools, like Leap motion have received great attention in the recent few years because of their immeasurable applications, whish include gaming, robotics, education, medicine etc. In this paper we present a game for hand rehabilitation using the Leap Motion controller. The main idea of gamification of hand rehabilitation is to help develop the muscle tonus and increase precision in gestures using the opportunities that VR offer by making the rehabilitation process more effective and motivating for patients.

Related Articles

Source: Gamification of Hand Rehabilitation Process Using Virtual Reality Tools: Using Leap Motion for Hand Rehabilitation – IEEE Xplore Document

, , , , , , , , , , ,

Leave a comment

[Master’s thesis] Tracking, monitoring and feedback of patient exercises using depth camera technology for home based rehabilitation – ANNA RIDDERSTOLPE – Full Text PDF

Abstract

Neurological and chronic diseases have profound impacts on a person’s life. Rehabilitation is essential in order to maintain and promote maximal level of recovery by pushing the bounds of physical, emotional and cognitive impairments. However, due to the low physical mobility and poor overall condition of many patients, traveling back and forth to doctors, nurses and rehabilitation centers can be exhausting tasks. In this thesis a game-based rehabilitation platform for home usage, supporting stroke and COPD rehabilitation is presented. The main goal is to make rehabilitation more enjoyable, individualized and easily accessible for the patients.

The game-based rehabilitation tool consists of three systems with integrated components: the caregiver’s planning and follow-up system, the patient’s gaming system and the connecting server system. The server back end components allow the storage of patient specific information that can be transmitted between the patient and the caregiver system for planning, monitoring and feedback purposes. The planning and follow-up system is a server system accessed through a web-based front-end, where the caregiver schedules the rehabilitation program adjusted for each individual patient and follow up on the rehabilitation progression. The patient system is the game platform developed in this project, containing 16 different games and three assessment tests. The games are based on specific motion patterns produced in collaboration with rehabilitation specialists. Motion orientation and guidance functions is implemented specifically for each exercise to provide feedback to the user of the performed motion and to ensure proper execution of the desired motion pattern.

The developed system has been tested by several people and with three real patients. The participants feedback supported the use of the game-based platform for rehabilitation as an entertaining alternative for rehabilitation at home. Further implementation work and evaluation with real patients are necessary before the product can be used for commercial purpose.

Full Text PDF

 

, , , , , , , ,

Leave a comment

[WEB SITE] Reh@Panel (formerly RehabNet CP) – NeuroRehabLab Tools

 

Reh@Panel (formerly RehabNet CP) acts as a device router, bridging a large number of tracking devices and other hardware with the RehabNet Training Games for the patient to interact with. Reh@Panel implements the communication protocols in a client/server architecture. Native device support for:

Electrophysiological Data

 

  • Emotiv EPOC neuro-headset is intergrated for acquiring raw EEG data, gyroscope data, facial expressions and Emotiv’s Expressiv™, Cognitiv™ and Affectiv™ suite
  • Neurosky EEG headset is supported for raw EEG acquisition and eSense™ meters of attention and meditation
  • Myoelectric orthosis mPower 1000 (Myomo Inc, Boston, USA) is supported, providing 2 EMG channels and adjustable levels of assistance

 

more —> Reh@Panel (formerly RehabNet CP) | NeuroRehabLab Tools

, , , , , ,

Leave a comment

%d bloggers like this: